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Abstract. One approach for releasing public use files is to make synthetic data, i.e., data simulated
from statistical models estimated on the confidential data. Given access only to synthetic data, users
cannot tell whether the synthetic data have been constructed in ways that provide sufficient accuracy
for their particular purposes. To enable users to make such assessments, data providers also can
allow users to request verification measures. These are summary statistics reflecting comparisons
of the results of analysis based on the synthetic and confidential data. We present three verification
measures that satisfy differential privacy for assessing the quality of linear regression models. We
use simulation studies to illustrate the verification measures.
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1 Introduction

When national statistics agencies and other data stewards—henceforth all called agencies—
seek to release microdata files to the public, they are ethically and often legally obligated to
protect the privacy and confidentiality of data subjects’ identities and sensitive attributes.
In the era of big data, agencies may need to alter large fractions of values to protect pri-
vacy and confidentiality. Modifying only a small number of values, e.g., only perturbing
variables deemed quasi-identifiers, may not suffice when intruders have access to dozens
or hundreds of variables on data subjects, for example, from private sector sources or ad-
ministrative databases, that can be used for record linkage attacks.

In such settings, one approach is to release fully synthetic data (Rubin, 1993; Fienberg,
1994; Reiter, 2002, 2005a,b, 2009; Raghunathan et al., 2003; Reiter and Raghunathan, 2007;
Drechsler and Reiter, 2010; Drechsler, 2011). Here, the agency replaces every value on the
file with draws from statistical models designed to preserve important relationships in the
confidential data. When the models adequately describe the joint distribution of the con-
fidential data, the synthetic data can preserve important associations in the confidential
data. And, they can carry low disclosure risks, as the released data do not correspond
to actual records. It is nonsensical for intruders to link synthetic records to external files,
which reduces the risks from record linkage attacks that have broken many anonymization
strategies (e.g., Sweeney, 1997, 2013; Narayanan and Shmatikov, 2008; Parry and Chase,
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2011). Because of these potential benefits, the U.S. Census Bureau uses synthetic data as a
dissemination strategy for several major data products, including the Survey of Income and
Program Participation (SIPP) (Abowd et al., 2006), the American Community Survey group
quarters data (Hawala, 2008), the OnTheMap origin-destination data (OTM) (Machanava-
jjhala et al., 2008), and the Longitudinal Business Database (LBD) (Kinney et al., 2011). Other
examples of synthetic data applications have appeared in the literature (e.g., Kennickell,
1997; Abowd and Woodcock, 2001, 2004; Little et al., 2004; Graham and Penny, 2005; An
and Little, 2007; Drechsler et al., 2008a,b; Graham et al., 2009; Slavkovic and Lee, 2010).

Synthetic data have a critical weakness. Users of synthetic data cannot determine if and
how much their analysis results have been impacted by the synthesis process. Inevitably,
the accuracy of some analyses deteriorates significantly because of imperfect data gener-
ation models. It is arguably essential that agencies develop ways to provide feedback to
users about the quality of inferences from synthetic data—or data generated by any other
disclosure protection method—for specific estimands.

Verification servers (Reiter et al., 2009; Karr and Reiter, 2014) offer a way to provide that
feedback. The basic idea is as follows. The analyst, who has access only to the synthetic
data, submits a query to the verification server for the results of a statistical model; for
example, the coefficients in a regression or the mean of some variable in a subpopulation.
The server, which has both the confidential and synthetic data, performs the analysis on
both data sources. From the results, the server calculates a measure of how similar one
result is to the other. The server returns the value of the verification measure to the analyst.
With such feedback, analysts can avoid publishing—in the broad sense—results with poor
quality, and be confident about results with good quality (Reiter and Drechsler, 2010).

Verification measures, however, leak information about the confidential data. Clever in-
truders could use this information for disclosure attacks, as shown by Reiter et al. (2009)
and McClure and Reiter (2012). Thus, agencies need verification measures that allow them
to control the information leakage about the confidential data. Chen et al. (2016) propose
that verification measures be designed to satisfy differential privacy (Dwork, 2006). In par-
ticular, they present methods for generating differentially private plots of residuals versus
predicted values in linear regression, thereby helping users assess the reasonableness of the
assumptions of a posited model when applied on the confidential data. Following on this
work, Barrientos et al. (2018) present differentially private verification measures that allow
users to assess whether specific regression coefficients exceed user-defined thresholds. We
are not aware of other differentially private verification measures.

In this article, we present three differentially private (DP) verification algorithms aimed
at helping users assess the accuracy of predictions based on linear regression results from
synthetic data. The first algorithm, which we call DP prediction tolerance intervals, de-
termines a DP estimate of the number of predicted values that fall inside user-specified
intervals. The second algorithm, which we call DP prediction histograms, provides a DP
graphical summary of how well the predicted values correspond to the assumptions of
the linear model. The third algorithm, which we call DP prediction Kolmogorov-Smirnov
tests, quantifies the distance between the empirical distributions of predicted values and
the true values of the dependent variable. The algorithms are tuned to the assumptions of
the linear model, but the general ideas can be adapted for other models.

The remainder of this article is organized as follows. In Section 2, we briefly review dif-
ferential privacy and the Laplace Mechanism, which we use to design the DP verification
algorithms. In Section 3, we present the three DP prediction verification algorithms. In Sec-
tion 4, we illustrate the performance of the algorithms with simulation studies. In Section
5, we illustrate the methods using data from the U.S. Current Population Survey. In Section
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6, we conclude with suggestions for implementation and discuss future research.

