TRANSACTIONS ON DATA PRIVACY 13 (2020) 201

SoK: Chasing Accuracy and Privacy, and
Catching Both in Differentially Private His-
togram Publication

Boel Nelson*!, Jenni Reuben*!

tDepartment of Computer Science and Engineering, Chalmers University of Technology, SE-412 96 Gothenburg,
Sweden.

IDepartment of Mathematics and Computer Science, Karlstad University, SE-651 88 Karlstad, Sweden.

E-mail: boeln@chalmers.se, jenni.reubenlkau.se

Received 7 March 2020; received in revised form 12 October 2020; accepted 15 December 2020

Abstract. Histograms and synthetic data are of key importance in data analysis. However, researchers
have shown that even aggregated data such as histograms, containing no obvious sensitive attributes,
can result in privacy leakage. To enable data analysis, a strong notion of privacy is required to avoid
risking unintended privacy violations.

Such a strong notion of privacy is differential privacy, a statistical notion of privacy that makes privacy
leakage quantifiable. The caveat regarding differential privacy is that while it has strong guarantees
for privacy, privacy comes at a cost of accuracy. Despite this trade-off being a central and important
issue in the adoption of differential privacy, there exists a gap in the literature regarding providing
an understanding of the trade-off and how to address it appropriately.

Through a systematic literature review (SLR), we investigate the state-of-the-art within accuracy im-
proving differentially private algorithms for histogram and synthetic data publishing. Our contri-
bution is two-fold: 1) we identify trends and connections in the contributions to the field of dif-
ferential privacy for histograms and synthetic data and 2) we provide an understanding of the pri-
vacy/accuracy trade-off challenge by crystallizing different dimensions to accuracy improvement.
Accordingly, we position and visualize the ideas in relation to each other and external work, and
deconstruct each algorithm to examine the building blocks separately with the aim of pinpointing
which dimension of accuracy improvement each technique/approach is targeting. Hence, this sys-
tematization of knowledge (SoK) provides an understanding of in which dimensions and how accu-
racy improvement can be pursued without sacrificing privacy.

Keywords. accuracy improvement, boosting accuracy, data privacy, differential privacy, dimension-
ality reduction, error reduction, histogram, histograms, noise reduction, sensitivity reduction, syn-
thetic data, SLR, SoK, systematic literature review, systematization of knowledge, taxonomy, utility
improvement
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1 Introduction

Being able to draw analytical insights from data sets about individuals is a powerful skill,
both in business, and in research. However, to enable data collection, and consequently
data analysis, the individuals’ privacy must not be violated. Some strategies [1-3] for
privacy-preserving data analysis focus on sanitizing data, but such approaches require
identifying sensitive attributes and also does not consider auxiliary information. As pointed
out by Narayanan and Shmatikov [4], personally identifiable information has no technical
meaning, and thus cannot be removed from data sets in a safe way. In addition to the diffi-
culty in modeling the extent of additional information that an adversary may possess from
public sources in such data sanitizing approaches, the privacy notion of such approaches is
defined as the property of the data set. However, it is proved in [5] that for essentially any
non-trivial algorithm, there exists auxiliary information that can enable a privacy breach
that would not have been possible without the knowledge learned from the data analysis.
Consequently, a strong notion of privacy is needed to avoid any potential privacy viola-
tions, while still enabling data analysis.

Such a strong notion of privacy is differential privacy [6] (Section [2), in which the privacy
guarantee is defined as the property of the computations on the data set. Differential pri-
vacy is a privacy model that provides meaningful privacy guarantees to individuals in the
data sets by quantifying their privacy loss. This potential privacy loss, is guaranteed in-
dependently of the background information that an adversary may possess. The power of
differential privacy lies in allowing an analyst to learn statistical correlations about a pop-
ulation, while not being able to infer information about any one individual. To this end, a
differential private analysis may inject random noise to the results and these approximated
results are then released to the analysts.

Differential privacy has spurred a flood of research in devising differentially private algo-
rithms for various data analysis with varying utility guarantees. Given a general workflow
of a differentially private analysis, which is illustrated in Figure[l} we have identified four
places (labeled A, B, C and D) for exploring different possibilities to improve accuracy of
differential private analyses.
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Figure 1: Places for accuracy improvement: A) Altering the query, B) Post-processing, C)
Change in the release mechanism, D) Pre-processing.

In this work, we focus specifically on differentially private algorithms for histograms,
and synthetic data publication. Histograms and synthetic data are particularly interesting
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because they both provide a way to represent summary of an underlying data set, thus
may enable further analytical tasks executed over the summary of the data set. While,
histograms represent a graphical summary of frequency distribution of values of a specific
domain in a data set, synthetic data is an approximate representation of data distribution
of an underlying data set. Intrigued by the idea that there exists several ways to improve
accuracy of privatized histograms and synthetic data without compromising privacy, we
aim to systematically synthesize the state-of-the-art.

Advancement in research in differentially private histogram and synthetic data publi-
cation has received considerable interest within the computer science and statistics re-
search communities [7H9]. However, only a few works systematically and critically assess
the state-of-the-art differentially private, accuracy improving algorithms for releasing his-
tograms or synthetic data. Li et al. [8] and Meng et al. [9] categorized different differentially
private publication techniques for both histogram as well as synthetic data, and solely his-
tograms respectively. However, their selection and categorization of the algorithms are not
systematic. Further, the selected algorithms in their work are not exclusively accuracy im-
proving techniques, but rather differentially private release mechanisms for histogram and
synthetic data. That is, some of the surveyed algorithms do not boost the accuracy of an
existing release mechanism by adding a modular idea, but instead invent new, monolithic
algorithms. For example, some of the algorithms have discovered ways to release data that
previously did not have a differentially private way of being released. Bowen and Liu [7],
on the other hand, used simulation studies to evaluate several algorithms for publishing
histograms and synthetic data under differential privacy. Their aim is quite different from
ours, is to assess the accurac and usefulnes of the privatized results.

Consequently, to bridge the knowledge gap, the present paper aims to provide a system-
atization of knowledge concerning differentially private accuracy improving methods for
histogram and synthetic data publication. To this end, we first review the main concepts
related to differential privacy (Section [2), which are relevant to the qualitative analysis
of state-of-the-art accuracy improving techniques for differentially private histogram and
synthetic data publication (Section [5). However, before focusing on the qualitative anal-
ysis, we present our method to conduct a systematic review of literature that enable a
methodological rigor to the results of the qualitative analysis (Section [3) and a review of
general characteristics of the identified accuracy improving techniques (Section[4). We fur-
ther study the composability of accuracy improvement techniques within the constraints of
differential privacy in relation to the results of our analysis in order to pave the way for fu-
ture research (Section[6). Overall, this systematization of knowledge provides a conceptual
understanding of enhancing accuracy in the light of privacy constraints (Section 7).

Our main contributions are:

1. A technical summary of each algorithms in order to provide a consolidate view of the
state-of-the-art (Section [4).

2. Categorization that synthesize the evolutionary relationships of the research domain
in differential privacy for histogram and synthetic data publication (Section[5.T).

3. Categorization of the state-of-the-art, which is based on the conceptual relationships
of the identified algorithms (Section[5.2).

1We will use the terms accuracy and utility interchangeably when we refer to decreasing the error, i.e the
distance between the privatized result and the true results.
2We use the term usefulness to refer to the impact of the privatized results to conduct statistical inferences.
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2 Differential Privacy

Differential privacy [6] is a statistical definition that enables privacy loss to be quantified
and bounded. In differential privacy, privacy loss is bounded by the parameter . To
achieve trivial accuracy improvement, ¢ can be tweaked to a higher value, as this gives
less privacy (greater privacy loss) which means more accuracy. In this paper we only con-
sider accuracy improvements in settings where ¢ is fixed.

