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Abstract. Set-valued data is comprised of records that are sets of items, such as goods purchased
by each individual. Methods of publishing and widely utilizing set-valued data while protecting
personal information have been extensively studied in the field of privacy-preserving data publish-
ing. Until now, basic models such as k-anonymity or km-anonymity could not cope with attribute
inference by an adversary with background knowledge of the records. On the other hand, the ρ-
uncertainty model makes it possible to prevent attribute inference with a confidence value above a
certain level in set-valued data. However, even in that case, there is the problem that items to be
protected have to be designated as common to everyone. In this research, we propose a new model
that can provide more suitable privacy protection for each individual by protecting different items
designated for each record distinctively and build a heuristic algorithm to achieve this guarantee us-
ing partial suppression. In addition, considering the problem that the computational complexity of
the algorithm increases combinatorially with increasing data size, we introduce the concept of prob-
abilistic relaxation of privacy guarantee. Finally, we show the experimental results of evaluating the
performance of the algorithms using real-world datasets.
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1 Introduction

In recent years, the importance of utilizing big personal data has been emphasized. Among
various types of data, set-valued data is useful as a data format that can express various
kinds of information associated with individuals in a simple way. Set-valued data is data
in which each record is represented as a set of items, such as goods purchased by an indi-
vidual. Set-valued data is used in a growing number of applications including marketing
research, recommendation systems, and biomedical studies. To utilize such data widely in
the fields of business or research, there is a demand to give data to third parties or release
data to the public. However, publishing these data can reveal private information of a data
subject and should not be carried out directly.

219



220 Takuma Nakagawa, Hiromi Arai, Hiroshi Nakagawa

To cope with this situation, techniques for performing data processing that preserve the
privacy of the data subject while maintaining the utility of the data are widely studied
in the field of privacy-preserving data publishing. k-anonymity [10] is one of the most
basic data anonymization models, which aims to prevent identity disclosure (linking an in-
dividual to the corresponding record in the published data) in relational databases. Since
k-anonymity cannot be applied to set-valued data that cannot distinguish between quasi
identifiers (QIDs) and sensitive attributes, Terrovitis et al. [11] proposed a new model, km-
anonymity. Although these models can prevent identity disclosure, there is the problem
that they cannot guarantee that the private information contained in the record itself will
not be disclosed, i.e., the risk of attribute inference or sensitive information disclosure remains.
Then, ρ-uncertainty [3] was proposed to prevent attribute inference in set-valued data, in a
similar way to ℓ-diversity [9] for relational data. It is based on the premise that items can
be divided into sensitive attributes and non-sensitive attributes. The ρ-uncertainty model
guarantees that no association rule whose consequence contains a sensitive attribute can
be inferred with a confidence higher than parameter ρ.
However, this is not realistic because the same division of items is applied to all personal

records. As has been pointed out [12], the information as to whether each item is sensitive
can be strongly dependent on each individual. For example, in purchase history data,
one person may want to hide the purchase of medicine, and another person may wish to
hide the purchase of some entertainment supplies. Regarding privacy awareness, some
individuals may agree to release information on the majority of their items to enhance
the effectiveness of the research, and other individuals may feel that they want to protect
information on all of their items as sensitive attributes. Cao et al. [3] stated that we can cope
with this problem by deeming all items considered as sensitive by at least one person to be
sensitive for all individuals, but this leads to an unnecessarily large information loss. Until
now, to the best of our knowledge, no concrete countermeasure has been found. The only
way to protect set-valued data from attribute inference was to suppose that some items are
formally considered as sensitive attributes and can be distinguished from the others.
To tackle this problem, in this research, we propose a new model, personalized ρ-uncertainty

that can formally handle the situation where each individual designates several items to be
protected as sensitive attributes. Under this model, each individual can freely designate
items that he/she wants to protect, and the data processor can perform anonymization
without unnecessarily large utility loss under the conditions of this model. This is particu-
larly useful when handling data such as purchase history and web search query logs that
data subjects can select sensitive items.
Let us consider anonymization algorithms. Methods for processing set-valued data are

roughly divided into two categories: generalization [1, 3, 4, 6, 8, 11, 12] and suppression [3,
4, 7, 18]. When considering attribute inference in a situation in which sensitive items and
non-sensitive items are mixed, generalization methods are not suitable because the fact
that we generalize items can give clues to an adversary [3]. For example, suppose that Bob
has a sensitive item ‘viagra’ in his record and we generalize ‘viagra’ and ‘aspirin’ together
as ‘medicine’. If an adversary identifies Bob’s record and knows that Bob has ‘medicine’
which represents ‘viagra’ or ‘aspirin’, he/she can infer that there must be some reason for
this generalization. The expected reason is that his record includes medicine that he wants
to hide and must be ‘viagra’. That is, the adversary can infer that Bob has ‘viagra’ with high
confidence because if Bob actually has ‘aspirin’, there must be no need to generalize it with
‘viagra’. This way of thinking is related to the concept of minimality attack [15]. Therefore,
in this study, we used the suppression method. With the global suppression method [3, 18],
when an item is deleted, we delete it from all the records. This method has been preferred
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User Contents
Alice milk, bread, medicine
Bob apple

Carol milk, coffee, bread
Dave milk, medicine
Ellen coffee, bread, apple
Frank orange, medicine

(a) Original data

User Contents
u1 ���milk, bread, medicine
u2 apple
u3 milk, coffee,���bread
u4 milk, medicine
u5 coffee, bread, apple
u6 orange,����medicine

