
TRANSACTIONS ON DATA PRIVACY 12 (2019) 117–144

Privacy-Preserving Planarity Testing
of Distributed Graphs
Guy Barshap∗,∗∗, Tamir Tassa∗

∗The Open University of Israel.
∗∗Ben Gurion University of the Negev.

E-mail: barshag@post.bgu.ac.il, tamirta@openu.ac.il

Received 16 October 2018; received in revised form 18 February 2019; accepted 24 April 2019

Abstract. We study the problem of privacy-preserving planarity testing of distributed graphs. The
setting involves several parties that hold private graphs on the same set of vertices, and an external
mediator that helps with performing the computations. Their goal is to test whether the union of their
private graphs is planar, but in doing so each party wishes to deny from his peers any information on
his own private edge set beyond what is implied by the final output of the computation. We present
a privacy-preserving protocol for that purpose which is based on the Hanani-Tutte theorem. That
theorem enables translating the planarity question into the question of whether a specific system of
linear equations over the field F2 is solvable. Our protocol uses a diverse cryptographic toolkit which
includes techniques such as homomorphic encryption, oblivious Gaussian elimination, and private
set intersection.

Keywords. secure multiparty computation, privacy-preserving distributed computations, distributed
graphs, graph planarity

1 Introduction

A planar graphG = (V,E) is a graph that can be properly embedded in the two-dimensional
plane R2 in the following sense: there exists a bijection ϕ from the vertex set V to R2 and
a representation of each edge e = (u, v) ∈ E as a continuous simple curve in R2 with ϕ(u)
and ϕ(v) as its end points, such that no two curves intersect apart possibly at their end
points. Letting Kn denote the complete graph over n vertices (namely, the graph that has
all
(
n
2

)
edges) and Kn,n denote the complete bipartite graph with n vertices in each part,

then the graph K4 is planar, since it has a planar drawing (Figure 1), but K5 and K3,3 are
not (Figure 2).

Planar graphs constitute an attractive family of graphs, both in theory and in practice. In
many applications where graph structures arise, it is needed to test the planarity of those
graphs. A classical example is in the area of integrated circuit (IC) design. An IC consists
of electronic modules and the wiring interconnections between them. It can be represented
by a graph in which the vertices are the modules and the edges are the wires. An IC can be
printed on the surface of a chip iff the graph is planar, because wires must not cross each
other. Another setting in which planarity is a natural notion is in road maps. A set of cities

117

118 Guy Barshap, Tamir Tassa

Figure 1: K4 is a planar graph. The left drawing is non-planar, but the right drawing is
planar.

Figure 2: K5 and K3,3 are non-planar. A graph is planar iff it does not include either of
them as minors.

TRANSACTIONS ON DATA PRIVACY 12 (2019)

Privacy-Preserving Planarity Testing of Distributed Graphs 119

and interconnecting roads can be thought of as a graph; the graph vertices are the cities
while the edges are connecting roads. Such a map can be constructed with non-crossing
roads (in order to avoid constructing bridges or obstructing the traffic flow by stop lights)
iff the corresponding graph is planar.

Apart from the above motivating examples, there are cases in which the planarity of a
graph can be exploited in order to simplify and expedite the solution of some computa-
tional problems. Examples include sub-graph isomorphism [12], maximal clique [32], and
maximum cut [19].

In this study we consider a distributed version of the planarity testing problem. In that
problem there are several parties, P1, . . . , Pd, each one holding a private graph on the same
set of vertices. Namely, Ph has a graphGh = (V,Eh) where V is publicly known and shared
by all, while Eh is private, 1 ≤ h ≤ d. They wish to determine whether the union graph
G = (V,E), where E =

⋃d
h=1Eh, is planar or not. As the edge sets Eh, 1 ≤ h ≤ d, are pri-

vate, the planarity testing should be carried out in a privacy-preserving manner. Namely,
after the conclusion of the computational procedure Ph must not learn anything on Ek,
k 6= h, beyond what is implied by Gh and the planarity of G. For example, two (or more)
companies may wish to check the possibility of printing the ICs which implement their
products on the same chip. They prefer not to disclose to each other their own IC design,
before they have verified that they could collaborate in that manner. The algorithmic so-
lutions which we propose herein for privacy-preserving planarity testing could be used in
that application scenario.

Well known characterizations for planar graphs were proposed by both Wagner [43] and
Kuratowski [25]. For example, the Wagner’s characterization states that a graph is planar
iff it does not have K5 or K3,3 as a minor (see Figure 2). Namely, K5 or K3,3 cannot be
obtained from G by a sequence of these operations: contracting edges, deleting edges, and
deleting isolated vertices. However, directly applying either Wagner’s characterization, or
the closely-related Kuratowski’s characterization, in order to test the planarity of a given
graph, yields exponential-time algorithms [33].

Optimal linear time planarity testing algorithms were proposed in [9, 20]. These algo-
rithms are iterative and use a DFS-subroutine [33]. Alas, those features of these algorithms
turn out to be significant obstacles when trying to devise corresponding privacy-preserving
variants of these algorithms. Thus, none of the above-mentioned approaches seem to be ad-
equate in order to base on them an efficient privacy-preserving planarity testing protocol.

In this study we propose a privacy-preserving protocol for planarity testing of distributed
graphs, which is based on the Hanani-Tutte theorem [34]. Our protocols are protocols of
Secure Multiparty Computation (SMC). In the general setting of SMC [44], there are sev-
eral parties, P1, . . . , Pd, where each Ph holds a private value xh. The goal is to compute
f(x1, . . . , xd), where f is some publicly known function, so that each party does not learn
anything about the private inputs of the other parties, except what is implied by his own
input and the output f(x1, . . . , xd). While generic SMC protocols apply in theory to a wide
class of functions, their applicability in practice is limited to functions that have a compact
representation as a Boolean or arithmetic circuit, due to their high computational and com-
munication complexities. Further studies in this field aim at finding more efficient solutions
for specific SMC problems, from a wide range of domains.

Here we consider an SMC problem where the private inputs are graphs. Problems of SMC
on distributed graphs are of much interest and importance. Nonetheless, due to their ap-
parent difficulty, very few studies were published so far on such problems. The first such
study was by [10] who presented new algorithms for privacy-preserving computation of

TRANSACTIONS ON DATA PRIVACY 12 (2019)

120 Guy Barshap, Tamir Tassa

the all-pairs-shortest-distance and single-source-shortest-distance problems. A more recent
study is that of [2] who designed SMC techniques for the shortest path and the maximum
flow problems. Another example is the work of [24] who presented oblivious implementa-
tions of several data structures for SMC and then offered a secure computation of Dijkstra’s
shortest path algorithm on general graphs, where the graph structure is secret. The problem
of privacy-preserving computation of the Minimum Spanning Tree (MST) was considered
in the recent study by [26]. In that study, Laud shows how the MST-finding algorithm by
[5] can be executed without revealing any details about the underlying graph, beside its
size. Finally, we mention the work of [3] that proposed SMC protocols for computing ver-
tex centrality in distributed graphs. We note that all of the above mentioned studies present
protocols for privately computing arithmetic values over graphs, i.e., lengths of paths, val-
ues of flows, or vertex centralities. Ours is the first study that privately tests a geometric
property of a distributed graph.

Our protocol is based on the mediated model that was presented in [1]. In that model,
there exists an external mediator T to which the parties may export some computations,
but the mediator should not learn information on the private inputs of the parties nor on
the final output.

The strict notion of perfect privacy-preservation is sometimes relaxed by allowing some
leakage of information, if such a relaxation enables a more efficient computation and if the
leakage of information is characterized (in order to decide, in any given application set-
ting, whether the gain in efficiency justifies the reduction in privacy-preservation). There
are many examples of studies that relax perfect privacy in order to allow practical solutions,
from various domains such as distributed association rule mining [23, 37], anonymization
of distributed datasets [22, 38, 40], collaborative filtering [21, 36], distributed graph mining
[3], and distributed constraint optimization problems [16, 17, 18, 27, 39, 41, 42]. In simi-
larity to these studies, we too make the common assumption that the interacting parties
(P1, . . . , Pd and T) are semi-honest. Namely, they follow the protocol correctly, and do not
form coalitions, but they try to extract from their view in the protocol information on the
private inputs of other parties.

The outline of this work is as follows. In Section 2 we provide the relevant background
on planarity testing, while in Section 3 we describe the main cryptographic toolkit that
we use in our solution. We overview our solution and the two main stages of which it
consists in Section 4. The subsequent Sections 5 and 6 include the detailed description and
analysis of each of the two stages in our solution. In Section 7 we describe a variant of
our solution with reduced time complexity. Our discussion in Sections 4–7 focuses on the
case d = 2. In Section 8 we present protocols for any d. In Section 9 we discuss another
computational problem on distributed graphs — testing 3-colorability; we devise there an
efficient protocol for privacy-preserving testing of 3-colorability of distributed graphs that
were already verified to be planar. Finally, in Section 10 we end this study with concluding
remarks and outlining future research directions.

A preliminary version of this study appeared in [6]. The main additions in this study with
respect to the preliminary version are the contributions described in Sections 7, 8, and 9.

2 Planarity testing using the Hanani-Tutte theorem

In this section we state the Hanani-Tutte theorem and then use it in order to translate the
planarity question of a graph to the solvability of a system of linear equations over F2. To
that end, we introduce the following definitions and notations:

TRANSACTIONS ON DATA PRIVACY 12 (2019)

Privacy-Preserving Planarity Testing of Distributed Graphs 121

Figure 3: Illustrating parityD(e, f): In the two left drawings parityD(e, f) = 0 while in the
other two parityD(e, f) = 1.

Figure 4: Illustrating an (e, v)-move. As a result of such a move, parityD(e, f) changes only
for the four edges adjacent to v (from 0 to 1); for all other edges f , parityD(e, f) remains
unchanged (0).

− If e ∈ E we let a(e) and b(e) denote the two vertices that e connects.
−A drawingD of a graphG = (V,E) is an embedding ofG in R2. Namely, it is a mapping
ϕ : V → R2 together with a representation of each edge e ∈ E as a continuous simple curve
that connects ϕ(a(e)) and ϕ(b(e)).
− Two edges e, f ∈ E are called independent if {a(e), b(e)} ∩ {a(f), b(f)} = ∅.
− The set of all pairs of independent edges in E is denoted Eind2 .
− For a given drawing D of G and {e, f} ∈ Eind2 , parityD(e, f) is the parity of the number

of crossings between the curves representing e and f in D (see Figure 3).
Theorem [Hanani-Tutte]. A graphG is planar iff it has a drawingD in which parityD(e, f) = 0

for all {e, f} ∈ Eind2 .
Let D be a drawing of G, e ∈ E, and v ∈ V \ {a(e), b(e)}. An (e, v)-move consists of taking

a small section of the curve that represents e in D and deforming it in a narrow tunnel to
make it pass over v, while not passing over any other vertex. The effect of an (e, v)-move
in a drawing D is that parityD(e, f) changes for all edges f that are adjacent to v, but it
remains unchanged for all other edges f (see Figure 4).