We formally define e-differential privacy in Definition[T} based on Dwork [5]. The param-
eter ¢ is usually referred to as the privacy budget. Essentially, € is the cost in terms of privacy
loss for an individual participating in an analysis.

Definition 1 (e-Differential Privacy). A randomized algorithm f’ gives e-differential pri-
vacy if for all data sets D; and D, where Dy and D, are neighboring, and all S C Range(f”),

Pr[f/(Dy) € S] < ¢ x Pr[f/(Ds) € 8]

A relaxed version of differential privacy is (¢, ¢)-differential privacy Dwork et al. [10],
which we define in Definition 2} (e, )-differential privacy is primarily used to achieve
better accuracy, but adds a subtle, probabilistic dimension of privacy loss. (g, §)-differential
privacy is sometimes also called approximate differential privacy [11].

Definition 2 ((¢, §)-Differential Privacy). A randomized algorithm f’ is (¢, §)-differentially
private if for all data sets D; and D, differing on at most one element, and all S C Range(f),

Pr[f'(D1) € 8] < € x Pr[f'(D2) € S] +6

Theoretically, in e-differential privacy each output is nearly equally likely and hold for any
run of algorithm f/, whereas (¢, §)-differential privacy for each pair of data sets (D, Ds)
in extremely unlikely cases, will make some answer much less or much more likely to be
released when the algorithm is run on D, as opposed to D, [12]. Still, (¢, §)-differential
privacy ensures that the absolute value of the privacy loss is bounded by ¢ with probabil-
ity at least 1-9 [12]. That is, the probability of gaining significant information about one
individual, even when possessing all other information in the data set, is at most 4.

To satisfy differential privacy, a randomized algorithm perturbs the query answers to ob-
fuscate the impact caused by differing one element in the data set. Such perturbation can
for example be introduced by adding a randomly chosen number to a numerical answer.
Essentially, the maximum difference any possible record in the data set can cause dictates
the magnitude of noise needed to satisfy differential privacy. This difference is referred to
as the algorithm’s L, sensitivity, which we define in Definition based on Dwork et al. [6].

Definition 3 (L; Sensitivity ). The L; sensitivity of a function f : D" — R? is the smallest
number A f such that for all D;, D, € D™ which differ in a single entry,

If(Dy) = f(D2)lly < AF

Since differential privacy is a property of the algorithm, as opposed to data, there ex-
ists many implementations of differentially private algorithms. Thus, we will not summa-
rize all algorithms, but instead introduce two early algorithms that are common building
blocks, namely: the Laplace mechanism [6] and the Exponential mechanism [13]].

We define the Laplace mechanism in Definition[# based on the definition given by Dwork
[14]. The Laplace mechanism adds numerical noise, and the probability density function is
centered around zero, meaning that noise with higher probability (than any other specific
value) will be zero.
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Definition 4 (Laplace mechanism). For a query f on data set D, the differentially private
version, f’, adds Laplace noise to f proportional to the sensitivity of f:

f'(D) = f(D) + Lap(Af/e)

Furthermore, we define the Exponential mechanism (EM) in Definition E] based on the
definition given by McSherry and Talwar [13]. The intuition behind EM is that the prob-
ability of not perturbing the answer is slightly higher than perturbing the answer. EM is
particularly useful when Laplace does not make sense, for example when queries return
categorical answers such as strings, but can also be used for numerical answers. The rea-
son EM is so flexible is that the utility function can be replaced to score closeness to suit the
given domain.

Definition 5 (Exponential mechanism (EM)). Given a utility function v : (D x R) — R, and
a data set D, we define the differentially private version, u:

' (D,u) = {return r, where r ranges over R, with probability o exp

The semantic interpretation of the privacy guarantee of differential privacy rests on the
definition of what it means for a pair of data sets to be neighbors. In the literature, the
following two variations of neighbors are considered when defining differential privacy:
unbounded and bounded.

Definition 6. Let D; and D, be two data sets where D; can be attained by adding or re-
moving a single record in D,. With this notion of neighbors, we say that we have unbounded
differential privacy.

Definition 7. Let D; and D, be two data sets where D; can be attained by changing a
single record in D,. With this notion of neighbors, we say that we have bounded differential
privacy.

Distinguishing between the definition of neighboring data sets is important, because it
affects the global sensitivity of a function. The sizes of the neighboring data sets are fixed
in the bounded differential privacy definition whereas, there is no size restriction in the
unbounded case.

In the case of graph data sets, a pair of graphs differ by their number of edges, or number
of nodes. Therefore, there exists two variant definitions in literature [15] that formalize
what it means for a pair of graphs to be neighbors. Nevertheless, these graph neighborhood
definitions are defined only in the context of unbounded differential privacy.

Definition 8 (Node differential privacy [15]). Graphs G = (V,E) and G' = (V',E) are
node-neighbors if:

Vi=V-u,
E/:E_{(U17v2) |U1 = vV = ’U},
for some nodev € V.

Definition 9 (Edge differential privacy [15]). Graphs G = (V,E) and G' = (V',E’) are
edge-neighbors if:

V=V,

E =E—{e},

for some edge e € E.

TRANSACTIONS ON DATA PRIVACY 13 (2020)



206 Boel Nelson, Jenni Reuben

In certain settings, ¢ grows too fast to guarantee a meaningful privacy protection. To
cater for different applications, in particular in settings where data is gathered dynamically,
different privacy levels have been introduced that essentially further changes the notion of
neighboring data sets by defining neighbors for data streams. These privacy levels are, user
level privacy [16], event level privacy [17], and w-event level privacy [18].

Definition 10. We say that a differentially private query gives user level privacy (pure dif-
ferential privacy), when all occurrences of records produced by one user is either present
or absent.

Essentially, for user level privacy, all records connected to one individual user shares a
joint privacy budget.

Definition 11. We say that a differentially private query gives event level privacy, when all
occurrences of records produced by one group of events, where the group size is one or
larger, is either present or absent.

With event level privacy, each data point used in the query can be considered independent
and thus have their own budget.

Definition 12. We say that a differentially private query gives w-event level privacy, when
a set of w occurrences of records produced by some group of events, where the group size
is one or larger, is either present or absent. When w = 1, w-event level privacy and event
level privacy are the same.

For w-event level privacy, w events share a joint privacy budget.

3 Method

We conducted a systematic literature review (SLR) [19] to synthesize the state-of-the-art
accuracy improving techniques for publishing differentially private histograms as well as
synthetic data. Systematic literature review, which, hereafter we will refer to as systematic
review when describing generally, is a method to objectively evaluate all available research
pertaining to a specific research question or research topic or phenomena of interest [19].
Although, the method is common in social science and medical science disciplines, the
Evidence-Based Software Engineering initiative [20] have been influential in the recogni-
tion of systematic review as the method to integrate evidence concerning a research area,
a research question or phenomena of interest in software engineering research. Systematic
review provides methodological rigor to literature selection and synthesization as well as
to the conclusion drawn as a result of the synthesization. The method consists of several
stages that are grouped into three phases. The phases of systematic review are; i) planning
the review, ii) conducting the review and iii) reporting the review.

Planning the review phase underpins the need for a systematic review concerning a re-
search topic, a research question or phenomena of interest. Hence, in the planning stage, a
review protocol that defines the research questions, as well as strategies for conducting the
literature review is developed in order to minimize the likelihood of researcher bias in the
selection of literature.