(b) Processed data

User Contents
u1 bread, medicine
u2 apple
u3 milk, coffee
u4 milk, medicine
u5 coffee, bread, apple
u6 orange

(c) Published data

Table 1: Example of anonymization of set-valued data

because it guarantees the truthfulness of the published data. However, since all the infor-
mation on the items to be suppressed is lost, it adversely affects the utility. In recent years,
instead of global suppression, methods using partial suppression, which allows respective
items to be suppressed for each record, have been proposed [4, 7]. Jia et al. [7] confirmed
that utility loss can be reduced considerably by realizing ρ-uncertainty by partial suppres-
sion instead of using global suppression. We built algorithms to achieve our proposed
model by expanding the ρ-uncertainty method.
Table 1 shows an example of set-valued data representing purchase history. Table 1a

shows the original data, Table 1b shows the processed data using the proposed algorithm
with ρ = 0.5, and Table 1c shows the published data. An item written in italics means it
was considered as sensitive by the user. In the personalized model, when a user uses a
service, he/she can designate which product he/she wants to protect, for each genre or
for each individual item (by entering this information into the system with checkboxes, for
example). If an adversary can browse the original data and knows that Alice bought milk,
he/she can infer that Alice also bought medicine with a confidence of 2/3 (greater than ρ).
On the other hand, if the adversary can only browse the published data, the fact that Alice
bought medicine cannot be inferred with a confidence higher than ρ because the confidence
of the association rule {milk}→{medicine} is 0.5. Similarly, all the privacy breaches that
appeared in the original data are eliminated in the published data by suppressing some
items. This makes it possible for many users to use the service and provide their personal
data with peace of mind, which also leads to significant benefits for data publishers and
data users.
Another problem in previous studies on anonymization of set-valued data is that the com-

putational complexity increases combinatorially with increasing data size. As a counter-
measure, for km-anonymity, a model that provides a probabilistic privacy guarantee using
a sampling method was proposed [1]. In our research, we show that probabilistic relaxation
by sampling method can also be applied to the proposed model, and we constructed an al-
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gorithm based on this idea. As a relaxation model, we propose personalized ρm-uncertainty
and personalized (ε, δ)-ρm-uncertainty.
The contributions of this paper are summarized as follows:

1. We propose a new model, personalized ρ-uncertainty, to prevent attribute inference in
situations where individuals want to consider different items as sensitive and protect
them. Also, to realize this, we constructed an algorithm using partial suppression.

2. We show that probabilistic relaxation using sampling can also be applied to the pro-
posed model as a way to perform anonymization with a reasonable computation time
even with large-scale data. We built an algorithm based on this idea.

3. Regarding the algorithms for realizing privacy guarantees by the proposed models,
we evaluate their performances by numerical experiments using actual datasets. As a
result, in realistic situations, we confirmed that anonymization can be performed with
a much smaller utility loss when using the proposed model rather than the existing
one.

The rest of this paper is organized as follows. In Section 2, we briefly review the ex-
isting anonymization models. In Section 3, we formally introduce the existing model, ρ-
uncertainty. In Section 4, we formalize the proposed model, personalized ρ-uncertainty,
and describe the algorithm for this model. Section 5 explains the relaxation model to cope
with the difficulty of computational complexity. Section 6 shows the results of experimen-
tally evaluating the performance of the proposed model, and Section 7 concludes the paper.

2 Related Work

In the researches on privacy-preserving data publishing, various anonymization models
have been proposed so far. In this section, we briefly review these related works.
For relational databases that can distinguish between QIDs and sensitive attributes, k-

anonymity [10], which prevents identity disclosure by ensuring that there are k or more
records with exactly the same QID combination, is the most basic model. However, when
anonymizing set-valued data, it is necessary to slightly change the way of thinking. He et
al. [6] proposed an efficient algorithm to apply k-anonymity to set-valued data, but since
there is no distinction as to which attribute is sensitive, this is not a practical privacy preser-
vation method.
Terrovitis et al. [11, 12] proposed a new model, km-anonymity, which is a relaxation of
k-anonymity for set-valued data. This guarantees that for any subset whose size is equal to
or less than m of any record, there are k−1 or more different records containing it. By doing
this, even if an adversary knows up to m of the items held by his/her target, it is expected
that the corresponding record cannot be identified among k records, and more information
is prevented from leaking. However, considering the case where all k records are the same,
for example, even if the record cannot be specified, information on other items of the target
can be leaked, i.e., the risk of attribute inference remains. Although they stated that we
could think of the concept of ℓm-diversity [12] as a countermeasure for this, they also said
that it cannot be practically applied, since we cannot identify which attributes are sensitive
in set-valued data.
However, if we assume that items can be divided into QIDs and sensitive attributes, at-

tribute inference in set-valued data can be prevented with simple models. Xu et al. [18]
proposed (h, k, p)-coherency, Cao et al. [3] proposed ρ-uncertainty, and Loukides et al. [8]
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proposed PS-rule model. Ghinita et al. [5] adopted a permutation approach for set-valued
data, in a similar way to Anatomy [16] for relational data. In addition, disassociation by
Terrovitis et al. [13] can also be applied to achieve ℓ-diversity.
There has been long-awaited demand to eliminate the assumption that the same items are

sensitive for everyone and provide appropriate guarantees to each individual. For rela-
tional databases, there is research on personalized privacy preservation [17], but there are
few studies dealing with personalized privacy of set-valued data. Wang et al. [14] proposed
a novel model based on k-anonymity that provides a distinct privacy guarantee for each
individual based on bipartite graphs. However, it is not sufficiently flexible because what
can be specified in this model is only whether each individual is sensitive and whether each
item is sensitive. In contrast, in our research, we propose a sufficiently flexible model that
allows each individual to specify which items are sensitive.
When considering such a complicated privacy requirement, the methods using global gen-

eralization or global suppression lead to significant information loss. Jia et al. [7] proposed
an algorithm to achieve ρ-uncertainty using partial suppression, preventing unnecessary
information loss. In this research, we build algorithms based on this concept.