A remarkable consequence of this theorem is a planarity testing algorithm. The algorithm
starts with an arbitrary drawing D of the input graph G, preferably a drawing in which
parityD(e, f) can be computed efficiently for every pair of independent edges in G. Then,
the algorithm tries to find another drawingD′, by making a series of (e, v) moves, in which
parityD′(e, f) = 0 for all {e, f} ∈ Eind2 . If it succeeds, then the graph is planar, otherwise it
is not (see [34, Lemma 3.3]).

The existence ofD′ can be determined by considering the following system of linear equa-
tions. Define for each e ∈ E and v ∈ V \ {a(e), b(e)} a Boolean variable xe,v ; that variable
equals 1 iff the transition from D to D′ includes an (e, v)-move. It follows that for any pair

TRANSACTIONS ON DATA PRIVACY 12 (2019)

122 Guy Barshap, Tamir Tassa

of independent edges {e, f} ∈ Eind2 ,

parityD′(e, f) = parityD(e, f) + xe,a(f) + xe,b(f) + xf,a(e) + xf,b(e) in F2 .

Hence, given the drawing D, there exists a drawing D′ in which parityD′(e, f) = 0 for all
{e, f} ∈ Eind2 iff there exists a solution to the following system of linear equations over F2:

parityD(e, f) + xe,a(f) + xe,b(f) + xf,a(e) + xf,b(e) = 0 {e, f} ∈ Eind2 . (1)

That is the Hanani-Tutte (HT hereinafter) system for the graph G = (V,E) (with respect to
the drawing D). It consists of |Eind2 | equations (one for each pair of independent edges) in
|E| · (|V | − 2) unknowns (xe,v for all e ∈ E and v ∈ V \ {a(e), b(e)}). The graph G is planar
iff that system is solvable.

3 Cryptographic toolkit

In this section we provide a birdseye view of the cryptographic primitives and procedures
that we shall be using in the main part of this work, Sections 4–7. In the subsequent Section
8 we will use a special homomorphic encryption (due to Boneh, Goh and Nissim [8]), while
our solution in Section 9 utilizes the BGW protocol [7]. We postpone the discussion of those
two cryptographic tools to the sections were they are used.

3.1 Homomorphic encryption

An encryption function F is called (additively) homomorphic if the domain of plaintexts is
a commutative additive group, the domain of ciphertexts is a commutative multiplicative
group, and for every two plaintexts, m1 and m2, F(m1 + m2) = F(m1) · F(m2). When
the encryption function is randomized (in the sense that F(m) depends on m as well as
on a random string) then F is called probabilistic. Homomorphic encryption functions al-
low performing arithmetic computations in the ciphertext domain. The property of being
probabilistic is essential for getting semantic security.

There are many well known ciphers that are probabilistic and additively homomorphic. A
basic example of such a cipher over F2, which we use in our protocols, is the Goldwasser-
Micali cipher [15].

3.2 Deciding the solvability of an encrypted linear system

Nissim and Weinreb [31] presented a method for obliviously deciding whether an en-
crypted system of linear equations is solvable or not. They considered a setting that in-
volves two parties – T and P . T holds an encrypted matrix F(M), where M is a matrix of
dimensions ka × kb, and an encrypted vector F(b), where b is a column vector of dimen-
sion ka. Both M and b are over the field F = F2, while F is an additively homomorphic
encryption over that field, for which P holds the private decryption key. Their protocol is
Monte Carlo in the sense that its output may be wrong. Specifically, at the conclusion of the
protocol T getsF(β) for some bit β. If the systemMx = b is not solvable then β will always
be zero. Otherwise, if the system is solvable, then β = 1 with probability at least c for some
positive constant c. Hence, by performing several independent runs of the protocol, it is
possible to decide the solvability of the system with an error probability sufficiently small.

TRANSACTIONS ON DATA PRIVACY 12 (2019)

Privacy-Preserving Planarity Testing of Distributed Graphs 123

4 Overview of the proposed planarity testing protocol

Our planarity testing protocol has two stages. The first one consists of a preliminary check
of the size of the unified edge set E. It is outlined in Section 4.1, and detailed in Section
5. The second stage includes the main protocol, in which the HT system of equations for
the unified graph is constructed obliviously, and then its solvability is tested in a privacy-
preserving manner. We provide a birdseye view of that stage in Section 4.2, and dive into
its details in Section 6.

4.1 Testing the number of edges in the unified graph

Let V = {v1, . . . , vn} denote the vertex set in the unified graph G = (V,E). A well-known
result (see e.g. [33]) states that G is planar only if

|E| ≤ 3n− 6 . (2)

Hence, in the first stage, the three parties, P1, P2 and T , engage in a secure protocol for
checking whether inequality (2) holds or not. If it does not, they know that the unified
graph G is not planar. If it does hold, they proceed to the second stage in the verification
(Section 4.2).

Running this stage is optional. On one hand, it leaks to the interacting parties information
on |E| beyond the required output about the planarity of G. Indeed, if the verification of
inequality (2) fails, then the parties will learn that the graph is not planar, and, in addition,
that |E| > 3n − 6. On the other hand, it may enable the parties to detect non-planarity
without running the costly computation of the second stage. Hence, if in the relevant ap-
plication scenario the information regarding whether inequality (2) holds or not is deemed
benign, it is recommended to run this stage.

4.2 A privacy-preserving implementation of the Hanani-Tutte planarity
test

The three parties P1, P2 and T construct the HT system of linear equations, Eq. (1), for
the unified graph G. Towards that end, they begin by constructing the system of linear
equations for the complete graph on V , denoted KV (i.e., KV is the graph on V that has all(
n
2

)
edges):

xe,a(f) + xe,b(f) + xf,a(e) + xf,b(e) = parityD(e, f) {e, f} ∈ Kind
2 ; (3)

here, Kind
2 is the set of all pairs of independent edges in KV . The number of equations in

that system is

NKV
:= |Kind

2 | =
1

2
·
(
n

2

)
·
(
n− 2

2

)
. (4)

System 3 can be constructed publicly with no privacy risks, since the vertex set V is known
to all, and KV is the complete graph on V . The main effort is in letting the mediator T
extract from the large system in Eq. (3) the subset of equations in Eq. (1). To protect the
unified graph data from T , he will get only an encrypted version of the subset of linear
equations corresponding to G. The last part of the protocol is dedicated to determining
whether that system has a solution or not. The main difficulty here lies in the fact that no
party actually sees the relevant system of equations: only T holds that system, but he holds

TRANSACTIONS ON DATA PRIVACY 12 (2019)

124 Guy Barshap, Tamir Tassa

Figure 5: An illustration of the embedding of n = 6 vertices, together with two connecting
edges.

Figure 6: A drawing of G = (V,E) with E = {e1,4, e1,5, e2,4, e2,6, e3,6, e5,6} and the corre-
sponding complete graph KV . The edges in G are marked by thick lines, while all edges in
KV which are not in G are marked by thin lines.

an encryption of that system, where the corresponding decryption key is known only to
P1.

To allow this approach, we must start with some drawing of KV , which, in turn, induces
also a drawing of G. We consider the following embedding of V in R2. If V = {v1, . . . , vn},
then vj is mapped into the point

vj 7→ ϕ(vj) := (cos(2πj/n), sin(2πj/n)) , 1 ≤ j ≤ n . (5)

Namely, the vertices v1, . . . , vn are mapped to equi-distant points on the unit circle, in a
counter-clockwise order according to their index. The edge ei,j = (vi, vj) is then repre-
sented by the straight line segment between ϕ(vi) and ϕ(vj). Figure 5 illustrates that basic
drawing for a graph over n = 6 vertices.

Figure 6 shows a drawing of some graph G, using the above-described embedding of
its vertices and edges in R2, together with the corresponding complete graph. We shall
henceforth denote this basic drawing of the graph in question, G, and its corresponding
complete graph KV by D.

Consider now an arbitrary pair of independent edges ei,j and ek,`; we may assume, with-
out loss of generality, that i < j, k < `, and i < k. Then it is easy to see that parityD(ei,j , ek,`) =
1 iff i < k < j < `.

TRANSACTIONS ON DATA PRIVACY 12 (2019)

Privacy-Preserving Planarity Testing of Distributed Graphs 125

The corresponding HT system (3) can be constructed publicly, by each of P1, P2 and T ,
for this drawing D of the complete graph KV . As stated earlier, the main problem will be
to identify, among those NKV

equations, the |Eind2 | equations that relate to pairs of edges e
and f that are both in E. Then, the graph G = (V,E) is planar iff that sub-system of |Eind2 |
equations has a solution. In Section 6 we provide the details of that computation.

5 First stage: Testing the size of the unified edge set

Let
V2 := {(vi, vj) : 1 ≤ i < j ≤ n} (6)

denote the set of all possible
(
n
2

)
edges in G. Since E = E1∪E2, we infer that Ec = Ec1 ∩Ec2,

where for any subset A ⊆ V2, Ac := V2 \ A denotes its complement within V2. Hence, by
Eq. (2), the unified graph G = (V,E) is planar only if

|Ec| = |Ec1 ∩ Ec2| ≥
(
n

2

)
− (3n− 6) . (7)

In order to verify the latter inequality it is possible to invoke any of the multitude of
protocols for private set intersection. Our solution, Protocol 1, is based on the first private
set intersection protocol, proposed in [30], which is based on the Diffie-Hellman problem
[11].

Protocol 1 Testing the size of the unified edge set
1: P1 and P2 select jointly a large multiplicative group Z∗

p (p is prime) and a hash function H whose
range can be embedded in Z∗

p.
2: Ph selects a secret and random exponent 1 < αh < p− 1, h = 1, 2.
3: P1 sends to P2 a vector x1 of length

(
n
2

)
where, for each edge (vi, vj) ∈ Ec1 , i < j, x1 includes an

entry of the form H(i, j)α1 , while the remaining
(
n
2

)
− |Ec1| entries are randomly selected from

Z∗
p. The order of x1’s entries is random.

4: P2 sends to P1 a vector x2 of length
(
n
2

)
where, for each edge (vi, vj) ∈ Ec2 , i < j, x2 includes an

entry of the form H(i, j)α2 , while the remaining
(
n
2

)
− |Ec2| entries are randomly selected from

Z∗
p. The order of x2’s entries is random.

5: P1 sends to T the vector y2, where y2(i) = x2(i)α1 , 1 ≤ i ≤
(
n
2

)
.

6: P2 sends to T the vector y1, where y1(i) = x1(i)α2 , 1 ≤ i ≤
(
n
2

)
.

7: T compares the two received vectors and finds out the number z of matching entries in them.
8: If z <

(
n
2

)
− (3n− 6), T notifies P1 and P2 that the union graph is not planar.