2 Review of Differential Privacy

Let A be an algorithm that takes as input a database D and outputs some quantity S, i.e.,
A(D) = S. Let D′ be a neighboring database of D. For this article, as done for most differ-
entially private algorithms in the literature, we define neighboring databases as different
in one row and identical for all other rows (Dwork and Roth, 2014).

Definition 1 (ε-differential privacy). An algorithm A satisfies ε-differential privacy if for
any pair of neighboring datasets (D,D′), and any output S ∈ range(A), Pr(A(D) = S) ≤
eε · Pr[A(D′) = S].

The ε, known as the privacy budget, controls the degree of privacy by limiting how well
intruders can distinguish any dataset from neighboring datasets given the output. The
smaller the value of ε, the more privacy is protected.

Differential privacy satisfies two key properties that we utilize in making DP verification
measures. The first is sequential composition. Suppose A1(D) and A2(D) are ε1-DP and
ε2-DP algorithms. Releasing both A1(D) and A2(D) satisfies (ε1 + ε2)-differential privacy.
The second is post-processing composition. SupposeA1(D) is an ε1-DP algorithm. For any
algorithm A3(·), releasing A3(A1(D)) still is ε1-DP.

A common method for ensuring ε-differential privacy is the Laplace Mechanism (LM).
For any function f : D → Rd, the global sensitivity GS(f) is defined to be the maximum L1

distance in the outputs of f computed on any two neighboring datasets D and D′, that is,
GS(f) = max(D,D′) ||f(D)− f(D′)||1. For example, when f represents a counting query we
generally have GS(f) = 1. The LM setsA(D) = f(D)+δ, where δ is a vector of independent
random variables drawn from a Laplace distribution with the probability density function
p(x) = 1

2(GS(f)/ε) exp(−|x|/(GS(f)/ε)). See Dwork and Roth (2014) for examples of other
algorithms that satisfy differential privacy.

3 Verification Methods for Predictions

We describe the verification methods for the context of linear regression. In particular, the
user wants to estimate a regression of some continuous outcome y on a set of p explanatory
variables, x = (x1, . . . , xp), using the standard linear model. For any individual i, the linear
regression model is

yi = α+

p∑
j=1

xijβj + τi, τi ∼ N(0, σ2), (1)

where α is an intercept, β = (βj , . . . , βp) are regression coefficients, and N(0, σ2) represents
a normal distribution with mean 0 and variance σ2. We define µ(x) = α +

∑p
j=1 xijβj , the

true regression mean at x. To simplify notation, we shall drop the (x) from the notation
when the dependence is clear.

Given the confidential data D, we assume that the user would estimate the model param-
eters using maximum likelihood estimation, which is equivalent to ordinary least squares
estimation. Given estimates of the parameters from this model fit, which we denote Θ̂ =

(α̂, β̂1, . . . , β̂p, σ̂
2), the user can predict the value of y for any x using µ̂ = α̂ +

∑p
j=1 xj β̂j .
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We note that D may include more variables than x and y, but we use only those variables
for the regression.

In our context, the user does not have access to D and hence cannot compute Θ̂. Instead,
the user has access to a synthetic dataset D̃, generated by the agency. Using D̃, the user
estimates some regression of y on x, ignoring any other variables. For now, we assume
that the user seeks to estimate the same regression as in (1). Let Θ̃ = (α̃, β̃1, . . . , β̃p, σ̃

2) be
the resulting estimate of Θ. With Θ̃, the user can make predictions of y for any x by using
µ̃ = α̃+

∑p
j=1 xj β̃j .

A key question for the user is: are the regression predictions from the synthetic data sim-
ilar to what she would get from the confidential data? More broadly, does the regression
offer reasonably accurate predictions? The three DP verification measures are designed to
address these questions in different ways, as we now describe.

3.1 DP prediction tolerance intervals

The DP prediction tolerance interval is the most straightforward of the three intervals to
describe. To begin, for all i ∈ D, the user supplies a tolerance interval [li, ui]; we discuss
interval choices momentarily. For each i ∈ D, let Ii = 1 when yi ∈ [li, ui] and let Ii =
0 otherwise. We then compute P (D) =

∑
i∈D Ii/n, i.e., the fraction of cases where the

true outcome variables are inside the user’s tolerance intervals. We cannot release P (D)
since it depends on D. Instead, we add noise to this fraction drawn from the Laplace
Mechanism with the appropriate global sensitivity. We label this algorithm as P and the
noisy output as P(D), suppressing dependence on the method for interval construction to
simplify notation.

The usefulness of P is determined by the way the user constructs the intervals. We seek
intervals with the following characteristics. First, we want Ii = 1 when the synthetic data
regression offers predictions within a satisfactory distance from yi, where the user deter-
mines what is satisfactory. Second, we want to specify intervals so that P has low and
computable global sensitivity.