3 Preliminary

First, we formally define the existing model, ρ-uncertainty [3], which is the base of the
proposed model.
Let D be a set-valued dataset, I be the universe of all items, and U be the set of all indi-

viduals contained in D. Du ⊆ I refers to a record of an individual u ∈ U . For any itemset
Q ⊆ I, the support of Q refers to the number of records containing Q in D and is denoted
as suppD(Q). Under the ρ-uncertainty setting, it is assumed that sensitive items and non-
sensitive items can be strictly distinguished, i.e., I = IS ∪ IN and IS ∩ IN = ∅ where IS
denotes the set of all sensitive items and IN denotes the set of all non-sensitive items.
When an adversary knows that an individual u has a subset of items Q ⊂ Du, if there is

another itemset R containing some sensitive items (not included in Q) and the association
rule Q → R has a high confidence, there is a privacy breach. Here, the confidence of an
association rule Q→ R is defined as follows:

conf (Q→ R) =
suppD(Q ∪R)

suppD(Q)
. (1)

Here, Q and R are called the antecedent and consequent of the association rule, respectively.
The condition of ρ-uncertainty is defined as follows.

Definition 1. A set-valued dataset D satisfies ρ-uncertainty if for any itemset Q ⊆ I, one
of the following conditions is satisfied:

1. for any sensitive item e ∈ IS\Q, conf (Q→ {e}) ≤ ρ.

2. suppD(Q) = 0.

In the second condition of the above definition, we consider the case where an item con-
tained in the adversary’s background knowledge Q is suppressed by the anonymization
process. In that case, the adversary cannot obtain any information about his/her target,
which implies that there is no privacy breach.
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4 Proposed Model

4.1 Personalized ρ-uncertainty

ρ-uncertainty can provide a practical privacy guarantee that prevents each individual from
being presumed to have sensitive items with high probability. However, the information
as to whether each item is sensitive can be strongly dependent on each individual, so it
cannot be said that this condition determining sensitive items independently of individuals
is realistic. In this research, we propose a new anonymization model that can be applied
to realistic situations by allowing individuals to consider different items as sensitive and
explicitly representing these conditions as sensitive constraints.
For each individual u ∈ U , let Eu denote the set of items u considers as sensitive, and we

call E = {(u,Eu) : u ∈ U} the sensitive constraint. For example, at e-commerce websites,
we obtain E by having each customer register items that they want to protect when they
use the service. An adversary defined as adv = (u,Q) knows that the individual u (target)
has the subset of items Q ⊂ I and estimates that u has his/her sensitive item e ∈ Eu\Q with
a probability of conf (Q → {e}). For the parameter ρ representing the predefined privacy
intensity criterion, the conditions to be satisfied are defined as follows.

Definition 2. A set-valued dataset D is safe w.r.t. adv = (u,Q) if one of the following
conditions is satisfied:

1. for any sensitive item e ∈ Eu\Q, conf (Q→ {e}) ≤ ρ.

2. suppD(Q) = 0.

This condition guarantees that an adversary who knows a subset of his/her target’s record
cannot speculate on any sensitive information of the target with a confidence higher than ρ
or cannot find a record in the data that can correspond to the target. Based on this condition,
the privacy requirement of the whole data is defined as follows.

Definition 3. A set-valued dataset D satisfies personalized ρ-uncertainty if D is safe w.r.t.
any adversary adv = (u,Q).

This requirement is equivalent to Definition 1 if the sensitive items for all individuals are
equal, so it can be said that this is a more versatile model as an extension of the existing
model. Note that each individual can designate items that they do not actually have as
sensitive items, as is the case with ρ-uncertainty. By doing this, it is possible to prevent
misunderstanding about items that the person does not actually have.
The validity of considering only association rules whose consequents contain only one

sensitive item is guaranteed by the following lemma. This is the straightforward adaptation
of the lemma by Cao et al. [3] to our setting.

Lemma 4. If an association rule whose antecedent is Q ⊆ Du and consequent is {e} (e ∈ Eu)
satisfies conf (Q→ {e}) ≤ ρ, conf (Q→ R) ≤ ρ holds for any itemset R ⊆ I satisfying e ∈ R.

Proof.

conf (Q→ R) =
supp(Q ∪R)

supp(Q)
(2)

≤ supp(Q ∪ {e})
supp(Q)

(3)

= conf (Q→ {e}) ≤ ρ. (4)

TRANSACTIONS ON DATA PRIVACY 11 (2018)



Personalized Anonymization for Set-Valued Data by Partial Suppression 225

We call an association rule Q → {e} a sensitive association rule if there is a user u ∈ U
satisfying Q ⊆ Du and e ∈ Eu.