As a result of Steps 1-6, which are self-explanatory, T receives two vectors, y1 and y2, each
of which is of length

(
n
2

)
. The vector yh, h = 1, 2, includes the hash of all edges inEch, raised

to the exponent α1α2, while the remaining
(
n
2

)
− |Ech| entries are random elements in Z∗p.

The number z of matching entries in those two vectors (Step 7) satisfies z ≥ |Ec|, while
with very high probability z = |Ec|. Indeed, if (vi, vj) ∈ Ec1 ∩ Ec2 then both vectors y1 and
y2 will include an entry that equals H(i, j)α1α2 ; hence, those two entries will be identified
by T in Step 7 as matching entries and, consequently, T will increment the counter z by
1. However, we note that T may wrongly increment the counter z due to random false
matchings. False matchings can occur if there are collusions inH , namely, if there exist two
pairs (i, j) and (i′, j′) such that H(i, j) = H(i′, j′), or if P1 and P2 selected in Steps 3 and 4

TRANSACTIONS ON DATA PRIVACY 12 (2019)

126 Guy Barshap, Tamir Tassa

random entries ξ1 and ξ2, respectively, so that ξα1
2 = ξα2

1 . By selecting a secure hash function
with a sufficiently large range, the probability of such false matchings is negligible.

The security of Protocol 1 follows from the hardness of the Discrete Log problem. The
protocol entails O(n2) hash function evaluations and exponentiations (for P1 and P2) and
O(n2 log n) comparisons for T . The protocol has only two rounds of communication in
which O(n2 log p) bits are transmitted.

Protocol 1 reveals to T the size of E. If P1 and P2 wish to prevent T from learning that
information, they may modify Protocol 1 towards hiding that information. They can choose
an integer K > 0 and then select at random an integer k ∈ [0,K]. Next, they will select
2K − k random and distinct elements from Z∗p: ai, 1 ≤ i ≤ k, and bh,i, 1 ≤ i ≤ K −
k, h = 1, 2. Then, P1 will add to y2 additional K entries, at random locations, with the
values a1, . . . , ak, b1,1, . . . , b1,K−k, while P2 will add to y1 additional K entries, at random
locations, with the values a1, . . . , ak, b2,1, . . . , b2,K−k. Given those modifications, T will
recover in Step 7 a value z that equals |Ec|+ k (with high probability).

Hence, the inequality that needs to be verified now is whether z <
(
n
2

)
− (3n− 6) + k. In

the latter inequality, T knows the left hand side (z) while P1 knows the right hand side, and
the two parties need to verify the inequality without disclosing to each other information
on the compared values beyond the information of whether the inequality holds or not.
This is an instance of the celebrated Yao’s millionaires’ problem [44]. By invoking any of
the many available protocols for solving that problem (e.g. [28]), the two parties may find
out securely whether |Ec| <

(
n
2

)
− (3n− 6).

Such a modification of Protocol 1 prevents T from getting |E|. Higher values of K will
imply higher levels of obfuscation, but at the same time also higher communication and
computational costs. As implied by [17, Lemma 4], if K >

(
n
2

)
then the probability of T not

learning anything on |E| from z is exactly 1 −
(
n
2

)
/(K + 1); in all other cases (namely, in

probability
(
n
2

)
/(K + 1), T will learn either a lower or an upper bound on |E|.

6 Second stage: Private planarity testing

Protocol 2 decides the planarity of the union graph G in a privacy-preserving manner. It
begins with P1 generating a key pair in a probabilistic additively homomorphic cipher, F ,
over F2.

Next, the three parties execute a sub-protocol, called CONSTRUCTHTSYSTEM (Step 2). The
purpose of that sub-protocol is to construct the HT system for the union graph G, Eq. (1),
in an oblivious manner. At the end of that sub-protocol T will hold an (entry-wise) F-
encryption of the coefficient matrix of that system. T will actually get an “inflated” version
of that system, in the following sense: instead of an encryption of the HT system for G, Eq.
(1), he will hold an encryption of the larger HT system for the complete graph KV , Eq. (3),
where all equations that relate to pairs of edges in Kind

2 \ Eind2 are zeroed.
Then (Step 3), P1 and T execute a sub-protocol, called DECIDESOLVABILITY, which decides

the solvability of the encrypted system that was constructed in the previous step. T holds
the encryption of the coefficient matrix and the right hand side vector for that system,
while P1 holds the relevant decryption key. The sub-protocol DECIDESOLVABILITY decides
the solvability of the system in a privacy-preserving manner, that is – without decrypting
the system. The Boolean flag that DECIDESOLVABILITY returns indicates the solvability of
the system. If it is true then the system is solvable and, consequently, the union graph G
is planar. Otherwise, if it is false, and then, with high probability (which may be tuned as
desired), the system is not solvable and, hence, the union graph G is not planar.

TRANSACTIONS ON DATA PRIVACY 12 (2019)

Privacy-Preserving Planarity Testing of Distributed Graphs 127

In the next sub-sections (Sections 6.1 and 6.2) we discuss the implementation of the two
main steps in Protocol 2.

Protocol 2 Privacy preserving HT planarity testing
1: P1 generates a key pair in a probabilistic additively homomorphic cipher, F , over F2. P1 notifies
P2 and T of the public encryption key in F .

2: P1, P2 and T execute CONSTRUCTHTSYSTEM. At its conclusion, T holds an F-encryption of the
HT system for the union graph, (re,f : {e, f} ∈ Kind

2).
3: P1 and T execute DECIDESOLVABILITY(re,f : {e, f} ∈ Kind

2).
4: if DECIDESOLVABILITY returns true then
5: Output ”The union graph is planar”.
6: else
7: Output ”The union graph is non-planar (with high probability)”.
8: end if

6.1 Constructing an F-encryption of the HT system

Here we discuss the sub-protocol CONSTRUCTHTSYSTEM, which is implemented in Proto-
col 3. Before starting to do so, we take a look at the HT systems for G and for the complete
graph KV . The HT system for the complete graph KV , with respect to the drawing D de-
scribed in Section 4.2, is given in Eq. (3). All parties can construct that system, sinceKV is a
public graph. The HT system for G, Eq. (1), which determines the planarity of G = (V,E),
is a sub-system (subset of equations) of (3). That sub-system includes only the equations
relating to pairs {e, f} ∈ Eind2 ⊂ Kind

2 (namely, pairs of independent edges {e, f} where
both e and f are in E).

Let V2 := {ei,j = (vi, vj) : 1 ≤ i < j ≤ n} denote the edge set in the full graph KV

(consisting of all possible pairs of vertices from V). The set Kind
2 consists of all pairs of

independent edges in KV . Its size is NKV
(Eq. (4)), and it consists of all pairs of edges

{e = (vi, vj), f = (vk, v`)} where all four indices i, j, k, ` are distinct (as the two edges are
independent), and i < j, k < `, and i < k. Our protocol, CONSTRUCTHTSYSTEM, assumes
that the set Kind

2 is ordered. We assume hereinafter that it is ordered lexicographically by
the 4-tuple (i, j, k, `).

For each edge e ∈ V2 and h ∈ {1, 2}, let αhe be the Boolean variable denoting whether
e ∈ Eh or not. Then, e ∈ E iff α1

e ∨ α2
e = 1. Consequently, the equation that corresponds to

the pair of independent edges {e, f} ∈ Kind
2 appears in the HT system for G, Eq. (1), iff

χe,f := (α1
e ∨ α2

e) ∧ (α1
f ∨ α2

f) = 1 . (8)

In the first part of CONSTRUCTHTSYSTEM (Steps 1-3), T gets the F-encryption of χe,f for
all {e, f} ∈ Kind

2 , where χe,f is the Boolean flag indicating whether {e, f} ∈ Eind2 (Eq. (8)),
and F is the cipher that P1 selected in Step 1 of Protocol 2. Towards that end, we observe
that

χe,f := (α1
e ∨ α2

e) ∧ (α1
f ∨ α2

f) = (α1
e + α2

e − α1
e · α2

e) · (α1
f + α2

f − α1
f · α2

f) . (9)

Hence, by opening the brackets on the right hand side of Eq. (9) and then applying F on
both sides of that equation, we get, using the homomorphism of F and simple algebra, that
F(χe,f) = A ·B−1, where

A = αα
2
f · βα

2
e · γ1+α

2
e·α

2
f · F(α2

e · α2
f) , B = (α · β)α

2
e·α

2
f · γα

2
e+α

2
f , (10)

TRANSACTIONS ON DATA PRIVACY 12 (2019)

128 Guy Barshap, Tamir Tassa

and
α := F(α1

e) , β := F(α1
f) , γ := F(α1

e · α1
f) . (11)

In view of the above derivations, P1 sends to P2 the three values α, β, and γ, for each of
the NKV

pairs {e, f} ∈ Kind
2 , where the triplets (α, β, γ) are ordered by the lexicographical

order over Kind
2 (Step 1). P2 can then use Eq. (10) in order to compute A and B, for each

such pair. Note that all powers of α, β and γ in Eq. (10) are determined by Boolean variables
owned by P2, while F(α2

e · α2
f) can be computed by P2 since he has the public encryption

key of F . P2 then computes and sends to T a vector u of length NKV
, in which each entry

includes the value F(χe,f) = A ·B−1 for the relevant pair {e, f} ∈ Kind
2 (Steps 2-3).

Protocol 3 CONSTRUCTHTSYSTEM: Constructing an encryption of the HT system
1: P1 sends to P2 the vector ((α, β, γ) : {e, f} ∈ Kind

2) (see Eq. (11)).
2: P2 computes the vector u := (F(χe,f) : {e, f} ∈ Kind

2).
3: P2 sends to T the vector u.
4: for all {e, f} ∈ Kind

2 , where e = ei,j , f = ek,`, i < j, k < ` and i < k do
5: T allocates a vector re,f of dimension N + 1 where N :=

(
n
2

)
· (n− 2).

6: T creates a bijection Φ : [N]→ {(g, v) : g ∈ V2, v ∈ V \ {a(g), b(g)}}.
7: for i ∈ [N] do
8: (g, v)← Φ(i)
9: if (g = e and v ∈ {a(f), b(f)}) or (g = f and v ∈ {a(e), b(e)}) then

10: re,f (i)← F(χe,f)
11: else
12: re,f (i)← F(0)
13: end if
14: end for
15: if i < k < j < ` then
16: re,f (N + 1)← F(χe,f)
17: else
18: re,f (N + 1)← F(0)
19: end if
20: end for

The goal of the main loop in Steps 4-20 is to let T construct an entry-wise F-encryption of
the HT system for G, Eq. (1). That system has |Eind2 | equations over |E| · (n− 2) unknowns.
It is a sub-system of the full system for KV , Eq. (3), which has NKV

equations over N :=(
n
2

)
· (n − 2) unknowns. The encrypted system that T constructs in the loop in Steps 4-20

will be of the same dimensions as the larger system for the full graph, but all rows in it that
are not relevant for G will be zeroed. T will remain oblivious to the rows in the full system
that he zeroes in this process. We proceed to explain how this is done.