To meet these desiderata, we allow users only to specify functions for making limits that
are passed to the verification server, which makes the intervals without ever reporting their
values to the user. We use µ̃i = α̃ +

∑p
j=1 xij β̃j as midpoints of the intervals. We use the

actual xi in µ̃i to ensure any potential differences in µ̃i from yi are due to using a model
based on D̃ and not based on using a different xi. Using these midpoints, we consider two
types of intervals. With additive intervals, the user sends each interval width, say ∆i, to
the verification server which computes each [li, ui] = [µ̃i−∆i, µ̃i+∆i]. With multiplicative
intervals, the user tells the verification server proportionality constants (ai, bi), and the
server computes [li, ui] = [aiµ̃i, biµ̃i]. We expect users to make ai = a and bi = b for all i in
practice. We emphasize that the server computes the limits and the corresponding values
of Ii, but never allows users to see the values of the limits; it only reports P(D).
With multiplicative intervals, if each (ai, bi) is specified independently from any other

(ai′ , bi′), the global sensitivity of P (given D̃ is already released) equals 1/n since each Ii is
independent of other Ii′ . This makes for a straightforward and accurate implementation of
the Laplace Mechanism.

To make a correspondingly simple additive interval, users could select a constant ∆i = ∆
for all i. When users do not have such a ∆ in mind, one approach is to set ∆i by approximat-
ing prediction confidence intervals at each xi. To define these limits, let X and X̃ represent
the matrix of the predictors from D used to estimate Θ̂ and from D̃ used to estimate Θ̃,
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respectively. From linear regression theory, the usual prediction confidence interval for a
new outcome y at some value x is µ̂± t1−α/2SE(y|x), where t1−α/2 is the appropriate crit-
ical value from the t-distribution with n − (p + 1) degrees of freedom and SE(y|x,D) =√
σ̂2(1 + xT (XTX)−1x). We do not use SE(y|x), however, because doing so would make

the values of Ii dependent, since changing one (xi, yi) affects both σ̂2 and XTX . We there-

fore use an approximate standard error, SE(y|x, D̃) =
√
σ̃2(1 + xT (X̃T X̃)−1x). Since σ̃2

and X̃T come from D̃, which is already released, each Ii is independent and the global
sensitivity is 1/n.

Values of P (D) are generally small in two cases. First, D̃ may be a poor representation of
D, in that it fails to capture the regression relationship adequately. In this case, the value of
β̃ may be quite different from β̂, so that µ̃i can be quite far from yi. Second, the regression
model used to make predictions may predict yi poorly, even in the confidential data. In this
case, P (D) will be small even if D̃ is drawn from the exact same distribution as D. Thus,
users should view P as an omnibus measure of the quality of predictions made from the
synthetic data.

3.2 DP prediction histograms

The DP prediction tolerance intervals offer a one-number summary of the quality of the
predictions from the regression. However, users may be interested in finer details, for ex-
ample, to visualize the distribution of the differences between yi and µ̃i. The DP histogram
facilitates such investigations. We begin with a description of the prediction histogram for
the linear model without privacy considerations. We use the notation Φ(w) to represent the
cumulative probability of the argument w under the standard normal distribution.

When the assumptions in (1) are valid, so that y is normally distributed around the true
µ with true variance σ2, the values of the cumulative probabilities, F (y|x, µ, σ2) = Φ((y −
µ)/σ), are uniformly distributed. Thus, given unbiased estimates µ̂ and σ̂2, with suffi-
cient sample size we would expect the empirical cumulative probabilities, F (y|x, µ̂, σ̂2) =
Φ((y−µ̂)/σ̂) also to be approximately uniformly distributed. When the linear regression as-
sumptions are not reasonable, we expect to see deviations from uniformity in the empirical
cumulative probabilities.

We adopt this method for use in checking the quality of regression predictions from syn-
thetic data. Specifically, for each xi ∈ D, the verification server computes µ̃i as in Section
3.1. Using the estimated regression variance σ̃2 computed with the regression estimated
on D̃, the verification server computes F (yi|xi, D̃) = Φ((yi − µ̃i)/σ̃). For all i ∈ D, let
Bi1 = 1 if 0 < p(yi|xi, D̃) ≤ 0.1, and Bi1 = 0 otherwise. Similarly, for j = 2, . . . , 10,
let Bij = 1 if .1(j − 1) < p(yi|xi, D̃) ≤ .1(j), and Bij = 0 otherwise. For j = 1, . . . , 10,
let Mj(D) =

∑
i∈D Bij be the number of observations with p(yi|xi, D̃) in the bin corre-

sponding to the jth decile of the unit interval. The counts M1(D), . . . ,M10(D) represent
a histogram with ten equal-sized bins. Adding or removing only one element from D

affects the count in only one of the bins, so that global sensitivity (given D̃ is already re-
leased) is bounded by 1. We use the Laplace Mechanism to add noise to each Mj(D),
resulting in noisy counts (M1(D), . . . ,M10(D)) that are released to the user. Intuitively,
when D̃ faithfully represents D and the linear regression assumptions are reasonable, the
histogram of noisy counts should be flat. As with the DP prediction tolerance intervals,
either non-representative synthesis or poorly specified predictive models for y could result
in deviations from approximate uniformity.
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3.3 DP prediction Kolmogorov-Smirnov test

The Kolmogorov-Smirnov (KS) statistic often is used to compare two univariate distribu-
tions. The basic idea is as follows. Define the empirical cumulative distribution function for
a sample Y = (y1, . . . , yn) as FY (y) =

∑n
i=1 Ii(−∞ < yi ≤ y)/n, where y is some arbitrary

value, Ii(·) = 1 when the condition inside the parentheses is true, and Ii(·) = 0 otherwise.
For two samples, say Y1 and Y2, the KS statistic is the maximum difference in the empirical
distributions functions,

KS(Y1, Y2) = supy|FY1
(y)− FY2

(y)|, (2)

where FY1
and FY2

are empirical distribution functions for Y1 and Y2, respectively. The
test statistic follows a known reference distribution, which can be used to test the null
hypothesis that Y1 and Y2 come from the same distribution. A large value of KS(Y1, Y2),
corresponding to a small reference p-value, suggests that Y1 and Y2 come from different
distributions.