4.2 Algorithm

As mentioned in Section 1, methods for processing set-valued data are roughly divided
into generalization and suppression. If generalization is used in a situation where sensitive
items and non-sensitive items are mixed, there is a risk that the fact itself that we generalize
items will give clues to an adversary [3]. Therefore, this time we adopt suppression as the
processing method, and, in particular, we use partial suppression. There is a method by Jia
et al. [7] using partial suppression for ρ-uncertainty. In this paper, we extend it so that it
can be applied to the proposed model.
When constructing an anonymization algorithm, it is necessary to first decide what kind

of indicators to use to analyze the utility of the data. If we know the tasks in which we use
anonymized data, we could design an algorithm that maximizes a utility metric to measure
the performance of one of the tasks while satisfying privacy constraints. Here, we focus on
the case where how to use data is not specifically defined. Hence, as a general-purpose
criterion to some extent, we aim to maintain the amount of information and the statistical
properties of the whole data as much as possible and define the utility metrics as follows.
Let D be the original dataset, D′ be the dataset being processed, and D(i) be the normalized
frequency of item i in D.

1. Ratio of items suppressed:

util info(D,D′) =

∑
i∈I(suppD(i)− suppD′(i))∑

i∈I suppD(i)
. (5)

2. Difference in frequency distribution of each item (measured by KL-divergence):

utildist(D,D′) =
∑
i∈I

D′(i) log
D′(i)

D(i)
. (6)

In most anonymization models, including the proposed one, the problem of minimizing
the utility loss while satisfying the privacy constraint is NP-hard. Another difficulty is
that the proposed model does not satisfy monotonicity. For example, in the case of pre-
venting identity disclosure by generalization, the privacy risk decreases monotonically as
generalization proceeds (Property 1 [11]). However, when considering the risk of attribute
inference, such a property does not hold, i.e., new risks may be created by processing. It
takes huge amounts of computation to perform this processing while preventing such risks
completely, and it is difficult to achieve by an efficient algorithm. Thus, to be realistic, here,
we adopt a simple policy that we iterate suppression focusing on each adversary that is not
safe and remove the risk until all risks are eliminated.
For an association rule Q → {e} that has a confidence higher than ρ, define a suppression

number Ns of an item i ∈ Q ∪ {e} as follows:

Ns(i, Q→ {e}) =

{
⌈suppD(Q ∪ {e})− suppD(Q) · ρ⌉ if i = e,⌈
suppD(Q∪{e})−suppD(Q)·ρ

1−ρ

⌉
if i ∈ Q.

(7)
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User Contents
u1 x,y
u2 x, y
u3 x, y
u4 x

(a) conf ({x} → {y}) = 0.75

User Contents
u1 x,y
u2 x, �y
u3 x, y
u4 x

(b) conf ({x} → {y}) = 0.5

User Contents
u1 �x,y
u2 �x, y
u3 x, y
u4 x

(c) conf ({x} → {y}) = 0.5

Table 2: Example of suppression

This definition represents the number of suppressions needed to satisfy conf (Q→ {e}) ≤ ρ
when we select one item i ∈ Q ∪ {e} and suppress it from the records containing Q ∪ {e}.
For example, suppose that user u1 has items x /∈ Eu1 and y ∈ Eu1 . Let supp({x}) = 4,
supp({y}) = 3, and ρ = 0.5 (see Table 2a). If we choose y as an item to be suppressed,
picking 3 − 4 × 0.5 = 1 record containing {x, y} and suppressing y from it results in
conf ({x} → {y}) = 2/4 ≤ ρ (Table 2b). If we choose x instead, we should suppress it
from 3−4×0.5

1−0.5 = 2 records, and we get conf ({x} → {y}) = 1/2 ≤ ρ (Table 2c). Both of these
cases of suppression satisfy the condition between conf ({x} → {y}) and ρ.
The overall view of the algorithm, SUPPRESSOR, is shown in Algorithm 1. In this algo-

rithm, for each ℓ and u ∈ U , we assume adversaries whose target is u and whose back-
ground knowledge contains ℓ items. The notation Rℓ

u represents the set of sensitive as-
sociation rules that can lead to privacy breach regarding such adversaries. If no rule is
contained in Rℓ

u for all ℓ and u, it can be said that the dataset satisfies Definition 3. Other-
wise, we need to suppress some items to eliminate the risks. For each rule Q→ {e} whose
confidence exceeds ρ in D′, we select item d and suppress it in Ns records. When choosing
d, we maximize F (d, e,Q,D,D′) defined as follows:

F (d, e,Q,D,D′) =
D′(d) log D′(d)

D(d)

Ns(d, Q→ {e})
. (8)

This is a function designed by combining two objectives: (1) to reduce the number of sup-
pressed items and (2) reduce the difference in the frequency distribution of items between
D and D′. These are based on the two utility metrics described previously. Finally, it out-
puts processed data that is safe w.r.t. all adversaries.
Note that in the proposed model, a divide-and-conquer framework [7] cannot be applied.

In the existing ρ-uncertainty model, if a large dataset is divided horizontally into several
parts and the safety is guaranteed by executing the algorithm independently for each part,
the combined dataset is also safe. However, when considering personalized ρ-uncertainty,
even if each part is processed independently, the safety of the whole dataset is not guaran-
teed because items specified as sensitive attributes by people included in other parts cannot
be considered. Therefore, we did not divide the dataset this time but processed the whole
data at once.
We describe the time complexity of Algorithm 1. Let n be the number of users included

in D, i.e., n = |U|, MD be the maximum record size, i.e., MD = maxu∈U |Du|, and ME be
the maximum number of sensitive items assigned by a single user, i.e., ME = maxu∈U |Eu|.
For each ℓ and u, we enumerate sensitive association rules Rℓ

u. For an antecedent Q ⊆ Du,
the cost of computing suppD′(Q) is O(n|Q|) and the cost of computing conf (Q → {e})
regarding all e ∈ Eu is O(nME). Since the number of patterns of Q whose size is ℓ is
O(