Consider the augmented matrix that describes the HT system for KV , Eq. (3). It has NKV

rows, one for each pair {e, f} ∈ Kind
2 . Each row, re,f , is a Boolean vector of length N + 1,

whereN =
(
n
2

)
·(n−2), since it includes the coefficient of each unknown variable (and there

are N such variables, one for each coupling of an edge and a non-adjacent vertex) plus the
right hand side (parityD(e, f)). In the linear equation corresponding to the pair {e, f}, the
coefficients of all variables are zero, except for four of those variables (see Eq. (3)). Hence, in
the inner loop in Steps 7-14, T goes over the firstN entries of re,f ; in each of the four entries
that should equal 1, T places the value F(χe,f) (those are values that T got from P2 in Step
3), while in all the remaining ones he places the value F(0) (those are encryptions that T
can compute on his own since he has the public encryption key of F). In the last position
in re,f , corresponding to the right hand side of the equation for the pair {e, f}, T places

TRANSACTIONS ON DATA PRIVACY 12 (2019)

Privacy-Preserving Planarity Testing of Distributed Graphs 129

the value F(χe,f) in case the two edges intersect in the basic drawing D, while otherwise
he places the value F(0) (Steps 15-19). As a result, if χe,f = 0, T constructs an encryption
of the all-zero equation; but if χe,f = 1, T constructs an encryption of the equation for the
pair {e, f}, as in Eq. (1). In summary, T gets a system of NKV

encrypted equations: |Eind2 |
of those equations are an F-encryption of the system (1), while the remaining ones are F-
encryptions of the trivial equation (the equation in which all coefficients and right hand
side are zero).

6.2 Determining the solvability of an encrypted linear system

The sub-protocol DECIDESOLVABILITY (Protocol 4) decides the solvability of a system of
NKV

linear equations over N =
(
n
2

)
· (n − 2) unknowns. Let M denote the NKV

× N
matrix of coefficients of that system, and b denote the right hand side vector (an NKV

-
dimensional column vector). The two parties that run the sub-protocol are P1 and T . P1

holds the decryption key in F (see Step 1 in Protocol 2) – a probabilistic additively homo-
morphic cipher over F2; T , on the other hand, holds F(M) and F(b). DECIDESOLVABILITY
determines whether the system Mx = b has a solution or not. It does so in a privacy-
preserving manner, i.e., without revealing to neither of the two parties information on the
underlying matrix M and right hand side b.

To do so, the two parties execute the protocol due to Nissim and Weinreb [31] that we
discussed in Section 3.2, which enables them to obliviously decide whether an encrypted
system of linear equations is solvable or not. We refer to this protocol below by the name
SOLVABILITYLINEARSYSTEM. The output of Protocol SOLVABILITYLINEARSYSTEM is F(β),
where β is a bit that indicates the existence of a vector x for which Mx = b.

We recall that the basic protocol due to Nissim and Weinreb is a true-biased Monte Carlo
protocol. Namely, a true answer (i.e., the system is solvable) is always correct, while a false
answer may be wrong. We assume herein that the procedure SOLVABILITYLINEARSYSTEM
which is invoked in Step 1 of Protocol 4 executes the basic protocol due to Nissim and
Weinreb a sufficient number of times so that the probability of a false answer to be incorrect
is reduced to below some given desired threshold.

As the protocol SOLVABILITYLINEARSYSTEM is quite involved, we do not describe it here
and simply relate to it as a black-box. Interested readers are referred to [31] for a detailed
description of it.

Sub-protocol 4 DECIDESOLVABILITY

1: T and P1 run Protocol SOLVABILITYLINEARSYSTEM with inputs F(M) and F(b). The output
F(β) goes to T .

2: T sends to P1 the value F(β).
3: P1 decrypts and recovers β.
4: if β = 1 then
5: return true
6: else
7: return false
8: end if

TRANSACTIONS ON DATA PRIVACY 12 (2019)

130 Guy Barshap, Tamir Tassa

6.3 Privacy analysis

The potential leakages of information to any party is due to messages that he receives from
other parties. We proceed to discuss the security of each of the steps in Protocol 2 that
involves exchange of messages.

In Step 1 of Protocol 3 (which is invoked by Protocol 2), P2 receives from P1 information
relating toE1. Specifically, for each pair of independent edges inKV , P2 receives the values
α := F(α1

e), β := F(α1
f), and γ := F(α1

e ·α1
f). However, as that information is encrypted by

F , P2 cannot extract information on E1, assuming that the chosen cipher F is semantically
secure (as is the case with the Goldwasser-Micali cipher [15] which we propose to utilize
here). Similarly for Step 3 of Protocol 3 in which T receives information on E; as it is
encrypted by F , it is protected from T .
Finally, the security of Protocol 4 follows from the security of SOLVABILITYLINEARSYSTEM

that was established in [31].

6.4 Computational and communication costs

We begin by assessing the computational and communication costs of the first two steps in
Protocol 3. The computational cost of Protocol 3 for P1 is 2

(
n
2

)
encryptions (for computing α

and β for all edges in KV), and, in addition, NKV
(Eq. (4)) encryptions, for computing γ for

all pairs of edges inKind
2 (Step 1). The computational cost of Protocol 3 for P2 is dominated

by the need to perform NKV
encryptions (F(α2

e · α2
f)) in order to compute A for all pairs of

edges inKind
2 . The remaining operations for computingA andB (see Eq. (10)) in Step 2 are

only multiplications (note that all exponents in Eq. (10) are 0, 1, or 2). The communication
cost of Steps 1-2 in Protocol 3 is O(NKV

) bits.
The computational costs for T due to Protocol 3 are negligible, as it has to perform no

new encryptions, other than computing F(0) once. We note that the value F(0) appears
in many entries in the encrypted HT linear system of equations. However, the procedure
SOLVABILITYLINEARSYSTEM, which is executed in the next stage, is designed so that there
is no need for T to generate here independent encryptions F(0) for each such entry.

The main computational bottleneck is Protocol 4. Indeed, as the underlying matrix has
ka = NKV

= O(n4) rows and kb =
(
n
2

)
· (n − 2) = O(n3) columns, the computational cost

of running an oblivious Gaussian elimination on it is of order O(ka · k2b) = O(n10). Such a
computational cost severely limits the applicability of our protocol to very small graphs.

The main problem with Protocol 2 is that it runs the oblivious Gaussian elimination over
an encrypted matrix that has NKV

rows. We recall that the actual system, Eq. (1), has only
|Eind2 | equations. Since |E| ≤ 3n − 6, as verified in the first stage, then |Eind2 | = O(n2).
Hence, one goal is to reduce the number of rows in the encrypted HT system from NKV

=
O(n4) to the exact number of relevant equations |Eind2 | = O(n2). Moreover, the number
of columns in Eq. (1) is |E| · (n − 2) ≤ (3n − 6) · (n − 2) = O(n2). Therefore, another
goal is to reduce the number of columns (unknowns) from O(n3) to O(n2). In the next
section we present a variant of Protocol 2 that achieves those two goals, thus reducing the
cost of the oblivious Gaussian elimination to O(n6). While this time complexity still limits
the scalability of the protocol, it allows its execution on graphs with several hundreds of
vertices. Such time complexity renders our protocol viable for application settings such as
the two motivating examples that were considered in the introduction (IC design and road
networks).

TRANSACTIONS ON DATA PRIVACY 12 (2019)

Privacy-Preserving Planarity Testing of Distributed Graphs 131

7 Reducing the size of the HT system

In this section we present Protocol 5 which is a variant of Protocol 2 that has a reduced
time complexity. In that protocol, the HT system that the parties construct (obliviously)
has an equation for every pair of edges {e, f} ∈ Eind2 , in contrast to Protocol 2 in which
the constructed system had an equation for every pair of edges {e, f} ∈ Kind

2 , where all
equations corresponding to {e, f} ∈ Kind

2 \ Eind2 were obliviously zeroed. As a result,
the system of equations whose solvability is tested in Step 3 has reduced dimensions and,
consequently, reduced runtime, as explained above.

Protocol 5 Privacy preserving HT planarity testing
1: P1 generates a key pair in a probabilistic additively homomorphic cipher, F , over F2. P1 notifies
T of the public encryption key in F .

2: P1, P2 and T execute CONSTRUCTREDUCEDHTSYSTEM. At its conclusion, T holds an F-
encryption of the HT system for the union graph, (re,f : {e, f} ∈ Eind2).

3: P1 and T execute DECIDESOLVABILITY(re,f : {e, f} ∈ Eind2).
4: if DECIDESOLVABILITY returns true then
5: Output ”The union graph is planar”.
6: else
7: Output ”The union graph is non-planar (with high probability)”.
8: end if

Such economization is achieved by invoking in Step 2 the subroutine CONSTRUCTRE-
DUCEDHTSYSTEM, Protocol 6, instead of CONSTRUCTHTSYSTEM, as done in Protocol 2.
We proceed to describe Protocol 6.

It begins with P1 constructing an F-encryption of the full HT system (Steps 1-17). This
construction is identical to the one that T performs in Steps 4-20 of Protocol 3, except that
in Steps 7 and 13, P1 inserts the valueF(1), while in the equivalent steps in Protocol 3 (Steps
10 and 16), T inserted the valueF(χe,f). Indeed, in Protocol 3 we had to useF(χe,f) so that
the system that T constructs will have all irrelevant equations zeroed (but still included in
the system which is then passed for solvability testing). Here, on the other hand, those
equations will be removed from the system before passing on to the solvability testing
stage. Hence, as at this stage we only construct an encryption of the full HT system for KV ,
we can use here the value F(1) in those entries.

After completing the construction of the full encrypted system, P1 sends to T the system
after secretly permuting its equations and unknowns (Steps 18-19). Those permutations
are needed so that when T removes equations and unknowns, he will not know which
equations and unknowns were removed, thus preventing T from learning information on
E. (However, T may still learn information on the size of E; we discuss this information
leakage later on.)

Next, we proceed to the stage in which we eliminate the irrelevant equations and un-
knowns. This is done in Steps 20-27. First, T generates a key pair in a probabilistic ad-
ditively homomorphic cipher, E , over F2, and he notifies P1 and P2 of its encryption key
(Step 20).