We adapt the KS statistic to compare the set of yi and a set of plausible predicted values
of yi based on Θ̃. We let Y1 in (2) be the observed values Y = (y1, . . . , yn) from D. We
generate a plausible Y2 as follows. For each xi ∈ D, we sample a predicted value ỹi from
a N(µ̃i, σ̃

2), where µ̃i and σ̃2 are computed from Θ̃, i.e., the parameters of the regression
model of interest estimated with D̃. Let Ỹ = {ỹi : i = 1, . . . , n} be the n generated values,
which we set as Y2 in (2). We sample from the normal distribution so as to create data that
accord with the assumptions in (1). If we instead use only µ̃i, the resulting univariate distri-
bution automatically would have smaller variance than Y1 and hence not be immediately
comparable. We add noise to KS(Y, Ỹ ) using a Laplace Mechanism with global sensitivity
2/n.

We now explain where 2/n comes from. First, we note that the global sensitivity of
KS(Y1, Y2) is 1/n when continuous-measured Y1 and Y2 are both n× 1 vectors. In the most
extreme case, the additional observation in the neighboring database is larger (or smaller)
than all values in Y , in which case the maximum difference in the empirical distribution
function will change by at most 1/n. Suppose that, given a set of (Y, Ỹ ), we change one
row in Y and the corresponding row in Ỹ . Let (Y ′, Ỹ ′) be the data with the one changed
row. Then, we have

KS(Y ′, Ỹ ′) = supy|FY ′(y)− FỸ ′(y)|
= supy|FY ′(y)− FY (y) + FY (y)− FỸ (y) + FỸ (y)− FỸ ′(y)|
≤ supy|FY ′(y)− FY (y)|+ supy|FY (y)− FỸ (y)|+ supy|FỸ (y)− FỸ ′(y)|
≤ supy|FY ′(y)− FY (y)|+ supy|FỸ (y)− FỸ ′(y)|+KS(Y, Ỹ )

≤ 2/n+KS(Y, Ỹ )

Thus, |KS(Y ′, Ỹ ′)−KS(Y, Ỹ )| ≤ 2/n.
The noisy KS statistic, which we call KS(Y, Ỹ ), is not easily interpreted on its own. We

require the reference distribution forKS(Y, Ỹ ) to find reference p-values; we now present a
Monte Carlo approximation of this reference distribution. First, we create h equally spaced
points between 0 and 1, where h is large, and compute the cumulative probability at each
point according to the reference distribution for the KS statistic without any privacy con-
siderations. In the simulations, we set h = 1000 for computational convenience; analysts
can use larger h for finer approximations. Second, we use differences in the cumulative
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probabilities for successive points to approximate the probability density function at each
point. Third, we randomly sample a value from the h points using the approximate prob-
ability density function. We adopt this approximate sampling strategy because, as far as
we are aware, convenient simulation routines for the Kolmogorov distribution do not exist
(Marsaglia et al., 2003). Fourth, we add to the sampled value an independent draw from the
Laplace distribution with parameters that correspond to the desired LM. This is one sample
from the Monte Carlo approximation to the reference distribution. Finally, we repeat the
third and fourth steps thousands of times to come up with the approximate reference dis-
tribution. We note that the Kolmogorov distribution depends on the sample size n, so we
must consider n not sensitive to release. If this is not the case, analysts could spend some
privacy budget to add noise to n, which for large sample size should not meaningfully alter
the reference distribution.

To compute the p-value for a particularKS(Y, Ỹ ), we determine the percentage of samples
from the reference distribution that exceed the value of KS(Y, Ỹ ).

4 Simulation Studies

We illustrate the performance of the three algorithms using simulation studies of several
scenarios. For each scenario, we create D from an underlying true model, which we call
the authentic dataset generator. We call the model used to generate D̃ the synthetic dataset
generator. We consider scenarios where the two generators are the same and where the two
differ. We define the prediction model as the regression model the user estimates on D̃. In
practice, the prediction model may differ from the models used in the true and synthetic
data generators. We include this possibility in the scenarios.

Conceptually, the agency could generate D̃ in multiple ways. It could use a model-based
approach, like those used to generate the synthetic SIPP and synthetic LBD, or use a dif-
ferentially private synthesizer, like the one used to generate the synthetic data for OTM or
by Zhao et al. (2015). We are not aware of any data synthesizers for multivariate data with
continuous (unbounded) variables that offer low error for small values of ε. Therefore, to
keep focus on the performance of the DP verification measures, we use model-based syn-
thetic data generators akin to those used to release existing synthetic data products. We
note that agencies releasing D̃ that do not satisfy differential privacy cannot use sequen-
tial composition properties to claim that the combined release of D̃ and the verification
measures is DP. In this case, agencies should interpret the privacy guarantee as bounding
the additional leakage of information by providing verification measures, given that D̃ is
already released.