(
MD

ℓ

)
), enumerating Rℓ

u takes O(n
(
MD

ℓ

)
(MD + ME)) time. In each iteration regard-
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Algorithm 1 SUPPRESSOR

Input: dataset D, sensitive constraint E, parameter ρ
Output: processed dataset D′ satisfying personalized ρ-uncertainty

1: D′ ← D
2: safe ← false
3: while not safe do
4: safe ← true
5: for ℓ = 1 to maxu(|Du|) do
6: for u in U do
7: Rℓ

u ← {Q→ {e} | Q ⊆ Du, |Q| = ℓ, e ∈ Eu, conf (Q→ {e}) > ρ}
8: ifRℓ

u ̸= ∅ then
9: safe ← false

10: for Q→ {e} inRℓ
u do

11: if conf (Q→ {e}) > ρ then
12: d← arg max

d∈Q∪{e}
F (d, e,Q,D,D′)

13: N ← Ns(d, Q→ {e})
14: select N records randomly from records in D′ containing Q ∪ {e}, and sup-

press d from them
15: return D′

ing one rule in Rℓ
u (Steps 11–14), the bottleneck is computing conf (Q → {e}), and this

cost is O(n|Q|). Since |Rℓ
u| = O(

(
MD

ℓ

)
ME), the cost of Steps 7–14 is O(n

(
MD

ℓ

)
MDME).

Summarizing this with respect to ℓ = 1, . . . ,MD and u ∈ U , the cost of Steps 4–14 is
O(

∑MD

ℓ=1 n
2
(
MD

ℓ

)
MDME) = O(n2 · 2MD · MDME). In the algorithm, this process will be

repeated until all risks are eliminated. Because it is not guaranteed that the number of risks
decreases monotonically, estimating the number of iterations of the while loop is difficult.
At least, if a risk is found in one iteration, one or more items must be suppressed. If all the
items are suppressed, the dataset obviously meets the condition of Definition 3. Therefore,
it can be said that the number of iterations in the worst case is O(nMD). Assuming now
that the number of iterations is T , the computational complexity of the entire algorithm is
O(Tn2 · 2MD ·MDME). When MD ≪ ME and we can consider MD as a constant, the cost
is O(Tn2ME).

5 Model Relaxation

To guarantee personalized ρ-uncertainty, we must consider adversaries who have any pos-
sible subset as background knowledge and investigate the safety of the data against them.
Therefore, it is difficult to directly apply this algorithm to real large-scale data since the
number of patterns to be considered as adversaries’ knowledge increases combinatorially
with the maximum record length of data. A similar problem also occurs in the existing
ρ-uncertainty model, and in prior researches limiting its application target to data with a
very small maximum record length was inevitable.
In this section, to cope with this problem, we propose new models with relaxed conditions

that can anonymize large-scale data appropriately.
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5.1 Personalized ρm-uncertainty

First, as a simple approach, we define the next model that limits the size of the adversary’s
background knowledge to less than a certain size.

Definition 5. A set-valued dataset D satisfies personalized ρm-uncertainty if D is safe w.r.t.
any adversary adv = (u,Q) satisfying |Q| ≤ m.

This model relaxes the condition by limiting the strength of the adversary assumed in
Definition 3 in a similar way to the relaxation of k-anonymity to km-anonymity. However,
in this case, too, since the number of patterns to be checked increases combinatorially with
m, it is difficult to apply in some cases. Next, as a further contrivance, we introduce a
method to reduce the computational cost by probabilistically relaxing the model.

5.2 Personalized (ε, δ)-ρm-uncertainty

The basic idea of probabilistic relaxation is to assume that an adversary appears according
to a certain probability distribution and guarantee the safety of the data against such an
adversary with a certain probability using a sampling method. The model described here
involves applying the idea of Gergely et al. [1], which proposed to probabilistically relax
km-anonymity.
Let Aℓ be a set of adversaries who have a subset of size ℓ of the records held by the target

as background knowledge, i.e., Aℓ = {(u,Q) : u ∈ U , Q ⊆ Du, |Q| = ℓ}, and let αℓ be
a random variable taking a value on Aℓ. Also, let Hℓ be the probability that D is not safe
w.r.t. αℓ. After these preparations, we define a model that is probabilistic relaxation of
personalized ρm-uncertainty.

Definition 6. A set-valued dataset D satisfies personalized (ε, δ)-ρm-uncertainty if Pr[Hℓ <
ε] ≥ 1− δ for all ℓ ≤ m.

When this definition is satisfied for sufficiently small ε, δ > 0, it is highly probable that D
is safe w.r.t. most adversaries.

5.3 Algorithm with Sampling

We used sampling to check if the data meets the condition of Definition 6. The following
theorem gives a sufficient requirement for the samples necessary for this purpose.

Theorem 7. Consider a dataset D and a sensitive constraint E. Let S denote a set of samples picked
from a certain probability distribution on Aℓ independently, and suppose |S| ≥ log(1/δ)

2ε2 regarding
parameters ε, δ > 0. Then, if D is safe w.r.t. any adversary αℓ ∈ S, Pr[Hℓ < ε] ≥ 1− δ holds.