The subsequent Steps 21-23 result in the removal of irrelevant equations. (Those are ex-
actly the same equations that were zeroed in Protocol 3 by using the value F(χe,f) in place
of all 1-entries.) First (Step 21), P1 and P2 create a vector u which includes an entry for each
pair of edges {e, f} ∈ Kind

2 , where the entry for {e, f} is E(1) if that pair of edges is also
in Eind2 and E(0) otherwise. That computation is done exactly as it was done in Steps 1-2

TRANSACTIONS ON DATA PRIVACY 12 (2019)

132 Guy Barshap, Tamir Tassa

of Protocol 3, only that the encryption function here is E (as opposed to F as was the case
in Protocol 3). Then (Step 22), P2 sends to T a πr-permutation of that vector. In Step 23
T proceeds to decrypt that vector and use the recovered binary flags to remove irrelevant
rows from the full system that he had obtained earlier (Step 19) from P1. Note that the
same permutation πr was applied by P1 on the rows of the system (Step 19) and by P2 on
the entries of u (Step 22).

In Step 24-27, a similar procedure is implemented in order to enable T to remove columns
that are irrelevant for the HT system forG. Recall that the full system includes a column for
every unknown xe,v , where e is any edge in the complete graph (namely, e is any unordered
pair of vertices from V2, see Eq. (6)) while v is any vertex not adjacent to e (namely, v is any
vertex from V \ e). An unknown xe,v should be retained if e ∈ E = E1 ∪ E2. In order to
perform such elimination, P1 and P2 compute in Step 24 for each edge e ∈ V2 the value
E(χe), where χe is a binary flag indicating whether e ∈ E (1) or not (0).

As before, let αhe be the Boolean variable indicating whether e ∈ Eh or not, h ∈ {1, 2}.
Then

χe := α1
e ∨ α2

e = α1
e + α2

e − α1
e · α2

e .

Hence, by the homomorphism of E ,

E(χe) = E(α1
e) · E(α2

e) · E(−α1
e · α2

e) = E(α1
e) · E(α2

e) · E(α1
e)
−α2

e . (12)

In view of the above, P1 sends to P2 the values E(α1
e) for all e ∈ V2. Then, P2 proceeds to

compute E(χe) using Eq. (12).
Then, in Step 25, P2 computes a vector u that includes the value E(χe) for every pair (e, v)

where e ∈ V2 and v ∈ V \ e. The order of the entries in u is as determined by πc. We note
that each encrypted value E(χe) that was computed in Step 24 will appear in u exactly n−2
times, since there are n − 2 variables of the form xe,v (since there are n − 2 vertices v that
are not adjacent to e). To prevent T from being able to detect the groups of variables that
correspond to the same edge e, P2 uses the basic encryption E(χe) obtained in Step 24 for
each edge e and he creates from it n−3 additional independent encryptions by multiplying
it with random encryptions of zero, E(0). Subsequently, P2 sends the vector u to T , who
proceeds to decrypt it and use it in order to reduce the number of unknowns (Steps 26-27).
After performing those two reductions, T gets an encryption of the system in Eq. (1). That
is the system on which the procedure DECIDESOLVABILITY is applied (Step 3 of Protocol 5).
As explained at the end of Section 6.4, Protocol 5 is significantly more efficient than Pro-

tocol 2 since the Gaussian elimination that it performs is over the reduced HT system of
linear equations and its computational cost is O(n6) (as opposed to O(n10) which was the
cost of the Gaussian elimination in Protocol 2). However, Protocol 5 has two disadvan-
tages in comparison to Protocol 2. First, it has larger communication costs, as P1 needs to
transfer to T O(n7) bits. In addition, Protocol 5 enables T to infer |E| (as the final num-
ber of columns equals |E| · (n − 2)). If the latter value is deemed sensitive, P1 and P2 can
obfuscate it by sending to T information that will result in keeping unnecessary columns,
i.e., columns relating to variables xe,v where e /∈ E. Such course of action will increase the
computational cost, but will prevent T from inferring |E|.
Before we conclude our discussion of Protocol 5, we note that the full HT matrix has
ka = NKV

= O(n4) rows and kb + 1 =
(
n
2

)
· (n − 2) + 1 = O(n3) columns. By examining

the structure of the matrix, see Eq. (3), each of the ka rows has either four or five 1-entries,
while the remaining entries are 0. Hence, in the encrypted matrix that P1 sends to T in
Step 19 of Protocol 6, there will be O(n4) entries that equal F(1) and O(n7) entries that
equal F(0). Since encryptions are a costly operation, it is tempting to compute F(0) and

TRANSACTIONS ON DATA PRIVACY 12 (2019)

Privacy-Preserving Planarity Testing of Distributed Graphs 133

Protocol 6 CONSTRUCTREDUCEDHTSYSTEM: Constructing an encryption of the reduced
HT system

1: for all {e, f} ∈ Kind
2 , where e = ei,j , f = ek,`, i < j, k < ` and i < k do

2: P1 allocates a vector re,f of dimension N + 1 where N :=
(
n
2

)
· (n− 2).

3: P1 creates a bijection Φ : [N]→ {(g, v) : g ∈ V2, v ∈ V \ {a(g), b(g)}}.
4: for i ∈ [N] do
5: (g, v)← Φ(i)
6: if (g = e and v ∈ {a(f), b(f)}) or (g = f and v ∈ {a(e), b(e)}) then
7: re,f (i)← F(1)
8: else
9: re,f (i)← F(0)

10: end if
11: end for
12: if i < k < j < ` then
13: re,f (N + 1)← F(1)
14: else
15: re,f (N + 1)← F(0)
16: end if
17: end for
18: P1 and P2 agree on random permutations πr and πc on the NKV equations and N =

(
n
2

)
· (n− 2)

unknowns of the full HT system.
19: P1 sends to T the F-encrypted system that he constructed in the loop above, after permuting its

equations and unknowns using πr and πc.
20: T generates a key pair in a probabilistic additively homomorphic cipher, E , over F2. T notifies

P1 and P2 of the public encryption key in E .
21: P1 and P2 compute the vector u := (E(χe,f) : {e, f} ∈ Kind

2), where χe,f is a binary flag indicat-
ing whether {e, f} ∈ Eind2 (1) or not (0).

22: P2 permutes the entries of u using πr and sends the permuted vector to T .
23: T computes v := E−1(u) and then he removes from the matrix all rows that correspond to 0-

entries in v.
24: P1 and P2 compute for each edge e ∈ V2 in the complete graph KV the value E(χe), where χe is

a binary flag indicating whether e ∈ E (1) or not (0).
25: P2 creates a vector u that includes the value E(χe) for every pair (e, v) where e ∈ V2 and v ∈ V \e.

The order of the entries in u is as determined by πc.
26: P2 sends u to T .
27: T computes v := E−1(u) and then he removes from the matrix all columns that correspond to

0-entries in v.

TRANSACTIONS ON DATA PRIVACY 12 (2019)

134 Guy Barshap, Tamir Tassa

F(1) just once and reuse those encrypted values wherever necessary. Alas, such a course of
action will enable T to fully recover the plaintext matrix. Hence, encrypted values must not
be reused. However, it is possible to generate those O(n7) encrypted entries by performing
only O(n3.5) encryptions and then rely on the homomorphic property of F (which implies
thatF(0)·F(0) = F(0) andF(0)·F(1) = F(1)) in order to fill up all entries in the encrypted
matrix without reusing encrypted entries.

8 Protocols for a general number of parties

In this section we discuss the changes needed in order to extend our protocols to the case
of d > 2 parties. Namely, we consider a setting with d parties, P1, . . . , Pd; Ph has a graph
Gh = (V,Eh) where V is publicly known and shared by all, while the edge setEh is private,
1 ≤ h ≤ d. The goal is to determine whether the union graph G = (V,E), E =

⋃d
h=1Eh, is

planar or not.

8.1 Testing the size of the unified edge set

In this setting, we have

Ec =

(
d⋃

h=1

Eh

)c
=

d⋂
h=1

Ech ,

where, as before, for any subset A ⊆ V2, Ac := V2 \A is its complement within V2 (Eq. (6)).
The unified graph G = (V,E) is planar only if |E| ≤ 3n− 6, namely, only if∣∣∣∣∣

d⋂
h=1

Ech

∣∣∣∣∣ ≥
(
n

2

)
− (3n− 6) . (13)

Protocol 7 is a straightforward generalization of Protocol 1 for the purpose of verifying
inequality (13).

Protocol 7 Testing the size of the unified edge set; general d
1: P1, . . . , Pd select jointly a large multiplicative group Z∗

p (p is prime) and a hash functionH whose
range can be embedded in Z∗

p.
2: Ph selects a secret and random exponent 1 < αh < p− 1, 1 ≤ h ≤ d.
3: for 1 ≤ h ≤ d do
4: Ph−1 sends to T a vector yh of length

(
n
2

)
where, for each edge (vi, vj) ∈ Ech, i < j, yh in-

cludes an entry of the form H(i, j)α, for α =
∏d

h=1
αh, while the remaining

(
n
2

)
− |Ech| entries

distribute uniformly over Z∗
p. The order of yh’s entries is random. Here, when h = 1, Ph−1 is

Pd.
5: end for
6: T compares the d received vectors, y1, . . . , yd, and finds out the number z of values that appear

in all of them.
7: If z <

(
n
2

)
− (3n− 6), T notifies P1, . . . , Pd that the union graph is not planar.

The only step that calls for explanation is Step 4. For the sake of simplicity we explain
how it is performed when h = 1. In similarity to Step 3 in Protocol 1, P1 sends to P2 a
vector x1 of length

(
n
2

)
where, for each edge (vi, vj) ∈ Ec1, i < j, x1 includes an entry of

the form H(i, j)α1 , while the remaining
(
n
2

)
− |Ec1| entries are randomly selected from Z∗p.

TRANSACTIONS ON DATA PRIVACY 12 (2019)

Privacy-Preserving Planarity Testing of Distributed Graphs 135

The order of x1’s entries is random. Then, P2 raises each entry in the received vector x1 to
the power α2 and he sends the resulting vector to P3. This loop proceeds until the vector
reaches Pd that adds his own exponentiation layer by his secret exponent αd. After doing
this, Pd sends the resulting vector, denoted y1, to T . Note that each entry in that vector that
corresponds to an edge (vi, vj) ∈ Ec1 will store the value H(i, j)α, for α =

∏d
h=1 αh. On

the other hand, every other entry distributes uniformly at random over Z∗p since its initial
setting was to a random element in Z∗p, and exponentiations by the intermediate powers
1 < αh < p− 1, 2 ≤ h ≤ d, maintain the uniform distribution.

The security of Protocol 7 follows from the hardness of the Discrete Log problem. The pro-
tocol entails a total ofO(dn2) hash function evaluations and exponentiations (forP1, . . . , Pd)
andO(dn2 log n) comparisons for T . The protocol has d rounds of communication in which
O(dn2 log p) bits are transmitted.
In similarity to Protocol 1, also Protocol 7 reveals to T the size of E. To mitigate this

information leakage, P1, . . . , Pd may add random entries to their vectors, as discussed in
Section 5.