We construct each D to comprise n = 1000 individuals with three variables, one la-
beled y that we treat as a response for the prediction models and two labeled (x1, x2) that
we treat as potential explanatory variables for the prediction models. In each D and for
i = 1, . . . , n, we generate (xi1, xi2) from draws of independent normal distributions with
variances equal to one. As the bivariate means of these distributions, we use each inte-
ger pair in {(0, 0), (1, 1), (2, 2), . . . , (9, 9)}, using each mean 100 times. This makes the ex-
planatory variables take on a wide range of values. We generate yi from various models,
depending on the scenario. To generate the D̃ corresponding to D, we randomly sample
new values (x̃i1, x̃i2), where i = 1, . . . , n, using the same mixture of normal distribution
approach used to generate the variables in D. We sample from the true distribution for
(xi1, xi2) rather than an estimate of it computed from D so that the evaluations focus on
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the ability of the measures to diagnose the quality of the regression models, as opposed to
the quality of the method used to generate the explanatory variables. We generate new ỹi
using predictive distributions estimated from different models depending on the scenario.
Once we generate D̃, we act like a user and estimate the prediction model from D̃.

For all DP verification algorithms, we use ε = 1. For the DP prediction tolerance interval,
we set each [li, ui] = [µ̃i − t1−α/2SE(y|x, D̃), µ̃i + t1−α/2SE(y|x, D̃)], where α = .05.

To investigate the behavior of the verification measures, we consider five scenarios. The
first three include best case scenarios where the authentic data and synthetic data gener-
ators use the same models. The next two include scenarios where the agency’s synthetic
data generator does not match the authentic data generator. We also vary the scenarios to
use linear or quadratic regressions. We run each simulation scenario at least 50 times. The
overall patterns conclusions are quite similar across repetitions. Therefore, to simplify the
presentation, we only show results from one simulation per scenario.

4.1 Same authentic and synthetic data generators

We consider three scenarios where the authentic and synthetic data generators are the same.
In the first, we use the same linear regression specification for the generators and the pre-
diction model. In the second, we use the linear regression specifications for the generators
but use different prediction models. In the third, we use regressions with quadratic func-
tions of X for the generators and different prediction models.

4.1.1 Linear generators and ideal prediction model

The authentic dataset generator uses yi = α + β1xi1 + β2xi2 + τi, where τi ∼ N(0, σ2)
with σ2 = 1 and α = β1 = β2 = 1. From any D, we estimate the parameters using
ordinary least squares to obtain (α̂, β̂1, β̂2, σ̂2). The synthetic data generator then uses
ỹi = α̂ + β̂1x̃i1 + β̂2x̃

2
i + φi, where φi is randomly drawn from N(0, σ̂2). We note that

Raghunathan et al. (2003) recommend sampling values of the regression parameters from
their posterior distributions rather than using the ordinary least squares estimates. How-
ever, for the sample size used here practically this makes little difference in the generation
of D̃. Finally, we estimate the same linear regression on D̃ as the prediction model.

The value of P(D) ≈ .952, which suggests that the model predictions tend to be within
acceptable tolerance as defined by P . This is as expected, since we based [li, ui] on the
formula for 95% prediction intervals. Figure 1 displays the results from the DP prediction
histogram. The shape is relatively flat, as would be expected since the prediction model
and synthetic data generator have the same specification as the authentic data generator.
The value ofKS(D) ≈ .011, corresponding to a p-value of around 1. These also suggest that
the predictions from D̃ are reliable, in that the estimated model based on D̃ can generate
predictions that look like the authentic Y .

4.1.2 Linear generators and mis-specified prediction models

We use the linear model in 4.1.1 for the authentic and synthetic data generators. However,
now we mimic two users who estimate mis-specified prediction models. Specifically, User
1 estimates a linear model using only x1 as a predictor, that is, she excludes x2 from the
prediction model. User 2 fits a model with quadratic terms rather than linear terms, that is,
he regresses y on x21 and x22.
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Figure 1: DP prediction histogram in scenario from Section 4.1.1 with matching linear au-
thentic and synthetic data generators, and a matching linear prediction model. The flat
shape indicates that the prediction model accurately describes the authentic data genera-
tion mechanism.

For User 1, the value of P(D) ≈ .957. Apparently, the intervals are wide enough that the
mis-specification is not deemed problematic according to the criterion in P . As evident in
Figure 2, the DP prediction histogram for User 1 is relatively flat. The value of KS(D) for
User 1 is around .028, corresponding to a p-value around .835. Thus, theKS algorithm also
suggests that the predictions from D̃ are reliable, in that the estimated model based on D̃
can generate predictions that look like the authentic Y .

For User 2, the value of P(D) ≈ .952, which has approximately the same value and,
hence, interpretation as the P(D) for User 1. The DP prediction histogram differentiates
the two model fits more effectively. As evident in Figure 2, the DP prediction histogram
for User 2 is bumpier than the one for User 1. Evidently, the mis-specification of User 2
harms prediction quality more than the mis-specification of User 1. Overall, the histogram
suggests that the regression predictions from D̃ have a distribution that is dissimilar to the
distribution of Y from D, in that the regression predictions from D̃ tend to be further away
from the actual yi values more frequently than would be expected if User 2’s model was
accurate. The KS(D) clearly reveals a lack of fit, with KS(D) ∼ .091 corresponding to a
p-value of .0005.
Overall, the DP histogram and KS verification measures detect the dramatic model mis-

specification of User 2, but they do not detect the apparently less harmful model mis-
specification of User 1. The two sets of results also suggest that the prediction model of
User 1 is preferred to that of User 2, because the assumptions for User 1 appear to fit the
data more accurately. This illustrates how the verification measures can be used to compare
the quality of predictions from different models.