Proof. Let n = |S| and Xi (i = 1, . . . , n) be random variables that take 0 if D is safe w.r.t.
the sample advi = (ui, Qi) ∈ S and 1 if not. Let Ĥℓ be the rate of adversaries in S for which
D is not safe, i.e., Ĥℓ =

∑
i Xi/n. Since S is the set of samples independently picked from

Aℓ, E[Ĥℓ] = Hℓ holds. Following Hoeffding’s inequality, we obtain

∀ε > 0, P r[Hℓ − Ĥℓ ≥ ε] ≤ e−2|S|ε2 . (9)

Ĥℓ = 0 if D is safe w.r.t. any adversary included in S, and

Pr[Hℓ < ε] ≥ 1− e−2|S|ε2 . (10)
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Algorithm 2 SAMPLESUPPRESSOR

Input: dataset D, sensitive constraint E, parameters ρ, m, ε, δ
Output: processed dataset D′ satisfying personalized (ε, δ)-ρm-uncertainty

1: D′ ← D
2: nS ←

⌈
log(1/δ)

2ε2

⌉
3: safe ← false
4: while not safe do
5: safe ← true
6: for ℓ = 1 to m do
7: S ← nS samples of adversary αℓ sampled from Aℓ independently
8: RS ← {Q→ {e} | ∃(u,Q) ∈ S, e ∈ Eu, conf (Q→ {e}) > ρ}
9: ifRS ̸= ∅ then

10: safe ← false
11: for Q→ {e} inRS do
12: if conf (Q→ {e}) > ρ then
13: d← arg max

d∈Q∪{e}
F (d, e,Q,D,D′)

14: N ← Ns(d, Q→ {e})
15: select N records randomly from records in D′ containing Q∪{e}, and suppress

d from them
16: return D′

Here, given parameters ε, δ > 0, we get Pr[Hℓ < ε] ≥ 1− δ if D is safe w.r.t. any sample in
S satisfying

|S| ≥ log(1/δ)

2ε2
(11)

and this concludes the proof.

According to this theorem, we should set |S| ≥ 116 when ε = δ = 0.1, |S| ≥ 600 when
ε = δ = 0.05, and |S| ≥ 23,026 when ε = δ = 0.01. This value does not depend on
the maximum record length or m, so using this condition prevents the computational cost
from rapidly increasing with the values of the parameters and makes it possible to handle
large-scale data at practical costs.
Algorithm 2, SAMPLESUPPRESSOR, shows the operation to proceed with suppression while

checking whether the dataset satisfies this condition. For each ℓ, we select nS =
⌈
log(1/δ)

2ε2

⌉
samples from Aℓ independently and call the set of samples S. The notation RS represents
the set of sensitive association rules that can lead to privacy breach regarding sampled
adversaries. If no rule is contained in RS for all ℓ, it can be said that the data meet the
condition of Definition 6. Otherwise, we suppress some items to eliminate the risks in the
same manner as in Algorithm 1. Finally, if any unsafe adversary does not appear at all for
all ℓ ≤ m, the condition is satisfied, and the algorithm outputs D′ at that point.
To perform sampling, it is necessary to determine the probability distribution on Aℓ that

an adversary αℓ follows. In [1], Gergely et al. proposed a method of sampling from a uni-
form distribution by using Markov Chain Monte Carlo method, taking into consideration
the difference in appearance frequency of itemsets. In our case, however, since we must
also consider who is the target of the sampled adversary, we use a more simple way as
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follows: first, select one user with ℓ or more items from all users uniformly at random, then
pick a subset of ℓ items uniformly at random from that user’s record.
Let us consider the time complexity of Algorithm 2. For each adversary (u,Q) ∈ S,

the cost of computing suppD′(Q) is O(n|Q|) and the cost of computing conf (Q → {e})
regarding all e ∈ Eu is O(nME). Thus, enumerating RS takes O(nSn(|Q| + ME)) =
O(nSn(m +ME)) time. Since the cost of suppressing items regarding one rule Q → {e} is
O(n|Q|), as discussed in Section 4.2, and |RS | = O(nSME), the cost of suppressing items
regarding RS (Steps 11–15) is O(nSnmME). Summarizing the above for ℓ = 1, . . . ,m, one
iteration of the while loop is O(nSnm

2ME). When the number of this iteration is T , the
time complexity of the entire algorithm is O(TnSnm

2ME). Since it is difficult to estimate T
theoretically, the computation time for realistic data is experimentally investigated.

6 Experimental Evaluation

6.1 Settings

We conducted experiments on three real-world datasets, BMS-WebView-1, BMS-WebView-
2 and BMS-POS (introduced by Zheng et al. [19]), which are widely used as benchmarks
in the field of data mining. BMS-WebView-1 and BMS-WebView-2 contain several months
worth of click-stream data from e-commerce websites and BMS-POS contains several years
worth of point-of-sale data from an electronics retailer. As mentioned above, it is difficult
to apply Algorithm 1 directly to these datasets because the computational cost increases
combinatorially when the maximum record length of data is large. Thus, we extract only
records whose sizes are 5 or less from the original data and use them as experimental data
following previous studies [3, 4, 7]. We call these extracted datasets BMS-WebView-1’,
BMS-WebView-2’ and BMS-POS’ respectively. The characteristics of the datasets are shown
in Table 3. For Algorithm 2, original datasets were used.
In these datasets, there is no distinction between sensitive items and non-sensitive items.