Following the specification of the search, the selection and the data synthesis strategy,
the review is conducted (conducting the review phase) in an orderly manner. Thus, the
first stage of the execution of a systematic review is the identification of all available litera-
ture. This stage involves the construction of search queries and identification of all relevant
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scholarly databases. After the identification of literature on a given topic of interest, they
need to be evaluated for relevance, which usually is determined through a set of selection
criteria. The selected literature for a systematic review is generally referred to as primary
studies. Then, in order to synthesize the results of the primary studies, data are extracted
from each primary study for the analysis that is the final stage of the conducting the review
phase.

Reporting the review involves the documentation of the systematic review process and
the communication of the results of the systematic review.

In the following subsections we describe in detail, the process we undertake in our SLR.
Figure 2|shows the high-level view of the processes followed in our SLR.

Step1: Identification Step 2: Selection of ~ Step 3: Qualitative

of Literature Literature Analysi.s ar}d
Categorization

Figure 2: Workflow of processes followed in our SLR.

3.1 Identification of Literature

A thorough and unbiased search for literature is the essence of a SLR. In this SLR, we used
a scholarly search engine, Microsoft Academic (MA) [21} [22]], primarily for two reasons.
First, for its semantic search functionality and second, for its coverage.

Semantic search leverages entities such as field of study, authors, journals, institutions,
etc., associated with the papers. Consequently, there is no need to construct search strings
with more keywords and synonyms, rather, a natural language query can be constructed
with the help of search suggestions for relevant entities.

Secondly, regarding the coverage of MA. MA’s predecessor, Microsoft Academic Search
(MAS), suffered from poor coverage as pointed out by Harzing [23]. However, after re-
launching MA its coverage has grown over the years [24} 25]. In 2017, Hug and Bréndle
[26] compared the coverage of MA to Scopus and Web of Science (WoS), and found that
MA has higher coverage for book-related documents and conferences, and only falls be-
hind Scopus in covering journal articles. More recently, in 2019, Harzing [27] compared the
coverage of Crossref, Dimensions, Google Scholar (GS), MA, Scopus and WoS, and found
that GS and MA are the most comprehensive free search engines. Accordingly, we have
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chosen to use MA since it has both adequate coverage and semantic search, while for ex-
ample GS lacks semantic search.

We used two queries, one focusing on histograms and the other on synthetic data. The
queries are as follows, with entities recognized by MA in bold text:

Q1: Papers about differential privacy and histograms

Q2: Papers about differential privacy and synthetic data

The search was performed on June 10 2019, and yielded 159 hits in total. 78 hits for Q1
and 81 hits for Q2, which are examined for relevance in the next step of the SLR process.

3.2 Selection of Literature

We constructed and followed a set of exclusion criteria Table [l in order to select the rel-
evant literature that provides insights to our research aim. To reflect that we specifically
wanted to focus on tangible, experimentally tested algorithms, we constructed the criteria
to exclude papers that contribute to pure theoretical knowledge. To select papers, we exam-

Exclude if the paper is...

1) not concerning differential privacy, not concerning accuracy improvement, and not con-
cerning histograms or synthetic data.

2) employing workflow actions, pre-processing/post-processing/algorithmic tricks but not
solely to improve accuracy of histograms or synthetic data.

3) a trivial improvement to histogram or synthetic data accuracy through relaxations of
differential privacy or adversarial models.

4) concerning local sensitivity as opposed to global sensitivity.

5) not releasing histograms/synthetic data.

6) pure theory, without empirical results.

7) about a patented entity.

8) a preprint or otherwise unpublished work.

9) not peer reviewed such as PhD thesis/master thesis/demo paper/poster/extended ab-
stract.

10) not written in English.

Table 1: List of exclusion criteria followed in our SLR.

ined the title and abstract of each paper against the exclusion criteria. When the abstract
matches any one of the criteria, the paper is excluded, otherwise the paper is included.
When it was unclear from the abstract that a contribution is empirical or pure theory, we
looked through the body of the paper to make our decision. In the course of this stage, in
order to ensure the reliability of the decision concerning the inclusion of a literature in our
systematic review, both the authors have independently carried out the selection of litera-
ture stage. When comparing the decisions of the authors, if there exist a disagreement, we
discussed each disagreement in detail in relation of the criteria in Table|1jand resolved it.
For the full list of excluded papers along with the reason for exclusion, see Appendix[Al

In the end, a total of 35 (after removing duplicates) papers were selected for the qualitative
analysis.
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3.3 Qualitative Analysis and Categorization

The most common framework found in the literature to analyse and understand a domain
of interest, is classification schemes [28]]. It concerns the grouping of objects with similar
characteristics in a domain. Our aim is to synthesize; i) on the one hand, trends and rela-
tionships among each papers and ii) on the other hand, conceptual understanding of the
privacy/accuracy trade-off in the differentially private histogram and synthetic data re-
search. Therefore, from each paper we extracted distinct characteristics of the algorithms,
evaluation details of the algorithms as well as design principles such as aim of the solution
and motivation for using a particular technique. These characteristics are inductively ana-
lyzed for commonality, which follows, though not rigorously, the empirical-to-conceptual
approach to taxonomy development defined by Nickerson et al. [28]. The categorization
that resulted from the qualitative analysis are presented in Section 5|

Deviation from the systematic review guidelines in [19]: The review protocol for our SLR
is not documented in the planning stage as specified by the original guidelines but rather
documented in the reporting the review stage. This is largely due to the defined focus of
our SLR, which is on the privacy/accuracy trade-off associated with differentially private
algorithms for publishing histograms and synthetic data. Hence, the search strategy and
selection criteria do not call for an iteration and an account of the changes in the process.
Further, in our SLR we do not consider a separate quality assessment checklist as prescribed
by the SLR guidelines. However, in our SLR the quality of the primary studies is ensured
through our detailed selection criteria that involves objective quality assessment criteria
for example the criterion to include only peer-reviewed scientific publications in the SLR.
Furthermore, the quality of the results of our SLR is ensured through the exclusion of some
of the selected primary studies because the algorithms in those studies lack comparable
properties in order to perform a fair comparison with other selected algorithms. Addition-
ally, during the analysis we surveyed additional relevant literature from the related work
sections of the primary studies, which adds to the quality of the results of our SLR.

4 Overview of Papers

After analyzing the 35 included papers, 27 papers [29-55] where found to be relevant. All
included papers and their corresponding algorithms are listed in the ledger in Table 2| We
illustrate the chronological publishing order of the algorithms, but note that within each
year, the algorithms are sorted on the first author’s last name, and not necessarily order of
publication.

Beware that some algorithms, for example NF, SF, have appeared in publications twice,
first in a conference paper and then in an extended journal version. When a paper has two
versions, we will refer to the latest version in our comparisons, but we include all references
in the paper ledger for completeness. Furthermore, eight papers were excluded based on
our qualitative analysis. Each decision is motivated in Section and those eight papers
hence do not appear in the paper ledger.