4.1.3 Quadratic generators and mis-specified prediction models

The authentic dataset generator uses yi = α+ β1x
2
i1 + β2x

2
i2 + τi, where τi ∼ N(0, σ2) with

σ2 = 1 and α = β1 = β2 = 1. From any D, we estimate the parameters using ordinary least
squares to obtain (α̂, β̂1, β̂2, σ̂2). The synthetic data generator uses ỹi = α̂+β̂1x̃

2
i1+β̂2x̃

2
i2+φi,

where φi is a draw from N(0, σ̂2). User 1 estimates a linear model using only x21 as a
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Figure 2: DP prediction histogram in scenario Section 4.1.2 with matching linear authentic
and synthetic data generators, and two mis-specified prediction models. The left panel
corresponds to User 1, who does not include an important term in the prediction model.
The right panel corresponds to User 2, who includes quadratic terms rather than linear
terms in the prediction model. The model for User 1 is preferred over the model for User 2.

predictor, that is, she excludes x22 from the prediction model. User 2 fits a model with
linear terms rather than quadratic terms, that is, he regresses y on x1 and x2 only.

For both users, the value of P(D) is slightly lower than .95, at around .930 for User 1 and
.942 for User 2. For both users, the predictions still tend to be inside the prediction tolerance
intervals, despite the model mis-specifications. As evident in Figure 3, the DP prediction
histograms for both users are far from uniformly distributed, indicating the lack of model
fit. The histogram for User 1 has most of its mass close to .5, suggesting that its predictions
tend to be closer to the actual Y values than expected under the linear regression model,
where distance is measured in terms of σ̃. Despite the model mis-specification, User 1
may be comfortable using the predictions from her model since it tends to offer accurate
predictions. The histogram for User 2 has most of its mass far from 0.5, suggesting that
its predictions tend to be further from the actual Y values than expected under the linear
regression model. This shape suggests that User 2 not be comfortable using his model. The
value of KS(D) for the prediction model of User 1 is around .109, which corresponds to
a p-value reported as 0. The value of KS(D) for the prediction model of User 2 is around
.177, corresponding to a p-value also reported as 0. Both values of KS(D) indicate the lack
of model accuracy. As with the DP prediction histograms, the KS measure suggests that
users prefer the prediction model for User 1 over the model for User 2.

4.2 Different authentic and synthetic data generators

We consider two scenarios where the authentic and synthetic data generators differ. In
both scenarios, we evaluate the performance of the verification measures for two users’
prediction models.

4.2.1 Quadratic authentic generator and linear synthetic generator

We generate D using the authentic data generator in 4.1.3, which uses squared terms of
x1 and x2 to create y. As the synthesis model, however, we use only a linear regression.
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Figure 3: DP prediction histogram in scenario from Section 4.1.3 with matching quadratic
authentic and synthetic data generators, and two mis-specified prediction models. The
left panel corresponds to User 1, who does not include an important term in the predic-
tion model. The right panel corresponds to User 2, who includes linear terms rather than
quadratic terms in the prediction model. The model for User 1 is preferred over the model
for User 2.

That is, from any D, we estimate the parameters of a linear model of y on (x1, x2) using
ordinary least squares to obtain (α̂, β̂1, β̂2, σ̂2). The synthetic data generator then uses
ỹi = α̂ + β̂1x̃i1 + β̂2x̃i2 + φi, where φi ∼ N(0, σ̂2). User 1 regresses y on x21 and x22 as the
prediction model; this happens to match the authentic data generator. User 2 regresses y
on x1 and x2 as the prediction model; this happens to match the synthetic data generator.

For User 1, the value of P(D) is close to 1.0, which indicates that nearly all the predictions
are within the tolerance band defined by P . From Figure 4, the DP prediction histogram for
User 1 is tightly clustered around .5. This suggests that the values of µ̃i from the prediction
model tend not to be too far from the corresponding yi, at least according to the distribution
implied by the prediction model. The lack of uniformity also highlights a lack of fit. Given
that the prediction model matches the authentic data generation model for User 1, the lack
of fit derives from the mismatch in the synthetic data generator. The value ofKS(D) ≈ .118,
which corresponds to a p-value reported as 0. TheKS is sensitive enough to detect the mis-
specification arising from the inaccurate synthetic data generator.

For User 2, the value of P(D) ≈ .958. The DP prediction histogram has high frequencies at
the edge deciles of [0,.1] and [.9,1]. This indicates that many predicted values are far from
their corresponding yi, a feature suggesting that the user should not feel comfortable using
the prediction model. The value of KS(D) confirms this, as it is around .167 corresponding
to a p-value reported as 0. The two sets of measures suggest that the prediction model for
User 1 be preferred over the model for User 2.