In the previous studies, a certain percentage of all the items were randomly selected as
sensitive items, and the others were defined as non-sensitive items. However, since this is
the first study to consider the situation where each individual can select different sensitive
items in set-valued data, it is necessary to investigate how this situation affects the results
of anonymization. Here, as Experiment 1, we conduct experiments on the following two
cases. One involves randomly selecting a certain percentage of items to be sensitive for
everyone (fixed) and the other involves randomly selecting a certain percentage of items to
be sensitive for each individual distinctively (personalized). Because these cases provide
different privacy protection criteria, there is no point in directly comparing the values of

Dataset |D| |I| Max. record length Avg. record length
BMS-WebView-1 59,602 497 267 2.5
BMS-WebView-1’ 54,737 472 5 1.7
BMS-WebView-2 77,512 3,340 161 4.6
BMS-WebView-2’ 58,044 3,207 5 2.2
BMS-POS 551,596 1,657 164 6.5
BMS-POS’ 306,982 1,177 5 2.7

Table 3: Characteristics of datasets
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the utility metrics, but we can observe the effect of allowing individuals to choose different
sensitive items separately.
In practice, however, even when individuals can select sensitive items separately, it is hard

to say that the situation where each individual selects totally different items is realistic. As
Experiment 2, therefore, we assume a more realistic situation as follows. First, a certain
percentage of items are defined as sensitive items (to be precise, items that tend to be sen-
sitive). In addition to that, we reproduce a situation in which each individual specifies
whether to protect each item according to the need by adding 1% of noise (personalized+).
In other words, each person considers each item that tends not to be sensitive as a sensitive
attribute with a probability of 1% and each item that tends to be sensitive as a sensitive
attribute with a probability of 99%. To cope with such a situation with the existing models,
the only way is to designate all items that are sensitive to at least one person as sensitive to
everyone. We also prepare the data in this manner (fixed+). Note that, when sensitive items
are common to everyone, Algorithm 1 is almost the same as the Dist [7] algorithm (without
divide-and-conquer framework). Thus, fixed+ can be regarded as a baseline corresponding
to the current algorithm.
In general, the performance of the anonymization method depends greatly on the charac-

teristics of the dataset to be handled. Moreover, since we randomly select sensitive items at
this time, the results can also be affected by this way of selecting. It is necessary to consider
the effect of these factors. Hence, here, we first randomly extract 10% of the records from
the whole dataset and randomly select sensitive items. We perform anonymization of the
data obtained in this way ten times and examine the average value and standard deviation
of the utility metrics of the results.
Evaluation is performed mainly by analyzing the ratio of items suppressed (util info) and

KL-divergence (utildist). In addition, to consider more practical utility, we also introduce
the results of investigating how the results of association rule mining, which is a typical
application of set-valued data, changes through the anonymization process (see the result
of Experiment 2 for details). For any metric, the smaller the value, the higher the utility of
the processed data is.
All programs were coded in Python3 and run on AWS Linux instance with 61-GiB mem-

ory and eight 2.3-GHz CPUs.

6.2 Results

6.2.1 Experiment 1 (fixed vs. personalized)

First, we investigated the effect of selecting different sensitive items separately by com-
paring fixed and personalized. Figure 1 shows the results of applying Algorithm 1 to the
three datasets with a maximum record length of 5. The value of ρ was set to 0.5 and the
percentage of sensitive items was set to 40% following the previous studies [3, 7]. The
graphs represent the average values and standard deviations in ten trials. Since the pri-
vacy requirement is more complicated when sensitive items are different depending on
individuals (personalized), the loss of utility is consistently larger with respect to the ratio
of suppressed items (util info). Nevertheless, 75 to 90% of the items are left without being
suppressed, and in these cases as well, this is considered to be sufficient for practical use.
As for KL-divergence, the difference between fixed and personalized was slight, and this
tendency was similar in other experimental results. When comparing the three datasets,
the utility loss in BMS-WebView-2’ was the largest, which is particularly noticeable from
the values of KL-divergence (Figure 1b). This is thought to be due to the facts that BMS-
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Figure 1: Results of Algorithm 1
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Figure 2: Results of Algorithm 2

WebView-2’ has the largest number of items and it is difficult to maintain the frequency
distribution by balancing items to be suppressed in this dataset.
Next, Algorithm 2 is applied to the original datasets, and the utility loss is examined.

Figure 2 shows the results of experiments with ρ = 0.5, m = 5, ε = δ = 0.05. As a whole,
more items are suppressed than the cases when the maximum record length is limited to 5.
This is probably due to the fact that the number of combinations of items to be considered is
greatly increased by long records, and the privacy risks to be eliminated are also increased.
The difference between fixed and personalized is smaller than in the result of Algorithm 1
in most cases, and the value of KL-divergence may be smaller in personalized than in fixed.
Through the results of Experiment 1, it can be observed that in the case of personalized,

the utility loss is greater than in the case of fixed, but the increase is not so large, so it is
practically acceptable.

6.2.2 Experiment 2 (fixed+ vs. personalized+)

For more realistic situations, we investigated with personalized+ and fixed+ settings using
BMS-WebView-2, which has the largest number of item types. To consider more practical
utility, we introduce the results of investigating how the results of association rule min-
ing, which is a typical application of set-valued data, change through the anonymization
process. Specifically, we investigated how much the set of association rules obtained with
the Apriori algorithm [2] changes by applying our algorithms to the dataset. Apriori is
a well-known algorithm to efficiently enumerate all association rules whose support and
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Figure 3: Results of Algorithm 1 while varying ρ (BMS-WebView-2’)
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Figure 4: Results of Algorithm 1 while varying percentage of sensitive items (BMS-
WebView-2’)

confidence are above certain values, minsup and minconf . Here, minsup was set to 0.05% of
the number of the records and minconf was set to 30%. These values reflect a practical sce-
nario [7]. We measured utility loss by the Jaccard distance between the sets of rules mined
from the data before and after processing. That is, when the set of rules in the original data
is RD and that in the processed data is RD′ , the utility metric is defined as

utilmining(D,D′) = 1− |RD ∩RD′ |
|RD ∪RD′ |

. (12)