Furthermore, in Tables [3|and [4] we present objective parameters regarding the settings
around the algorithms in each paper, for example the characteristics of the input data they
operate on, and the metric used to measure errors. Our intention is that this table will allow
for further understanding of which algorithms are applicable given a certain setting when
one searches for an appropriate algorithm, but also to understand which algorithms are
directly comparable in the scope of this SLR.
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2010 Boost Hay et al. [29]
2011 PMost, BMax Ding et al. [30]
Privelet, Privelet™, Privelet* Xiao et al. [31},156]
2012 EFPA, P-HP Acsetal. [32]
2013 NF, SF Xu et al. [33,57]
DPCopula Liet al. [34]
CiTM Lu et al. [35]
2014 PeGS, PeGS.rs Park et al. [58], Park and Ghosh [36]
DPCube Xiao et al. [37, 159, 60]
PrivBayes Zhang et al. [38]
AHP Zhang et al. [39]
RG Chen et al. [40]
2015 ADMM Lee et al. [41]
DSAT, DSFT Lietal. [42]
(0,£2)-Histogram, §-CumHisto Day et al. [43]
2016 BPM Wang et al. [44]
PrivTree Zhang etal. [45]
DPCocGen Benkhelif et al. [46]
SORTaki Doudalis and Mehrotra [47]
2017 Pythia, Delphi Kotsogiannis et al. [48]
Tru, Min, Opt Wang et al. [49]
DPPro Xu et al. [50]
2 Ding et al. [51]
2018 GGA Gao and Ma [52]
PriSH Ghane et al. [53]
IHP, mIHP Liet al. [54]61]
2019 RCF Nie et al. [55]

Table 2: Chronological ledger for the papers. Note that the abbreviation "”ADMM’ is due to
Boyd et al. [62], whereas Lee et al. [41]]’s work is an extension that uses the same abbrevia-
tion.

Note that the privacy level (user, event or w-event) was not explicitly stated in most pa-
pers, in which case we have attributed the privacy level as "?’. A ’?” privacy level does
not imply that the algorithm does not have a particular privacy level goal, but rather, that
the authors did not explicitly describe what level they are aiming for. With this notice, we
want to warn the reader to be cautious when comparing the experimental accuracy of two
algorithms unless they in fact assume the same privacy level. For example, comparing the
same algorithm but with either user level or event level privacy would make the event level
privacy version appear to be better, whereas in reality it trivially achieves better accuracy
through relaxed privacy guarantees.

In general, user level privacy tends to be the base case, as this is the level assumed in pure
differential privacy [16], but to avoid making incorrect assumptions, we chose to use the "?’
label when a paper does not explicitly state their privacy level.

Given that our two queries were designed to capture algorithms that either output syn-
thetic data or a histogram, we examine the similarity between the strategies used in each al-
gorithm. To this end, we manually represent the similarity between the algorithms’ strate-
gies based on their output in Table 5| We distinguish between the two kinds of outputs
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Ref. Def. Lvl. Rel. Dim. In. Mech. Metric Out.
[29] ¢ & 1D =z LAP MAE HISTOGRAM
[30] ¢ & * T, 4 LAP MAE CUBOIDS
[31] € & 1, = LAP MAE, MPE RANGE COUNT
* QUERIES
[32] ¢ & 1D Z,x LAP,EM KL, MSE HISTOGRAM
[33] & Ip =z LAP, EM MAE, MSE HISTOGRAM
[34] ¢ & O I LAP MAE, MPE SYNTHETIC
DATA
[35] (g,0) ENTITY <& * T, M MM, MPE MODEL
AGNOSTIC
[36] ¢ ? & * T DIRICHLET RANK MODEL
PRIOR CORR.
[37] e & * T LAP MAE HISTOGRAM
[38] e & O T LAP, EM AVD, MISS  SYNTHETIC
DATA
[39] € ? & 1D =z LAP KL, MSE HISTOGRAM
[40] EVENT < 1D Z,x LAP MSE HISTOGRAM
[41] € ? & * i LAP,MM  MSE CONTINGENCY
TABLE,
HISTOGRAM
[42] ¢ isggém & 1D ¥, x LAP MAE, MPE HISTOGRAM
[43] € ? NODE * T EM KS, /1 HISTOGRAM
PRIVACY
[44] ¢ ? Ip =z RR NWSE HISTOGRAM
[45] e ? & * T, X LAP MPE QUADTREE
[46] ¢ ? & * Z,® LAP HELLINGER PARTITIONING
[47] e ? & 1D =z LAP SAQ HISTOGRAM
[48] e ? & 1D, = LAP, /2, REGRET N/A
x AGNOSTIC
[49] ¢ ? & 1D Zz,x LAP MSE HISTOGRAM
[50] (¢,9) & * T ﬁfAUSSIAN’ MISS, MSE MATRIX
[51] e ? NODE * T LAP KS, /1 HISTOGRAM
: PRIVACY
[52] e ? 1p 7 LapP MAE HISTOGRAM
53] e ? & *©® T,X MWEM KL, /1 HISTOGRAM
[54] ? & 1p* z,& LAP,EM KL, MSE HISTOGRAM
[55] e ? & 1D =z RR MSE HISTOGRAM

Table 3: Mapping between papers to corresponding differential privacy definition, privacy
level, neighbor relationship, dimension of data, input data, use of mechanism, error metric
and output data. Abbreviations and the corresponding symbols are explained in a separate
table.
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| Key | Meaning
X Correlated
Data T Dynamic
© Sparse
T Static
. . * Multi
Dimension .
1D Single
EM Exponential mechanism
Mechanism Lap Lapla.ce mechamsm
MM Matrix mechanism
RR | Randomized response
AVD | Average Variation Distance
KS Kolmogorov-Smirnov distance
KL Kullback-Leibler divergence
/1 L1 distance
Metric 02 L2 distance
MAE | Mean absolute error
Miss | Misclassification rate
MPE | Mean percentage error
MSE | Mean squared error
NWSE | Normalized weighted square error
SAQ | Scaled average per query
. & Bounded
Relation & Unbounded

Table 4: Meaning of symbols and abbreviations.

by their different goals: for histograms, the goal is to release one optimal histogram for a
given query, whereas for synthetic data the goal is to release a data set that is optimized for
some given set of queries. Some algorithms use similar approaches to the algorithms from
the other query; and therefore we label them as hybrid. An example of a hybrid paper is Li
et al. [54], since they both deal with one-dimensional histograms (IHP), and then re-use that
strategy when producing multi-dimensional histograms (mIHP) that resembles the outputs
of synthetic data papers.
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Histogram Hybrid Synthetic Data
Hay et al. [29] Lu et al. [35] Li et al. [34]
Xiao et al. [31] Ding et al. [30] Park and Ghosh [36]
Acs etal. [32] Xiao et al. [37] Zhang et al. [38]
Xu et al. [33] Lee et al. [41] Xu et al. [50]
Zhang et al. [39] Zhang et al. [45]

Chen et al. [40] Benkhelif et al. [46]
Lietal [42] Kotsogiannis et al. [48]
Day et al. [43]] Wang et al. [49]
Wang et al. [44] Li et al. [54]
Doudalis and Mehrotra [47]
Ding et al. [51]
Gao and Ma [52]
Ghane et al. [53]
Nie et al. [55]

Table 5: The papers grouped by their type of output, where hybrid internally uses his-
togram structures where synthetic data is sampled from.

5 Analysis

We present our qualitative analysis on 27 included papers from two different perspectives
in the light of research in differential privacy histogram and synthetic data. First, from a
evolutionary perspective for identifying trends and to position each contribution in the his-
tory of its research (Section5.T). Second, from a conceptual perspective for understanding
the trade-off challenge in the privacy and utility relationship (Section5.2).

5.1 Positioning

In order to provide context, we studied where the algorithms originated from, and how they
are connected to each other. To also understand when to use each algorithm, and which ones
are comparable in the sense that they can be used for the same kind of analysis, we also
investigate which algorithms are compared experimentally in the papers.