8.2 Private planarity testing

Here we discuss the extension of our more efficient protocol, Protocol 5, to the case of a
general number of parties. The extension of Protocol 2 to any number of parties is similar
and is therefore omitted.

Protocol 5 remains unchanged, except that CONSTRUCTREDUCEDHTSYSTEM (the proce-
dure that it invokes in Step 2) is now executed by all d + 1 parties, P1, . . . , Pd and T . We
proceed to discuss the needed modifications in that procedure, as implemented in Protocol
6. Before doing so, we note that the second procedure in Protocol 5 – DECIDESOLVABILITY
(invoked in Step 3), is indifferent to d and also in the case of a general d it will be executed
by P1 and T .
The loop in Steps 1-17 in Protocol 6 is indifferent to d and, hence, remains unchanged. Also

Steps 18-19 remain the same: P1, . . . , Pd select jointly the row and column permutations,
and then P1 sends the doubly-permuted encrypted matrix to T .
The purpose of the remaining computations (Steps 20-27) is to enable T to know which

rows and which columns from the encrypted matrix that he had received from P1 he should
get rid of. Towards that goal, T generates a homomorphic cipher E and then the main
computation goals of P1, . . . , Pd in Steps 20-27 are:

1. For each e ∈ V2, Eq. (6), compute E(χe), where χe :=
∨d
h=1 α

h
e , and αhe is the Boolean

variable denoting whether e ∈ Eh or not.

2. For each {e, f} ∈ Kind
2 , compute E(χe,f), where χe,f = χe · χf .

When d = 2, we were able to translate the Boolean expressions that define χe and χe,f
into arithmetic expressions in the private Boolean variables, αhe , h = 1, 2, e ∈ V2. We could
do the same also for higher values of d, but then the arithmetic expressions become more
complex and less manageable. In order to simplify those computations, we suggest to use
here the homomorphic encryption due to Boneh, Goh and Nissim [8] (BGN hereinafter).
Using that special homomorphic encryption, it is possible to perform any number of addi-
tions in the ciphertext domain, as is the case with any additively homomorphic cipher; but,
in addition, it is possible to perform also a single multiplication in the ciphertext domain.

In the BGN cipher there are two cyclic groups, G and G1, and a bilinear map between
them, θ : G ×G 7→ G1 (i.e., for all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab).

TRANSACTIONS ON DATA PRIVACY 12 (2019)

136 Guy Barshap, Tamir Tassa

Both groups are of order ν = q1q2, where q1 and q2 are two large primes. There are two
encryption functions, one in G and one in G1, as described below:

• The encryption function E : Zν → G. Let g be a generator of G and let h be an
element of order q1 in G. Then, for any plaintext m ∈ Zν , its E-encryption is given by
E(m) = gmhr, for some random r ∈ Fq1 .

• The encryption function E1 : Zν → G1. Define g1 = θ(g, g) and h1 = θ(g, h). It is easy
to see that g1 is a generator of G1 and h1 is an element of order q1 in G1. Then, for
any plaintext m ∈ Zν , its E1-encryption is given by E1(m) = gm1 h

r
1, for some random

r ∈ Fq1 .

Hence, the public key consists of ν, G, G1, g, h, g1 and h1. The private key, on the other
hand, is q1. In order to decrypt c := E(m) = gmhr, the owner of the private key q1 computes
cq1 . Since h is of order q1, we get cq1 = (gq1)m. To recover m from cq1 it is necessary to
compute the discrete logarithm of cq1 with respect to the base gq1 . Such a computation is
feasible only when the plaintext domain is sufficiently small to allow an efficient solution
of that problem (say, by holding a pre-computed table of (gq1)m for all possible values of
m). Similarly, to decrypt c1 := E1(m) = gm1 h

r
1, it is needed to find the value m for which

cq11 = (gq11)m.
In our case, as we shall see below, the range of possible plaintexts is large, in which case

decryption is infeasible. However, in our implementation of the BGN cipher, the owner of
the private key needs only to determine if the ciphertext corresponds to the plaintextm = 0
or not. Such a simplified question is easy to answer. The plaintextm equals zero if and only
if c = E(m) (or c1 = E1(m)) satisfy cq1 = 1 (or cq11 = 1).

We are now ready to describe the manner which we suggest to perform the computation
that was previously done in Steps 20-27 of Protocol 6. We suggest to replace Steps 20-27 in
Protocol 6 with the procedure that is described in Protocol 8. The main difference between
Protocol 8 and Steps 20-27 in Protocol 6 is as follows: in Protocol 6 (for d = 2) we computed
encryptions of the Boolean flags χe,f and χe that indicated the relevance of equations and
unknowns, respectively, in the linear system; in Protocol 8 (for general d), on the other
hand, we compute encryptions of integers that represent those Boolean flags.

Specifically, in Steps 2-4 of Protocol 8, P1, . . . , Pd compute an E-encryption of the integer
reαe, where re is any random multiplier from F∗ν while αe =

∑d
h=1 α

h
e is the sum of the

private Boolean flags. Clearly, if χe =
∨d
h=1 α

h
e = 0 then reαe = 0. On the other hand,

if χe = 1 then αe ∈ [1, d]. Since the modulus ν = q1q2 is a product of two large primes,
then d < q1, q2 and, therefore, αe ∈ F∗ν . Since re is selected uniformly at random from F∗ν ,
it follows that also reαe distributes uniformly in F∗ν . Hence, the value reαe discloses the
value of the Boolean flag χe, but nothing beyond that. If reαe = 0 then χe = 0; if reαe 6= 0
then χe = 1, but the value of reαe in that case does not reveal any further information.

Similarly, in Step 5 we compute an E1-encryption of the integer rerfαeαf . As argued
above, if χe,f = αe · αf = 0 then also rerfαeαf = 0, while otherwise rerfαeαf distributes
uniformly in F∗ν . Hence, the value rerfαeαf discloses the value of the Boolean flag χe,f ,
but nothing beyond that.

Therefore, the encrypted vector u that Pd sends to T in Step 6 enables T to identify from it
the rows that can be removed from the matrix; those are the rows that correspond to entries
in v := uq1 which equal 1, as such values in v indicate that the plaintext corresponding to
those entries in u was zero (Step 7). Similarly, the encrypted vector u that Pd computes
in Step 8 and sends to T in Step 9 enables T to detect the columns that can be removed
from the matrix (Step 10). We note that the vector u that is computed in Step 8 has repeated

TRANSACTIONS ON DATA PRIVACY 12 (2019)

Privacy-Preserving Planarity Testing of Distributed Graphs 137

values, since each entry of the form E(reαe) appears in n−2 entries in the vector. To prevent
T from identifying which n − 2 entries correspond to the same edge, it is possible to use
the basic encryption E(reαe) that was generated in Step 4 in order to create n−3 additional
E-encryptions of reαe by using homomorphic additions with random encryptions of zero,
E(0).

Protocol 8 Eliminating irrelevant equations and unknowns from the full HT system; gen-
eral d

1: T generates a BGN cipher and he notifies P1, . . . , Pd of the corresponding encryption keys.
2: Ph, 1 ≤ h ≤ d, sends to Pd the values E(αhe) for all e ∈ V2.
3: Pd performs homomorphic addition and computes E(αe) for all e ∈ V2, where αe =

∑d

h=1
αhe .

4: Pd selects for each e ∈ V2 a random multiplier re ∈ F∗
ν and computes E(αe)

re = E(reαe).
5: For each pair of independent edges {e, f} ∈ Kind

2 , Pd performs homomorphic multiplication of
E(reαe) and E(rfαf) in order to get E1(rerfαeαf).

6: Pd sends to T the vector u := (E1(rerfαeαf) : {e, f} ∈ Kind
2), where the entries are ordered by

πr.
7: T computes v := uq1 and then he removes from the matrix all rows that correspond to 1-entries

in v.
8: Pd creates a vector u that includes the value E(reαe) for every pair (e, v) where e ∈ V2 and
v ∈ V \ e. The order of the entries in u is as determined by πc.

9: Pd sends u to T .
10: T computes v := uq1 and then he removes from the matrix all columns that correspond to 1-

entries in v.

9 Privacy-preserving testing of 3-colorability of distributed
planar graphs

The 3-colorability decision problem is an NP-complete problem, even for special graph
classes, e.g. for triangle-free or K1,5-free graphs [29]. However, by Grötzsch Theorem [45],
planar graphs that are triangle-free are 3-colorable. (Note that triangle-freeness alone does
not imply 3-colorability, as demonstrated by the so-called Grötzsch Graph, see Figure 7.)

Figure 7: The Grötzsch Graph is a triangle-free graph which is not planar. It is not 3-
colorable.

Assume that P1, . . . , Pd, who hold private graphs Gh = (V,Eh), 1 ≤ h ≤ d, already found
that the union graph G = (V,E), E =

⋃d
h=1Eh, is planar, using Protocol 2 or 5. Assume

TRANSACTIONS ON DATA PRIVACY 12 (2019)

138 Guy Barshap, Tamir Tassa

that they further need to decide whether it is 3-colorable. Then, by Grötzsch Theorem, it
suffices to check whether it is triangle-free.

To this end, let us denote the adjacency matrix of the private graph Gh by Ah, 1 ≤ h ≤ d;
i.e., Ah : V 2 → {0, 1} and Ah(u, v) = 1 iff Eh has the edge (u, v). The adjacency matrix of
the union graph G = (V,E) is given by A =

∨d
h=1Ah. The matrix B =

∑d
h=1Ah, on the

other hand, gives for any pair of vertices (u, v) the number of private graphs that have the
edge (u, v).

Theorem 1. The graphG = (V,E), whereE =
⋃d
h=1Eh, is triangle-free iff tr(A3) = tr(B3) = 0.

Before proving Theorem 1, we define the notions of paths and path scenarios:

Definition 2. If (u, v) ∈ V 2 then a path from u to v in the union graph G = (V,E) is
a sequence of vertices 〈w0 = u,w1, . . . , ws−1, ws = v〉 such that (wi−1, wi) ∈ E for all
1 ≤ i ≤ s; in that case s is the length of the path. A path scenario is a path as defined above
together with a sequence of indices 1 ≤ h1, . . . , hs ≤ d such that (wi−1, wi) ∈ Ehi

for all
1 ≤ i ≤ s.

Lemma 3. For any integer k ≥ 1, Ak(u, v) equals the number of paths of length k from u to v,
while Bk(u, v) equals the number of path scenarios of length k from u to v.

Proof of Lemma 3. As both claims of the lemma are clearly true for k = 1, we proceed by
induction. We start with the first claim regarding Ak(u, v). We have

Ak(u, v) =
∑
w∈V

A(u,w)Ak−1(w, v) .

By induction, A(u,w) equals 1 if there is an edge from u to w in G and 0 otherwise, while
Ak−1(w, v) is the number of paths of length k−1 fromw to v inG. Hence,A(u,w)Ak−1(w, v)
equals the number of paths of length k from u to v in G that start with the edge (u,w).
Therefore, by summing those numbers over all w ∈ V we get the total number of paths of
length k from u to v. Similar argumentation applies also for our second claim regarding
Bk(u, v).