In the following experiments, for BMS-WebView-2’, the utility loss is measured using two
metrics, util info and utilmining, instead of utildist. For BMS-WebView-2, since we cannot
compute utilmining for the original dataset containing large records due to the computa-
tional complexity of the Apriori algorithm, only the values of util info are shown.
In the previous section, the percentage of sensitive items was set to 40% following the

previous studies [3, 7]. In realistic situations, the percentage of items that are sensitive to
many people (e.g., drugs, sexual items, etc.) is considered not to be so large, so we set this
value to 10% if not stated otherwise. For other parameters, ρ = 0.5, m = 5, and ε = δ = 0.05
unless otherwise specified, and the effect of changes in these parameters on the results was
examined in detail. We also show the computation time of the algorithms.
Figures 3 and 4 show the results of applying Algorithm 1 to BMS-WebView-2’ with util info,
utilmining and runtime. We conducted the experiment while varying ρ (Figure 3) and the
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Figure 5: Results of Algorithm 2 while varying ρ (BMS-WebView-2)
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Figure 6: Results of Algorithm 2 while varying percentage of sensitive items (BMS-
WebView-2)

percentage of sensitive items (Figure 4). Fixed+ in this experiment is the baseline corre-
sponding to the current model. In this case of fixed+, it is assumed that virtually all items
must be considered as sensitive for everyone, and the information loss increases greatly
due to unnecessary suppressions. Specifically, the sets of association rules mined from the
dataset before and after processing are almost completely different (utilmining ≈ 1). In con-
trast, the utility loss in the proposed model (personalized+) is much smaller than that in
the current model, and the runtime is also smaller. Regarding ρ (Figure 3), the smaller the
value, the more severe the privacy protection requirement, resulting in greater utility loss.
Regarding the percentage of sensitive items (Figure 4), as the number of sensitive items in-
creases, the number of sensitive association rules to be considered becomes larger, so utility
loss and necessary computation time also increase. The difference between fixed+ and per-
sonalized+ is prominent when the percentage of sensitive items is small, and these results
indicate the superiority of performing anonymization with the proposed model in realistic
situations. The runtime in personalized+ is hardly affected by ρ, but as the percentage of
sensitive items increases, it almost linearly increases, which is consistent with the analysis
in Section 4.2.
Next, Figures 5 and 6 show the results of applying Algorithm 2 to BMS-WebView-2 while

varying ρ (Figure 5) and the percentage of sensitive items (Figure 6). Since we cannot
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Figure 7: Results of Algorithm 2 while varying m (BMS-WebView-2)
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Figure 8: Results of Algorithm 2 while varying ε, δ (BMS-WebView-2)

apply the Apriori algorithm to this dataset, only util info and runtime are shown. The effect
of the change in ρ and the percentage of sensitive items has the same tendency as the result
of Algorithm 1. Although the utility loss is greater than in the case of BMS-WebView-2’,
the proportion of suppressed items is not so large in personalized+, especially when the
percentage of sensitive items is small. This result suggests that sufficiently useful data can
be obtained using the probabilistic relaxation model even for data including long records
that cannot be handled with current models.
Finally, we examine the effect of parameters specific to the probabilistic relaxation model.

Figures 7 and 8 show the results of applying Algorithm 2 to BMS-WebView-2 while varying
m (Figure 7) and ε, δ (Figure 8). As m becomes larger, the conditions for privacy protec-
tion become stricter, considering adversaries with more background knowledge. Figure 7
shows that, when m is about 3 or more, the utility loss hardly changes. This is thought
due to the facts that there are relatively few records including many items and that many
individuals can be sufficiently specified by the background knowledge about 3 in size. As ε
and δ become smaller, that is, as the number of samples needed increases according to (11),
the number of items suppressed increases slightly. This is an expected result because the
privacy requirement becomes stricter when the number of samples for which we must con-
firm the safety of the data increases. As ε and δ decrease, the computational complexity of
one iteration increases in proportion to (11), and the termination condition of the algorithm
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becomes more severe; hence, the total computation time becomes significantly large. This
means that the safety of the data also increases accordingly. As computing power permits,
this parameter should be set small, and safe anonymization should be done.

7 Conclusion

In this paper, we firstly reviewed the existing models concerning anonymization of set-
valued data. Then we discussed the problem that it is necessary to assume that only some
items are sensitive attributes for everyone to prevent attribute inference in particular. To
deal with this problem, we proposed a new model, personalized ρ-uncertainty, that al-
lows individuals to designate different items as sensitive attributes and provides privacy
protection criteria appropriate for each. Furthermore, we also proposed other models, per-
sonalized ρm-uncertainty and personalized (ε, δ)-ρm-uncertainty, to cope with another big
problem, the increase of the computational complexity. We designed algorithms to achieve
these guarantees and conducted experimental evaluation using the real-world datasets. As
a result, we confirmed that anonymization can be performed with a much smaller utility
loss when using the proposed model rather than the existing one. We also showed that the
probabilistic relaxation model can deal with large-scale data including long records that
cannot be handled with current models and obtain sufficiently useful processed data.
Future tasks include development of better performance algorithms and improving our

theoretical understanding of the performance of the algorithms.
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