First, we explored and mapped out the relationships between the included algorithms.
To further paint the picture of the landscape of algorithms, we analyzed the related work
sections to find external work connected to the papers included in our SLR. We present our
findings as a family tree of algorithms in Figure [3| which addresses from where they came.

Since our exploration of each algorithms’ origin discovered papers outside of the SLR’s
queries, we also provide a ledger for (Table [6) external papers. When the authors had not
designated a name for their algorithms, we use the abbreviation of the first letter of all
author’s last name and the publication year instead. Note that we have not recursively
investigated the external papers’ origin, so external papers are not fully connected in the
family tree.

From the family tree, we notice that there are several different lines of research present.
One frequently followed line of research is that started by Xu et al. [33]], NF, SF, which ad-
dresses the issue of finding an appropriate histogram structure (i.e. bin sizes) by creating
a differentially private version of a v-optimal histogram. Essentially, EM is used to deter-
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Figure 3: The family tree of algorithms. Light blue indicate papers not covered by the SLR,
and the darker blue represents included papers.

mine the histogram structure, and then the Laplace mechanism is used to release the bin
counts. The idea by Xu et al. [33] is followed by AHP, RG, SORTaki, IHP and mIHP.

The matrix mechanism (MM) is a building block that is used in PMost, BMax, CiTM and
DPPro. Apart from using the same release mechanism, they do not share many similarities
as also becomes apparent when comparing their experimental evaluation.

Only Pythia and DPCopula appears as orphaned nodes in the family tree. Pythia is special in
the sense that it is not a standalone algorithm, but rather provides a differentially private
way of choosing the best” algorithm for a given data set. DPCopula has a mathematical
background in copula functions, which are functions that describe the dependence between
multivariate variables. This approach of using copula functions is not encountered in any
of the other papers.

To further put the algorithms into perspective, we explored which algorithms were used
in their experimental comparisons. The comprehensive matrix of which algorithms are
experimentally compared to each other in Table[7] This complements the fact table (Table
in addressing the question of when to use an algorithm, as algorithms that are compared
experimentally can be used interchangeably for the same analysis. E.g, when NF is used, it
can be swapped with for example IHP.
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Label Author
AKL11 Arasu et al. [63]
Bayesian Network Model Koller and Friedman [64]
BLR0O8 Blum et al. [65]
Budget Absorption (BA), Budget Distribution (BD) Kellaris et al. [18]
CFDS12 Chen et al. [66]
Data Recycling Xiao et al. [67]
Dirichlet Prior Machanavajjhala et al. [68]
Distributed Euler Histograms (DEH) Xie et al. [69]
DJW13  Duchi et al. [70]
Edge Removal Blocki et al. [71]
Eigen-Design Li and Miklau [72]
FlowGraph Raskhodnikova and Smith [73]

Fourier Perturbation Algorithm (FPA) Barak et al. [74]

Freqltem Zeng etal. [75]

Geometric Mechanism

Grouping and Smoothing (GS)

Matrix Mechanism (MM)

MWEM

n-grams

Private Multiplicative Weights (PMW)
Private Record Matching

Private Spatial Decompositions (PSD)
RAPPOR

Sampling Perturbation Algorithm (SPA)
Truncation

V-opt hist

Ghosh et al. [76]

Kellaris and Papadopoulos [77]
Li et al. [78]

Hardt et al. [79]

Chen et al. [80]

Hardt and Rothblum [81]
Inan et al. [82]

Cormode et al. [83]
Erlingsson et al. [84]
Rastogi and Nath [85]
Kasiviswanathan et al. [86]
Jagadish et al. [87]]

Table 6: Ledger for papers outside of the SLR.
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Algorithm Internal Comparison External Comparison
Boost = =

PMost, BMax

Privelet, Privelet™, Privelet*
EFPA, P-HP

NF, SF

DPCopula

CiTM

PeGS, PeGS.rs

DPCube

PrivBayes

AHP

RG

ADMM
DSAT, DSFT

(0,92)-Histogram,
0-CumHisto
BPM

PrivTree

DPCocGen
SORTaki
Pythia, Delphi

Tru, Min, Opt

DPPro

™

GGA
PriSH

IHP, mIHP
RCF

Boost, Privelet,NF, SF
Boost, Privelet
Privelett, P-HP

Boost

NF, SF, P-HP

Boost, EFPA, P-HP, Privelet

Privelet*

PrivBayes

Boost

DSAT

Boost,EFPA, P-HP, SF, AHP
Boost, NF

SPA [85], MWEM [79]

Fp [88], PSD [83]

Private Interactive ID3 [89],

Private Record Matching [82]
FPA[74],

PrivGene [90],

ERM [91]

GS [77]

BA [18], FAST [92]

LMM [78]], RM [93]]

EdgeRemoval [71],
Truncation [86],
FlowGraph [73]

EM [13], Binary RR [70, |84]
UG [94-96), AG [94],
Hierarchy [95]], DAWA [97]

n-grams [80], Freqltem [75],

GS, DAWA, DPT [98]
Private SVM [99],

PriView [100],
JTree [101]

MWEM, DAWA
PSD, GS
SHP [102]

Table 7: Algorithms used in empirical comparisons, divided by internal (included in the
SLR) and external (excluded from the SLR) algorithms, sorted by year of publication. Com-
parisons with the Laplace mechanism and the author’s own defined baselines (such as op-
timal) have been excluded from the table.
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5.2 Categorization of Differentially Private Accuracy Improving Tech-
niques

We observe from the algorithms in the 27 papers, there are three different dimensions to
accuracy improvement in the context of differential privacy: i) total noise reduction, ii) sensi-
tivity reduction and iii) dimensionality reduction.

i) Total Noise Reduction On the one hand, a histogram is published as statistical rep-
resentation of a given data set (Goal I). On the other hand, histograms are published
as a way to approximate the underlying distribution, which is then used to answer
queries on the data set (Goal II). We refer to the latter as universal histograms: ter-
minology adapted from [29]. In this dimension, optimizing the noisy end result (i.e
differentially private histograms) provides opportunities for accuracy improvement.

ii) Sensitivity Reduction The global sensitivity of histogram queries is not small for
graph data sets. Because, even a relatively small change in the network structure re-
sults in big change in the query answer. The accuracy improvement in this dimension
follow from global sensitivity optimization.

iif) Dimensionality Reduction Publishing synthetic version of an entire data set consists
of building a private statistical model from the original data set and then sampling
data points from the model. In this dimension, inferring the underlying data distri-
bution from a smaller set of attributes provides opportunities for accuracy improve-
ment.

5.2.1 Dimension: Total Noise Reduction

In Table [§, we summarize the distinct techniques/approaches of the state-of-the-art from
the point of view of reducing the total noise.

> Goal I: When the goal is to publish some statistical summary of a given data set
as a differentially private histogram, histogram partitions play an essential role in
improving the accuracy of the end result. A histogram partitioned into finer bins
reduces approximation errmﬂ of the result, because each data point is correctly repre-
sented by a bin. However, the Laplace mechanism for histograms adds noise of scale
Af /e to each histogram bin. In other words, a histogram that is structured to mini-
mize the approximation error, would suffer more noise in order to satisfy differential
privacy.

The most common approach to enhance the utility for this goal, is to identify optimal
histogram partitions for the given data.

Algorithms P-HP, SF and (9,Q)-Histogram use the Exponential mechanism to find V-optimal
histogram [87] partitions. However, the quality of the partitions drops as the privacy bud-
get available for iterating the Exponential mechanism decreases. Hence, algorithms NF,
AHP, DPCocGen instead operate on the non-optimized noisy histogram for identifying sub-
optimal partitions for the final histogram. To further improve the quality of the partitions
that are based on the non-optimized noisy histogram, in AHPsorting technique is used.