Proof of Theorem 1. A graph is triangle-free iff it includes no cycles of length 3, that is, no
paths of length 3 from a vertex to itself. Hence, a graph is triangle-free iff all entries on
the diagonal of A3 are zero. Therefore, as all entries in A3 are non-negative, a graph is
triangle-free iff the trace of A3 is zero. The second claim, that a graph is triangle-free iff
tr(B3) = 0, follows immediately because a path between any given pair of vertices exists
iff a path scenario between those two vertices exists.

In view of the above discussion, the parties P1, . . . , Pd need only to verify, in a privacy-
preserving manner, whether tr(A3) = 0 or, equivalently, whether tr(B3) = 0. We prefer
to use the latter condition, since tr(B3) can be expressed as a polynomial in private values
that P1, . . . , Pd hold (namely, the entries of their private adjacency matrices Ah, 1 ≤ h ≤ d).
To that end, the parties may verify that condition by invoking the BGW protocol [7]. (The
equivalent condition that involves the matrix A is harder for verification since the entries
of the matrix A are Boolean functions of the private inputs.)

9.1 A birdseye view of the BGW protocol

Consider a setting in which d > 2 parties, P1, . . . , Pd, wish to compute an arithmetic func-
tion of private inputs that they hold. Party Ph holds a private vector (or, equivalently, a

TRANSACTIONS ON DATA PRIVACY 12 (2019)

Privacy-Preserving Planarity Testing of Distributed Graphs 139

matrix) xi over some finite field F, 1 ≤ h ≤ d, and the goal is to compute y = f(x1, . . . , xd),
where the function f is a publicly known polynomial in the entries of x1, . . . , xd, without
disclosing to each other the private inputs. The Ben-Or–Goldwasser–Wigderson (BGW)
protocol [7] was designed for this purpose. We proceed to provide a birdseye view of that
protocol, with the efficiency improvement of [14]. The security of the protocol was proven
in [4].

Let C be some arithmetic circuit that computes f over the finite field F. The field’s size
must be greater than d as well as greater than the a-priori bound on the input and output
values. The circuit consists of two different types of gates: addition gates, and multiplica-
tion gates. Let α1, . . . , αd be distinct non-zero elements in F; then αh will be used as a public
identifier of Ph, 1 ≤ h ≤ d. The parties preserve the following invariant during the compu-
tation: the value of each wire of the circuit is secret-shared using a Shamir’s (t+1)-out-of-d
secret sharing scheme (see [35]), with t < d/2. The protocol consists of the following three
stages: input sharing phase, circuit emulation phase, and output reconstruction phase.

The input sharing phase. In this phase, each party Ph, 1 ≤ h ≤ d, shares his input xh
with all parties: for each scalar entry xh(·) in his private input xh he chooses a random
polynomial gh of degree t such that gh(0) = xh(·), and he then sends to each party Pk the
value gh(αk), 1 ≤ k ≤ d.

The circuit emulation phase. In this phase, the parties emulate the computation of the
circuit C on the inputs x1, . . . , xd, where in each gate, the parties compute shares of the
value of the output wire using their shares of the input wires by invoking a secure protocol.
There are two types of gates to consider: addition gates and multiplication gates.

Addition gates. The computation of the output shares can be performed locally and without
any interaction, since if f1(αh) and f2(αh) are the shares that Ph holds for the two input
wires to an addition gate, then f(αh) = f1(αh) + f2(αh) is a valid sharing of the output
wire. Indeed, if the polynomials f1(x) and f2(x) are of degree at most t, then so is their
sum f(x) := f1(x) + f2(x); and, in addition, f(0) = f1(0) + f2(0).

Multiplication gates. The case of multiplication gates is more involved as it requires inter-
action among the parties. In particular, given shares f1(αh) and f2(αh) for the two input
wires of a multiplication gate, 1 ≤ h ≤ d, then f(αh) := f1(αh) · f2(αh) are shares of a poly-
nomial f(x) with the correct constant term f(0) = f1(0) · f2(0), as required, but its degree
could be as high as 2t, while we need the sharing polynomial to be of degree at most t.
Hence, the players must interact in order to reduce the degree of that polynomial. The de-
gree reduction procedure can be done using the method of [14], which is based on the fact
that if f is a polynomial of degree at most d−1 and α1, . . . , αd are d distinct non-zero points
in the field, then the constant term f(0) is a linear combination of the other points on that
polynomial. That is, f1(0) ·f2(0) = f(0) =

∑d
h=1 λh ·f(αh), where λh :=

∏
k 6=h αk/(αh−αk)

are the Lagrange coefficients.
The multiplication sub-protocol proceeds as follows. Given the shares f1(αh), f2(αh) of

the party Ph, the party Ph locally multiplies these two shares and gets the value f(αh).
Then, he chooses a polynomial gh(x) of degree at most t such that gh(0) = f(αh) = f1(αh) ·
f2(αh). He then shares the polynomial gh with all parties, so that each party Pk receives
the share gh(αk). At the end of this stage, each party Pk holds the shares g1(αk), . . . , gd(αk).
Next, let us define the polynomial p(x) :=

∑d
h=1 λh · gh(x), which has a degree at most t.

Each party Pk locally computes the linear combination
∑d
h=1 λh · gh(αk) = p(αk), which

is his share in the implicitly defined polynomial p(x). Note that p(x) is a polynomial of
degree at most t, and p(0) =

∑d
h=1 λh · gh(0) =

∑d
h=1 λh · f(αh) = f1(0) · f2(0).

TRANSACTIONS ON DATA PRIVACY 12 (2019)

140 Guy Barshap, Tamir Tassa

Output reconstruction phase. In this phase, each party Ph receives all the shares of the
output wire and he then reconstructs the final output y.

9.2 A protocol for checking whether the trace of B3 is zero

Protocol 9 performs a privacy-preserving check of the trace of B3. It starts (Step 1) by
selecting the finite field F over which all computations will take place. The size of the
field must be greater than d3n3, since that is the upper bound on tr(B3). The latter bound
follows directly from Lemma 4 below, that can be easily proven by induction.

Lemma 4. 0 ≤ Bk(u, v) ≤ dknk−1 for every u, v ∈ V and k ≥ 1.

Proof. The lemma is obviously correct for k = 1 since B(u, v) equals the number of private
graphs that have the edge (u, v) and that number is within the range [0, d]. The proof
proceeds by induction:

Bk(u, v) =
∑
w∈V

Bk−1(u,w) ·B(w, v) ≤
∑
w∈V

dk−1nk−2 · d = dknk−1 .

Next (Step 2), each party distributes to all parties (including himself) shares in a Shamir
secret sharing scheme in each entry of his private adjacency matrix. The degree t of all
interpolation polynomials are selected by all parties upfront. (Note that since all graphs
are non-directional, then all adjacency matrices are symmetric and hence it suffices to share
and compute only the entries on the diagonal and above it.) After each party collects his
respective shares in all adjacency matrices, he proceeds to add them in order to receive a
share in each entry of the matrix B (Step 3). In Steps 4-5, the parties proceed to translate
their shares into shares in the entries of B2 and B3. Since, for any (u, v) ∈ V 2 and k ≥ 2,

Bk(u, v) =
∑
w∈V

Bk−1(u,w)B(w, v)

the parties can use the BGW multiplication procedure in order to compute shares in the
product Bk−1(u,w)B(w, v) (from the shares in Bk−1(u,w) and B(w, v) which they already
have) and, subsequently, get shares in Bk(u, v). Then the parties compute their share in
tr(B3) by simple addition (Step 6).

It is left only to reconstruct tr(B3) and check whether it is zero or not. Such a conclusion of
the protocol is possible, but then the parties would reveal tr(B3), which equals the number
of cycles of length 3 in G, multiplied by 3 (as each such cycle contributes 1 to three entries
on the diagonal of B3). If such information leakage is considered benign then the proto-
col could end by such reconstruction among the d interacting parties. If, however, such
information leakage is to be avoided, the parties can decide on a random multiplier q ∈ F∗p
and then send to the mediator T their shares multiplied by q. T may then interpolate the
received shares in order to get w := q · tr(B3). Such a value reveals to T (who does not
know q) only whether tr(B3) = 0 or not, but nothing beyond that (Steps 7-10).

TRANSACTIONS ON DATA PRIVACY 12 (2019)

Privacy-Preserving Planarity Testing of Distributed Graphs 141

Protocol 9 Privacy-preserving testing of the triangle-freeness of a distributed planar graph
1: P1, . . . , Pd choose a finite field F where |F| > d3n2.
2: Each Ph, 1 ≤ h ≤ d, shares each entry in his own adjacency matrix Ah with all parties.
3: Each Ph computes from the shares he received his own share in each entry of the matrix B =∑d

h=1
Ah.

4: P1, . . . , Pd invoke the BGW protocol to compute shares in each of the entries in B2.
5: P1, . . . , Pd invoke the BGW protocol to compute shares in each of the entries on the diagonal of
B3.

6: Each Ph adds up his shares in the diagonal entries of B3 in order to get his share sh in tr(B3).
7: P1, . . . , Pd select a random nonzero term q ∈ F∗

p.
8: Each Ph sends to T the value q · sh, 1 ≤ h ≤ d.
9: T recovers from the received shares the value w := q · tr(B3).

10: T outputs ”The graph is triangle-free” if w 6= 0 and ”The graph is not triangle-free” otherwise.

Such a protocol does not leak anything to the interacting parties P1, . . . , Pd, as implied by
the security of the BGW protocol [4], and not to T as argued above. As for the computa-
tional costs, the main bottleneck is due to the BGW multiplication procedure. In computing
shares inB2’s entries there areO(n3) multiplication procedures (that could be parallelized),
while the computation of the diagonal entries of B3 involves additional O(n2) multiplica-
tion procedures (which could also be parallelized). As the complexity of our planarity-
testing protocols is higher than that, then this subsequent computation does not increase
the overall complexity.

10 Conclusions

We introduced the problem of privacy-preserving planarity testing of distributed graphs.
We presented a protocol that solves this problem. Our protocol, based on the Hanani–Tutte
theorem, protects the private edge sets of each of the parties, under the assumption that the
parties are semi-honest and do not collude. Our study presents, for the first time, an SMC
protocol that privately tests a geometric property of distributed graphs.

A related property of graphs is that of outer-planarity: a graph is called outer-planar if it
has a planar drawing for which all the vertices belong to the outer face of the drawing. It
is known [13] that a graph is outer-planar iff the graph that is obtained from it by adding a
new vertex and adding from it edges to all original vertices is planar. Hence, our privacy-
preserving planarity testing protocols can be easily modified for testing outer-planarity.
All that is needed is to augment the vertex set V = {v1, . . . , vn} with a new vertex, V 7→
V ′ = V ∪ {vn+1}, and that one of the parties, say P1, adds to his edge set, E1, the n edges
(vi, vn+1), 1 ≤ i ≤ n. Then the parties may proceed by testing the planarity of the new
augmented distributed graph on V ′.