4.2.2 Linear authentic generator and polynomial synthetic generator

In the model-based synthetic data literature, agencies are advised to use richly specified
synthesis models, in the sense that they should err on the side of including unimportant
variables as predictors rather than excluding important variables (Reiter, 2005a). To mimic
this advice, we generate the authentic dataset from a linear regression model and synthetic
data from a polynomial regression model. Specifically, we generate authentic data from
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Figure 4: DP prediction histogram in scenario from Section 4.2.1 with quadratic authentic
and linear synthetic data generators, and two prediction models. The left panel corre-
sponds to User 1, whose prediction model happens to match the authentic data generator.
The right panel corresponds to User 2, whose prediction model happens to match the syn-
thetic data generator. The model for User 1 is preferred over the model for User 2.

the same model as in Section 4.1.1. To make synthetic data, we regress y on (x1, x
2
1, x2, x

2
2)

using D, and use ordinary least squares to obtain (α̂, β̂1, β̂2, β̂3, β̂4, σ̂2). The synthetic data
generator uses ỹi = α̂ + β̂1x̃i1 + β̂2x̃

2
i1 + β̂3x̃i2 + β̂4x̃

2
i2 + φi, where φi ∼ N(0, σ̂2). User 1

regresses y on x1 and x2 as the prediction model; this happens to match the authentic data
generator and is a submodel of the synthetic data generator. User 2 regresses y on x21 and
x22 as the prediction model; this does not match either data generator.

For User 1, the value of P(D) ≈ .948; the DP prediction histogram in Figure 5 is flat;
and, the value of KS(D) ≈ .027 with a p-value of .86. From these results, we infer that
the model of User 1 yields reliable predictions. This is not surprising, since the prediction
model and synthetic data generator model include the authentic data generator model as
submodels. Apparently, including irrelevant predictors in the synthesis model does not
harm the quality of the predictions for User 1 substantially.

For User 2, the value of P(D) is still high at around .949. However, the DP prediction
histogram in Figure 5 is rather bumpy, indicating some lack of fit. The value of KS(D) ≈
.084, corresponding to a p-value of .002. Having a good synthesizer does not ameliorate
problems that can arise from having a poor prediction model.

4.3 Findings from simulation results

Generally speaking, the DP prediction tolerance intervals return values around 95% across
all simulation scenarios. In these scenarios, SE(y|x, D̃) is large even with a poorly fitting
model, generating wide [li, ui] that usually include yi. As a result, in these scenarios and
with this additive ∆, P(D) is not useful for differentiating the quality of fit of competing
models, nor for determining whether or not the assumptions of a prediction model are
reasonable. This finding emphasizes the importance of selecting intervals that reflect user’s
specific desiderata (which we did not do for these artificial data simulation studies).

The DP prediction histogram allows users to visualize differences in the distributions of
the actual values and the predicted values based on the synthetic data model. In these
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Figure 5: DP prediction histogram in scenario Section 4.2.2 with linear authentic and poly-
nomial synthetic data generators, and two prediction models. The left panel corresponds
to User 1, whose prediction model happens to match the authentic data generator and is
a submodel of the synthetic data generator. The right panel corresponds to User 2, whose
prediction model does not match either data generator. The model for User 1 is preferred
over the model for User 2.

simulations, it reveals model mis-specifications both for the prediction model and the syn-
thetic data generator. When the generators differ substantially, or when the assumptions
in the prediction model are unreliable, the DP prediction histogram shows a non-uniform
pattern.

The DP prediction KS test is very sensitive to model mis-specifications. In these simula-
tions, it offers small p-values in all cases where the synthetic data generator or prediction
model do not include the authentic data generator as a submodel. The DP prediction KS
test appears to be especially useful as a one number summary for comparing different pre-
diction models, with models corresponding to higher p-values (lower values of KS(D))
being preferred.

5 Empirical Illustration

We now illustrate the DP prediction verification methods on genuine data. Specifically, we
use a subset of the March 2000 Current Population Survey (CPS) public use file comprising
n = 49436 heads of households with non-negative incomes and the variables described
in Table 1. These data have been used in previous research (e.g., Reiter, 2005a,c). For
simplicity, we generate a partially synthetic dataset (Little, 1993; Reiter, 2003), in which we
synthesize only the income variable and leave all other variables at their fixed values.

To make synthetic values of income, we regress the cube root of income on all the vari-
ables in Table 1. In the mean function of the regression, we use linear and quadratic terms
for each of the numerical variables, and indicator variables for each of the categorical vari-
ables. We also examined models that use the logarithm of income and the original scale of
income as the dependent variable, but the cube root transformation offers the best fit based
on residual plot diagnostics. After estimating the regression on the n records, we find the
resulting estimated coefficients (α̂, β̂) and estimated standard deviation σ̂. For i = 1, . . . , n,
we compute µ̂i = α̂ + xiβ̂, where xi includes the values for all the explanatory variables
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Variable Type Range
Sex Categorical Male, Female
Race Categorical White, Black, American Indian, Asian
Marital Status Categorical 7 categories, coded 1-7
Highest attained education level Categorical 16 categories, coded 31-48
Ages (years) Numerical 15-90
Child Support Payments ($) Numerical 0 - 23917.0
Social Security Payment($) Numerical 0 - 50000.0
Household Property Taxes ($) Numerical 0 - 99997.0
Household Income ($) Numerical 1 - 768742.0

Table 1: Description of the variables used in the empirical study

used in the mean function of the regression. Using the estimated regression variance σ̂2,
for each individual i we generate the synthetic income ỹi = (µ̂i + τ̃i)

3, where τ̃i is a ran-
dom draw from N(0, σ̂2). The partially synthetic data D̃ comprise each record’s ỹi and
explanatory variables.