For the same goal described above, if the given data are bitmap strings then one opportu-
nity for accuracy improvement is to vary the amount of noise for various histogram bins.

3Error caused by approximating the underlying distribution of data into histogram bins: intervals covering
the range of domain values.
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Algorithm BPM uses a bi-partite cut approach to partition a weighted histogram into bins
with high average weight and bins with low relative weight. Further, in BPM the privacy
budget ¢ is carefully split between the bins such that the heavy hitters, i.e. bins with high
count, enjoy less noise. Algorithm AC uses weighted combination approach in terms of least
square method in order to find optimal histogram partitions. Sample expansion through
recycling the data points is another interesting approach for enhancing the accuracy of his-
tograms over bitmap strings.

In the case of dynamic data sets, it is desirable to sequentially release the statistical sum-
mary of evolving data set at a given point in time. The most common approach is to limit
the release of histograms, when there is a change in the data set for avoiding early deple-
tion of privacy budget. Algorithms DSFT, DSAT and GGA uses distance-based sampling to
monitor significant updates to the input data set. In algorithm RG an adaptive sampling
process uses Bernoulli sampling for change detection in the data set. Further, in RG a novel
histogram partitioning approach called retroactive grouping is introduced to enhance the
accuracy of the end result.

> Goal II: When the histograms are used to answer workload of allowable queries.
Laplace noise accumulates (sequential composition) as the number of queried his-
togram bins increases in order to answer the workload (covering large ranges of do-
main values). However, if the answer to the workload can be constructed by finding
a linear combination of fewer bins, then the accuracy of the final answer will be sig-
nificantly improved.

Algorithms Boost, DPCube, PrivIree, CiTM and mIHP employ an approach, where the domain
ranges are hierarchically structured, typically in a tree structure. The intuition is, to find
the fewest number of internal nodes such that the union of these ranges equals the desired
range in the workload. To further improve the accuracy in the context of sequential com-
position, algorithm CiTM uses composition rule-based privacy budget optimization. Trans-
formation techniques such as wavelet transform (Privelet) and Fourier transform (EFPA) are
also used to model linear combination of domain ranges.

Another approach to reduce the accumulate noise in the context of universal histograms
is to contain the total noise below a threshold. In BMax the maximum noise variance of the
end result is contained within a threshold.

Furthermore, constraints are imposed in the output space of possible answers, which are
then verified in the post-processing step to identify more accurate answers in the output
space.

Preserving the dependency constraint is important for answering range queries over spa-
tial histograms. To this end, in algorithm PrisH, true distribution of the underlying data
set is learned from private answers to carefully chosen informative queries. Separately, to
estimate the tail distribution of the final noisy histogram, algorithm ¢-CumHisto uses some
prior distribution to reallocate count values.

TRANSACTIONS ON DATA PRIVACY 13 (2020)



SoK: Chasing Accuracy and Privacy, and Catching Both in Differentially Private

Histogram Publication

219

Category  Technique/Approach Algorithms  Notes
Bi-partite BPM
Bisection P-HP
Bisection IHP, mIHP
MODL co-clustering [103]] DPCocGen
Matrix decomposition Privelett
Weighted combination AC  Least Square Method
Retroactive Grouping RG  Thresholded
. Selecting Top k EFPA
Clustering & CiTM  Key/foreign-key
Relationships
Min  Query Overlap
SF  V-optimality
NF
AHP  V-optimality
(0,Q)-Histogram  V-optimality
T*  Equi-width
Frequency Calibration 0-CumHisto ~ Monotonicity Property
Hierarchical Consistency Opt
Least Square Minimization Boost
Consistency  Least Square Minimization DPCube
Check Realizable model CiTM  Linear-time Approximation
PMost  Least Norm Problem
Binary Tree Boost
kd-tree DPCube  V-optimality
Hierarchical Quadtree PrivTree
Decomposition  Query Tree CiTM  Correlation of i-Table
Model
Sequential Partitions mIHP  t-value
Reallocate Values f-CumHisto  Linear Regression,
. Powerlaw & Uniform
Learning distributions
L. Tfue Rescaling Weights PriSH  Query Absolute Error,
Distribution Dependency Constraints
Composition rule-based CiTM
Threshold-driven Release DSAT, DSFT  Adaptive-distance
Pri Qualifier, Fixed-distance
rivacy .
Budget . Q.uahfle.r i
Optimization Thr_eshold-drlven Release GGA  Fixed-distance Qualifier
Weighted BPM
Sampling Bernoulli Sampling RG
Data Recycling DRPP
Sorting AHP
Transformation Wavelet Transform Privelet
Fourier Transformation EFPA
Qualifying Weight PMost
Qualifying Source-of-noise BMax
Threshold  Qualifying Source-of-noise Tru
Sanitization AHP
Wavelet Thresholding Privelet*

Table 8: Categorization of techniques/approaches used by each algorithm for total noise
reduction. Additional qualifiers of each techniques are captured as notes.
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5.2.2 Dimension: Sensitivity Reduction

In Table 9} we summarize the distinct techniques/approaches of the state-of-the-art from
the point of view of reducing the global sensitivity.

Category Technique/Approach Algorithms Notes
Neighbor Relation Redefine CiTM  Propagation
Constraints
Edge Addition (Q’Q;'iismlg{r‘am Network Degree
Projection “cumbisto B ounded
Edge Deletion T Mutual
Connections
Bounded

Table 9: Categorization of techniques/approaches used by each algorithms for sensitivity
reduction. Additional qualifiers of each techniques are captured as notes.

In graph data sets, global sensitivity becomes unbounded, for example, change in a node
and its edges, in the worst case affects the whole structure (i.e involving all the nodes) of the
network under node differential privacy. Bounding the network degree is one of the common
approaches for containing the global sensitivity for analysis under node differential privacy.
Techniques, edge addition ((6,©)-Histogram, 6-CumHisto) and edge deletion (T*) are used to
bound the size of the graph. Consequently, the noise required to satisfy node differential
privacy will be reduced.

When there exists no standard neighborhood definition for the differential privacy guar-
antee in the light of correlated data structures. In the CiTM algorithm that operates on
relational databases with multiple relation correlations, the neighbor relation is redefined.

5.2.3 Dimension: Dimensionality Reduction

In Table [10, we summarize the distinct techniques/approaches of the state-of-the-art from
the point of view of reducing the data dimensions.

The most common approach to accuracy improvement in this dimension is to build sta-
tistical models that approximate the full dimensional distribution of the data set from
multiple set marginal distributions. Some of techniques to approximate joint distribution
of a data set are Bayesian Network (PrivBayes) and Copula functions (DPCopula). Further-
more, projection techniques from high-dimensional space to low-dimensional sub-spaces
are shown to improve accuracy as less noise is required to make the smaller set of low-
dimensional sub-spaces differentially private. Projection techniques found in the literature
are, feature hashing using the hashing trick (PeGS) and random projection based on the
Johnson-Lindenstrauss Lemma (DPPro).

In DPCopula, eigenvalue procedure is used in the post-processing stage to achieve addi-
tional gain in accuracy. Unexpectedly, reset-then-sample approach grouped under privacy
budget optimization algorithmic category appear in this dimension, because the PeGS.rs al-
gorithm supports multiple synthetic data set instances.
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Category Technique/Approach Algorithms Notes
Consistency check Eigenvalue Procedure [[104] DPCopula
Projection Hashing Trick [105] PeGS
Privacy Budget Reset-then-sample PeGS.1s
Optimization
Bayesian Network PrivBayes
Transformation Copula Functions DPCopula
Random Projection DPPro  Johnson-
Lindenstrauss
Lemma

Table 10: Categorization of techniques/approaches used by each algorithm for data dimen-
sionality reduction. Additional qualifiers of each techniques are captured as notes.