This study raises the following problems for future research:
(a) Improving scalability, either by devising more efficient ways to test the solvability of

the HT system, or by designing a privacy-preserving version of another planarity testing
algorithm.

(b) Devising privacy-preserving protocols for solving graph problems, which are known
to have an efficient solution in cases where the underlying graph is planar, as we did for
3-colorability. The sub-graph isomorphism and the maximal clique problems are examples
of such problems.

TRANSACTIONS ON DATA PRIVACY 12 (2019)

142 Guy Barshap, Tamir Tassa

(c) Enhancing the resiliency of the protocol to stronger adversarial models (i.e., malicious
parties).

(d) Implement mechanisms to prevent coalitions between the interacting parties. In the
solutions that we presented herein, one of the parties P1, . . . , Pd may collude with the me-
diator T in order to disclose information on the union graph beyond its planarity. One way
to prevent such a coalition is to split the role of the mediator T into k distinct and inde-
pendent mediators, T1, . . . , Tk, and enhance our protocols by secret sharing techniques, so
that the recovery of information on the union graph requires a collaboration of all k medi-
ators, or of k′ mediators, where 1 < k′ < k (the latter option increases the robustness of the
system).

(e) Devising privacy-preserving protocols for computing planar drawings of distributed
graphs. Assume that P1, . . . , Pd ran the protocols described in the present study and found
that the distributed graph which they hold is planar. In such a case a new problem arises:
finding a planar drawing of the distributed graph. Namely, the parties should arrive at a
bijection ϕ from the vertex set V to R2 and a representation of each edge e = (u, v) ∈ E as a
continuous simple curve in R2 with ϕ(u) and ϕ(v) as its end points, such that no two curves
intersect apart possibly at their end points. The bijection ϕ can be public, as V is public and
shared by all parties. However, the curve representing any given edge should be revealed
only to parties that have that edge in their private edge set. This is a problem of secure
multiparty computation of a new type, as the output consists of continuous curves. We are
not aware of any prior art that pushed the envelope of secure multiparty computation to
include such types of computation.

References

[1] Joël Alwen, Abhi Shelat, and Ivan Visconti. Collusion-free protocols in the mediated model. In
Advances in Cryptology - CRYPTO, 28th Annual International Cryptology Conference, pages 497–514,
2008.

[2] Abdelrahaman Aly, Edouard Cuvelier, Sophie Mawet, Olivier Pereira, and Mathieu Van Vyve.
Securely solving simple combinatorial graph problems. In Financial Cryptography and Data Se-
curity - 17th International Conference, pages 239–257, 2013.

[3] Gilad Asharov, Francesco Bonchi, David Garcı́a-Soriano, and Tamir Tassa. Secure centrality
computation over multiple networks. In Proceedings of the 26th International Conference on World
Wide Web, pages 957–966, 2017.

[4] Gilad Asharov and Yehuda Lindell. A full proof of the BGW protocol for perfectly secure mul-
tiparty computation. J. Cryptology, 30(1):58–151, 2017.

[5] Baruch Awerbuch and Yossi Shiloach. New connectivity and msf algorithms for shuffle-
exchange network and pram. IEEE Transactions on Computers, 36(10):1258–1263, 1987.

[6] Guy Barshap and Tamir Tassa. Privacy-preserving planarity testing of distributed graphs. In
Proceedings of Data and Applications Security and Privacy XXXII - 32nd Annual IFIP WG 11.3 Con-
ference (DBSec), pages 131–147, 2018.

[7] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, pages 1–10, 1988.

[8] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts. In Theory
of Cryptography, Second Theory of Cryptography Conference, pages 325–341, 2005.

[9] John M. Boyer and Wendy J. Myrvold. On the cutting edge: Simplified O(n) planarity by edge
addition. Journal of Graph Algorithms and Applications, 8(2):241–273, 2004.

TRANSACTIONS ON DATA PRIVACY 12 (2019)

Privacy-Preserving Planarity Testing of Distributed Graphs 143

[10] Justin Brickell and Vitaly Shmatikov. Privacy-preserving graph algorithms in the semi-honest
model. In Advances in Cryptology - ASIACRYPT, 11th International Conference on the Theory and
Application of Cryptology and Information Security, pages 236–252, 2005.

[11] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22:644–654, 1976.

[12] David Eppstein. Subgraph isomorphism in planar graphs and related problems. Journal of Graph
Algorithms and Applications, 3(3):1–27, 1999.

[13] Stefan Felsner. Geometric graphs and arrangements: Some chapters from combinatorial geom-
etry. Combinatorics, Probability & Computing, 15(6):941–942, 2006.

[14] Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified VSS and fact-track multiparty
computations with applications to threshold cryptography. In Proceedings of the Seventeenth An-
nual ACM Symposium on Principles of Distributed Computing (PODC), pages 101–111, 1998.

[15] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to play mental poker
keeping secret all partial information. In Proceedings of the 14th Annual ACM Symposium on
Theory of Computing, pages 365–377, 1982.

[16] Tal Grinshpoun and Tamir Tassa. A privacy-preserving algorithm for distributed constraint op-
timization. In International conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
pages 909–916, 2014.

[17] Tal Grinshpoun and Tamir Tassa. P-SyncBB: A privacy preserving branch and bound DCOP
algorithm. Journal of Artificial Intelligence Research, 57:621–660, 2016.

[18] Tal Grinshpoun, Tamir Tassa, Vadim Levit, and Roie Zivan. Privacy preserving region optimal
algorithms for symmetric and asymmetric dcops. Artificial Intelligence, 266:27–50, 2019.

[19] Frank Hadlock. Finding a maximum cut of a planar graph in polynomial time. The SIAM Journal
on Computing, 4(3):221–225, 1975.

[20] John E. Hopcroft and Robert E. Tarjan. Efficient planarity testing. Journal of the ACM, 21(4):549–
568, 1974.

[21] Arjan Jeckmans, Qiang Tang, and Pieter H. Hartel. Privacy-preserving collaborative filtering
based on horizontally partitioned dataset. In International Conference on Collaboration Technologies
and Systems (CTS), pages 439–446, 2012.

[22] Wei Jiang and Chris Clifton. A secure distributed framework for achieving k-anonymity. The
VLDB Journal, 15:316–333, 2006.

[23] Murat Kantarcioglu and Chris Clifton. Privacy-preserving distributed mining of association
rules on horizontally partitioned data. IEEE Transactions on Knowledge and Data Engineering,
16:1026–1037, 2004.

[24] Marcel Keller and Peter Scholl. Efficient, oblivious data structures for MPC. In Advances in
Cryptology - ASIACRYPT - 20th International Conference on the Theory and Application of Cryptology
and Information Security, pages 506–525, 2014.

[25] Kazimierz Kuratowski. Sur le problème des courbes gauches en topologie. Fundamenta Mathe-
maticae, 15:271–283, 1930.

[26] Peeter Laud. Parallel oblivious array access for secure multiparty computation and privacy-
preserving minimum spanning trees. Proceedings on Privacy Enhancing Technologies (PoPETs),
2015(2):188–205, 2015.

[27] Thomas Léauté and Boi Faltings. Protecting privacy through distributed computation in multi-
agent decision making. Journal of Artificial Intelligence Research, 47:649–695, 2013.

[28] Hsiao-Ying Lin and Wen-Guey Tzeng. An efficient solution to the millionaires’ problem based
on homomorphic encryption. In Applied Cryptography and Network Security, Third International
Conference (ACNS), pages 456–466, 2005.

[29] Frédéric Maffray and Myriam Preissmann. On the np-completeness of the k-colorability prob-

TRANSACTIONS ON DATA PRIVACY 12 (2019)

144 Guy Barshap, Tamir Tassa

lem for triangle-free graphs. Discrete Mathematics, 162(1-3):313–317, 1996.

[30] Catherine A. Meadows. A more efficient cryptographic matchmaking protocol for use in the
absence of a continuously available third party. In IEEE Symposium on Security and Privacy,
pages 134–137, 1986.

[31] Kobbi Nissim and Enav Weinreb. Communication efficient secure linear algebra. In Theory of
Cryptography, Third Theory of Cryptography Conference (TCC), pages 522–541, 2006.

[32] Christos H. Papadimitriou and Mihalis Yannakakis. The clique problem for planar graphs.
Information Processing Letters, 13(4/5):131–133, 1981.

[33] Maurizio Patrignani. Planarity testing and embedding. In Handbook on Graph Drawing and
Visualization, pages 1–42. 2013.

[34] Marcus Schaefer. Toward a theory of planarity: Hanani-tutte and planarity variants. Journal of
Graph Algorithms and Applications, 17(4):367–440, 2013.

[35] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[36] Erez Shmueli and Tamir Tassa. Secure multi-party protocols for item-based collaborative filter-
ing. In Proceedings of the Eleventh ACM Conference on Recommender Systems (RecSys), pages 89–97,
2017.

[37] Tamir Tassa. Secure mining of association rules in horizontally distributed databases. IEEE
Transactions on Knowledge and Data Engineering, 26:970–983, 2014.

[38] Tamir Tassa and Dror J. Cohen. Anonymization of centralized and distributed social networks
by sequential clustering. IEEE Transactions on Knowledge and Data Engineering, 25:311–324, 2013.

[39] Tamir Tassa, Tal Grinshpoun, and Roie Zivan. Privacy preserving implementation of the max-
sum algorithm and its variants. Journal of Artificial Intelligence Research, 59:311–349, 2017.

[40] Tamir Tassa and Ehud Gudes. Secure distributed computation of anonymized views of shared
databases. Transactions on Database Systems, 37, Article 11, 2012.

[41] Tamir Tassa, Roie Zivan, and Tal Grinshpoun. Max-sum goes private. In Proceedings of the
Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI), pages 425–431, 2015.

[42] Tamir Tassa, Roie Zivan, and Tal Grinshpoun. Preserving privacy in region optimal DCOP
algorithms. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence
(IJCAI), pages 496–502, 2016.

[43] Klaus Wagner. Über eine eigenschaft der ebenen komplexe. Mathematische Annalen, 114:570–590,
1937.

[44] Andrew C. Yao. Protocols for secure computations (extended abstract). In 23rd Annual Sympo-
sium on Foundations of Computer Science, pages 160–164, 1982.

[45] Dvořák Zdeněk, Kawarabayashi Ken-Ichi, and Thomas Robin. Three-coloring triangle-free pla-
nar graphs in linear time. The ACM Transactions on Algorithms, 7(4):41:1–41:14, 2011.

TRANSACTIONS ON DATA PRIVACY 12 (2019)