Acting now as the user of D̃, we consider two possible regression models for income on
x. In the first we regress ỹi on xi, and in the second we regress ỹ1/3i on xi. We compute
the maximum likelihood estimates for each model, which we use in the DP prediction
verification measures. For the first model, we set µ̃i = α̃ + xiβ̃. For the second model,
we set µ̃i = (α̃ + xiβ̃)3, so as to transform back to the original scale of income. For the
DP prediction tolerance intervals, we use multiplicative bounds so that the intervals are
of the form [aµ̃i, bµ̃i]. For illustration, we consider 10% and 20% tolerance levels, so that
(a, b) ∈ {(.9, 1.1), (.8, 1.2)}. These are demanding levels of prediction accuracy that are
hard to satisfy with income models, but our goal is to illustrate the methodology rather
than evaluate the specific model. We note that users trivially could compute P(D) with
other tolerance bounds. We also examine additive intervals based on the 95% prediction
confidence interval described in Section 3.1 and used in Section 4. We show results for ε = 1
and ε = .1.

Table 2 displays the results of P(D) for all three intervals and both values of ε. We also
include the value of P (D), i.e., adding no noise to the percentage, as a baseline for com-
parison. For either multiplicative tolerance level, the fractions of intervals that cover the
actual yi are similar for both models, giving no compelling reason to prefer one model over
the other. However, if we demand prediction accuracy with tolerance at either multiplica-
tive intervals, we might conclude that the predictions based on the synthetic data are not
sufficiently accurate and, therefore, not place much faith in predictions gleaned from D̃ for
these models. As in Section 4, using additive bounds based on 95% prediction confidence
intervals results in near 95% inclusion rates for both models. We note that conclusions are
similar across both values of ε.

For the DP prediction histograms, we use the scales of the dependent variable when com-
puting the probabilities. Thus, for the regression with y1/3 as the outcome, we compare val-
ues of y1/3 to (α̃ + xiβ̃). Figures 6 and 7 displays results for the DP prediction histograms.
The loss in interpretability going from ε = 1 to ε = .1 is minimal. The plots reveal a lack of
fit of the predictions for both models. The predictions from the synthetic data regressions
tend to be closer to their corresponding actual Y values than we would expect under the
model assumptions. Users desiring stringent adherence to the model assumptions should
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Regression Prediction Interval No noise ε = 1 ε = .1
(a, b) = (.9, 1.1) .1282 .1282 .1284

y on x (a, b) = (.8, 1.2) .2580 .2580 .2579
Additive .9576 .9576 .9573
(a, b) = (.9, 1.1) .1363 .1363 .1365

y1/3 on x (a, b) = (.8, 1.2) .2707 .2707 .2712
Additive .9439 .9439 .9440

Table 2: Results of DP prediction tolerance interval for empirical illustration with CPS data
using regression of yi on xi and regression of y1/3i on xi. The column labeled “No noise”
refers to the output of the algorithm without adding any noise for privacy purposes.

Figure 6: Results of DP prediction histogram for empirical illustration with CPS data from
the regression of yi on xi. Left panel shows results for ε = 1 and right panel shows results
for ε = .1

deem the resulting models inadequate. On the other hand, the deviations from uniformity
are not drastic compared to those seen for the extremely poor fitting models in Section 4.1.3
and 4.2.1. Users willing to accept deviations from model assumptions, but still requiring
predictions that are reasonably close to what one would expect under the model, may well
find these models useful for prediction.

For the DP prediction Kolmogorov-Smirnoff tests, we work with predicted values of Y
on the original scale. Thus, for the regression with y1/3 as the outcome, we compute the
statistic with plausible values of y rather than y1/3. For the regression of yi on xi, the value
of KS(Y, Ỹ ) ≈ .1368 when ε = 1 and KS(Y, Ỹ ) ≈ .1390 when ε = .1. For the regression of
y
1/3
i on xi, the value of KS(Y, Ỹ ) ≈ .1228 when ε = 1 and KS(Y, Ỹ ) ≈ .1230 when ε = .1.

Both correspond to p-values near 0, indicating that there are differences in the distributions
of Y and Ỹ . The smaller value of KS(Y, Ỹ ) for the regression using y1/3 suggests that it
could be preferred to the regression using y.

Given that we still see lack of fit when using the same model for predictions that we used
to generate D̃, the lack of fit stems from mismatches between the model used to generate
the synthetic data and the true data generation mechanism. Investigations of the true data
indicate that the normality assumption is not ideal for this regression. Apparently, more
flexible synthetic data generators are needed to create more realistic synthetic data.
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Figure 7: Results of DP prediction histogram for empirical illustration with CPS data from
the regression of y1/3i on xi. Left panel shows results for ε = 1 and right panel shows results
for ε = .1

6 Conclusion

The verification measures here are specific to linear regressions. However, they can be
modified for other regression models with continuous outcomes. In particular, the DP
prediction tolerance interval can be used easily with multiplicative intervals, as one simply
applies the proportionality constants to the predicted values. The DP prediction histogram
can be based on empirical cumulative probabilities derived from the assumptions of the
model. For example, if the model assumes gamma distributed errors, then we compute the
empirical cumulative probabilities using the gamma distribution and the predicted values.
We can use a similar strategy to do the DP prediction KS test, in that we generate plausible
predictions from the model assumptions and estimated parameters.

For regressions with binary outcomes, the DP verification measures presented here are
not appropriate. Instead, as a measure of predictive accuracy, we recommend using the
approach in Chen et al. (2016) to compute a DP receiver-operator characteristic curve, from
which one can compute a DP area under the curve. For visualizations of prediction accu-
racy, we recommend using DP plots of binned residuals as described in Chen et al. (2018).
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