52.4 Summary

Figure [l summarizes the categorization of differentially private accuracy improving tech-
niques. Techniques identified in each accuracy improving dimensions are grouped into
specific categories. The algorithmic categories are further partially sub-divided by the in-
put data they support. Query answer relates to the type of release rather than to the input
data, but the assumption is that the other mentioned data types, they implicitly specify the
type of release.

The further the algorithmic category is located from the center of the circle, the more com-
mon is that category in that particular accuracy improvement dimension. Subsequently,
clustering is the most commonly employed category for the total noise reduction dimen-
sion. Interestingly, same set of categories of accuracy improving algorithms are employed
for dynamic data and bitmap strings, in the context of total noise reduction dimension.
Hierarchical decomposition, consistency check and learning true distribution are primarily
used in the context of releasing a histogram for answering workload of queries. It should
be noted that the consistency check technique is used in the dimensionality reduction di-
mension as well but the usage of the technique is conditional.
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Figure 4: Conceptualization of accuracy improving techniques in the context of differen-
tial privacy: Abbreviations: C: Clustering, CC: Consistency Check, HD: Hierarchical De-
composition, LTD: Learning True Distribution, NR: Neighborhood Redefine, P: Projection,
PBO: Privacy Budget Optimization, Thrs: Threshold, Trans: Transformation, Sa: Sam-
pling, So: Sorting.
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6 Discussion and Open Challenges

One limitation of this paper is that the scope of our SLR is limited to papers with empirical
results. We have chosen empirical measurement of accuracy, since it can provide a less
pessimistic understanding of error bounds, as opposed to analytical bounds. However, in
our analysis (Section [5) of the papers, we studied related theoretical aspects of accuracy
improvements and put the surveyed papers into context by tracing their origin, illustrated
in Figure[3| As such, we can guide the interested reader in the right direction, but we do
not provide an analysis of theoretical results.

Next (Section [6.1)), we identify possible future work, mainly related to composability of
the different techniques. It is not clear exactly which techniques compose, or how many
techniques from each place that can be used to achieve accuracy improvements. Hence,
open challenges include both coming up with new accuracy techniques for each place as
well as combining techniques in meaningful, composable ways. Last Section we list
the papers that were excluded as part of our qualitative analysis.

6.1 Composability of Categories

From the dimensions identified in our analysis, we continue by investigating how tech-
niques from different categories may be composed. We also connect the papers with the
place E] their algorithm operates on in Table

We believe a technique from one place is possible to compose with techniques from an-
other place, since the places are designed to be a sequential representation of the data anal-
ysis. An open challenge derived from Table [11]is boosting each algorithm’s accuracy by
adding more techniques, either in a place which does not yet have any accuracy improve-
ment, or together with the already existing techniques. For example, an algorithm that
has improvement in place B (post-processing) may be combined with place A, C and/or D.
Similarly, it may be possible to compose one technique from place B with another technique
also from place B.

Next, we will illustrate how composability is already achieved by giving a few examples
of how techniques are composed in the included papers.

Place A: Altering the Query

Altering the query targets sensitivity reduction, as sensitivity is a property of the query. Our
take away from the SLR is that there are mainly two tricks to altering the query:

1. When an analysis requires a high sensitivity query, replace the query with an approx-
imate query, or break the query down into two or more sub-queries.

2. Use sampling to avoid prematurely exhausting the privacy budget.

Item [1} For example, a histogram query is broken down into two separate queries: a
clustering technique based on the exponential mechanism and usually a Laplace counting
query, as in the case with Xu et al. [33] and consecutive work.

By breaking down the query, the sensitivity reduction can increase accuracy, but it needs to
be balanced against the source of accumulated noise that is introduced by multiple queries.
In particular, when breaking down a query, the privacy budget needs to be appropriately

“Places refers to different points in the workflow of a typical differentially private analysis, see Figure
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C D
Hay et al. [29]
Ding et al. [30]
Xiao et al. [31] v
Acs et al. [32]
Xu et al. [33]
Li et al. [34]
Lu et al. [35] v v
Park and Ghosh [36] v v
Xiao et al. [37]
Zhang et al. [38]
Zhang et al. [39]
Chen et al. [40] v
Lee et al. [41] v
Lietal [42] Vv
Day etal. [43] v v
Wang et al. [44]
Zhang et al. [45]
Benkhelif et al. [46] v
Doudalis and Mehrotra [47]
Kotsogiannis et al. [48] v v
Wang et al. [49]
Xu et al. [50]
Dingetal. [51]
Gao and Ma [52]
Ghane et al. [53] v
Lietal. [54]
Nie et al. [55] v v

SNENE
SNENEN

ENENEN

SN N N S NENENENEN

Table 11: Mapping the papers to each place where: A) Altering the query, B) Post-
processing, C) Change in mechanism, D) Pre-processing.

distributed between the sub-queries. For example, when breaking a histogram into a clus-
tering query and then a count query, one could choose to give more budget to the clustering
step to find a tighter histogram structure, but that would come at the cost of less accuracy
for the count query.

Item 2} When an analysis is done on dynamic data, it is possible to unintentionally include
the same data points in multiple queries, and ending up "paying’ for them multiple times.
Li et al. [42] mitigates this source of accumulated noise by deploying sampling. It is also
possible to use sampling for static data, for example, Delphi by Kotsogiannis et al. [48] could
be trained on a sample of the full data set, if no public training data is available.

Place B: Post-processing

Post-processing targets total noise reduction, usually by exploiting consistency checks or
other known constraints. Since post-processing is done on data that has been released by
a differentially private algorithm, post-processing can always be done without increasing
the privacy loss. However, post-processing can still decrease accuracy if used carelessly. In
our SLR, the main post-processing idea is:

1. Finding approximate solutions to get rid of inconsistencies through constrained infer-
ence [29].

TRANSACTIONS ON DATA PRIVACY 13 (2020)



SoK: Chasing Accuracy and Privacy, and Catching Both in Differentially Private
Histogram Publication 225

2. Applying consistency checks that would hold for the raw data.

Item [I} Boost is already being combined with several algorithms that release histograms,
for example NF and SF. ADMM is a similar, but more generic solution that has been applied
to more output types than just histograms. In fact, Lee et al. [41] claims ADMM can re-use
algorithms use for least square minimization, which means Boost should be possible to in-
corporate in ADMM. Consequently, we believe ADMM would compose with most algorithms
due to its generic nature.

Place C: Change in the Release Mechanism

Changing the release mechanism mainly targets total noise reduction. In the SLR, we found
the following approaches being used:

1. Test-and-release.
2. Sorting as an intermediary step.

Item [I} DSAT and DSFT uses thresholding to determine when to release data, as a way to
save the privacy budget. Thresholding is particularly useful for dynamic data, as it often
requires multiple releases over time. For example, adaptive or fixed thresholding can be
used for sensor data and trajectory data, effectively providing a way of sampling the data.

SF also uses a type of test-and-release when creating the histogram structure using the
exponential mechanism. The test-and-release approach means EM can be combined with
basically any other release mechanism, which is also what we found in the literature. We
believe the main challenge with EM is finding an adequate scoring/utility function, and
this is where we believe a lot of accuracy improvement will come from.

Item [2| SORTaki is designed to be composable with two-step algorithms that release his-
tograms, for example NF. The idea is that by sorting noisy values, they can group together
similar values that would otherwise not be grouped due to the bins not being adjacent.

Place D: Pre-processing

Pre-processing generally targets dimensionality reduction or total noise reduction. In our SLR,
we encountered the following types of pre-processing:

1. Encoding through projection/transformation.
2. Learning on non-sensitive data.

Item [1} Several algorithms project or transform their data, for example Privelet and EFPA.
Encoding can reduce both sensitivity and dimensionality by decreasing redundancy, and is
therefore especially interesting for multi-dimensional as well as high-dimensional, sparse,
data sets. However, lossy compression techniques can potentially introduce new sources of
noise, and therefore adds another trade-off that needs to be taken into account. Intuitively,
lossy compression is beneficial when the noise lost in the compression step is greater than
the proportion of useful data points lost. For example, sparse data may benefit more from
lossy compression than data that is not sparse.

Item 2} Delphi is a pre-processing step which uses a non-sensitive, public data set to build a
decision tree. In cases where public data sets are available, it could be possible to adopt the
same idea; for example learning a histogram structure on public data as opposed to spend-
ing budget on it. The caveat here is of course that the public data needs to be similar enough
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to the data used in the differentially private analysis, because otherwise this becomes an
added source of noise. Thus, learning from non-sensitive data introduces another trade-off
that is still largely unexplored.

6.2 Incomparable papers

We present a list of papers that were excluded during our qualitative analysis, and the
reason for why we decided to exclude them in Section 5} The reason for excluding papers
in the analysis step is that certain properties of their algorithms make them incomparable
with other algorithms.

[106]: The DP-FC algorithm does not consider the structure of a histogram a sensitive at-
tribute, and thus achieves a trivial accuracy improvement over other algorithms.

[107]: The APG algorithm does not perform differentially private clustering, and therefore
achieves better accuracy by relaxing the privacy guarantees compared to AHP, IHP
and GS.

[108]: The SC algorithm uses the ordering of the bins in order to calculate the cluster centers,
but does not perturb the values before doing so, and thus the order is not protected,
making their guarantees incomparable.

[109]: The Outlier-Histopub algorithm, similarly sorts the bin counts according to size,
without using the privacy budget accordingly to learn this information. The authors
claim that this type of sorting does not violate differential privacy, but due to the
fact that the output is determined based on the private data, the approach cannot be
0O-differentially private.

[110]: The ASDP-HPA algorithm does not describe the details of how their use of Autore-
gressive Integrated Moving Average Model (ARIMA) is made private, and thus we
cannot determine whether the entire algorithm is differentially private. Furthermore,
the details of how they pre-process their data set is not divulged, and it can thus not
be determined if the pre-processing violates differential privacy or not by changing
the query sensitivity.

[111]: The algorithm is incomplete, since it only covers the histogram partitioning, and does
not involve the addition of noise to bins. Furthermore, it is not clear whether they
draw noise twice using the same budget, or if they reuse the same noise for their
thresholds. As the privacy guarantee € cannot be unambiguously deduced, we do
not include their paper in our comparison.

[112]: The GBLUE algorithm generates a k-range tree based on the private data, where k
is the fanout of the tree. Since private data is used to decide on whether a node
is further split or not, it does not provide the same privacy guarantees as the other
studied algorithms.

[113]: The algorithm creates groups based on the condition that the merged bins guarantee
k-indistinguishability. Since this merge condition is based on the property of the data
it does not guarantee differential privacy on the same level as the other papers, so we
deem it incomparable.
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Further, in the analysis regarding dimensions of accuracy improvement techniques pre-
sented in Section 5| some algorithms such as ADMM, SORTaki and Pythia are excluded. The
rationale behind the exclusion is, these algorithms are not self contained, but nevertheless
improves accuracy of the differentially private answers when combined with other ana-
lyzed algorithms.

Efforts such as Pythia and DPBench [114], that provide practitioners a way to empirically
assess the privacy/accuracy trade-off related to their data sets are commendable. How-
ever, to effectively use the tool one needs to have some background knowledge of the right
combination of parameters to tune. In our analysis of the algorithms, we mapped out
the accuracy improvement techniques grouped by optimization goals and corresponding
query size. This knowledge will allow practitioners and researchers alike to think about
other places to explore for accuracy improvement, rather than finding the algorithms that
are based only on their data. Essentially, we provide an understanding to enable algorithm
design, as opposed to algorithm selection.

7 Conclusions

Motivated by scarcity of works that structure knowledge concerning accuracy improve-
ment in differentially private computations, we conducted a systematic literature review
(SLR) on accuracy improvement techniques for histogram and synthetic data publication
under differential privacy.

We present two results from our analysis that addresses our research objective, namely
to synthesize the understanding of the underlying foundations of the privacy/accuracy
trade-off in differentially private computations. This systematization of knowledge (SoK)
includes:

1. Internal/external positioning of the studied algorithms (Figure [B|and Table[?).

2. A taxonomy of different categories (Figure [) and their corresponding optimization
goals to achieve accuracy improvement: total noise reduction (Table [8), sensitivity re-
duction (Table[9) and data dimensionality reduction (Table [10).

What’s more, we also discuss and present an overview of composable algorithms accord-
ing to their optimization goals and category, sort-out by the places, in which they operate
(Section [6.1). Our intent is that these findings will pave the way for future research by
allowing others to integrate new solutions according to the categories. For example, our
places can be used to reason about where to plug in new or existing techniques targeting a
desired optimization goal during algorithm design.

From our overview of composability, we see that most efforts are focused on making
changes in the mechanism, and on post-processing. We observe that, altering the query in one
way or another, is not popular, and we believe further investigation is required to under-
stand which techniques can be adopted in this place.

Finally, although all algorithms focus on accuracy improvement, it is impossible to se-
lect the 'best” algorithm without context. Intuitively, newer algorithms will have improved
some property of an older algorithm, meaning that newer algorithms may provide higher
accuracy. Still, the algorithms are used for different analyses, which means not all algo-
rithms will be interchangeable. Secondly, many algorithms are data dependent, which
means that the selection of the ‘best” algorithm may change depending on the input data
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used, even when the analysis is fixed. Consequently, the ‘best” algorithm needs to be cho-
sen with a given data set and a given analysis in mind. The problem of choosing the ‘best’
algorithm when the setting is known is in fact addressed by Pythia.
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Table 12 — Continued from previous page

Citation Exclusion Criteria
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Blum et al. [65]
Blum et al. [163
Bohler et al. [164
Bousquet et al. [165]
Bowen and Liu [7
Bowen and Liu [166
Bowen and Liu [119]
Cao et al. [167]
Cao et al. [168]
Charest [169
Chen et al. [170]
Cormode et al. [171]
Dwork etal. [172]
Elliot [173]
Fan and Xiong [92
Fan and Xiong [174]
Garfinkel [175]
Garfinkel [176]
Gehrke et al. [129]
Gupta et al. [17
Hardt [178
Hu et al. [179
Hu etal. [180]
Jordon et al. [181]
Jorgensen et al. [182]
Kifer and Lin [183]
Kulkarni et al. [184]
Lee [185]
Li and Miklau [186]
Li et al. [187]
Li and Miklau [188] 1,2
Lietal. [8] 2,6
Continued on next page
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Table 13 — Continued from previous page

Citation

Exclusion Criteria

Li and Ma [189]

4

Lietal. [138

Li et al. [190]

Liu [191]

Liuetal. [192]

NN [N

Lu and Yu [193]

Machanavajjhala et al. [68

~

Matthews and Harel [194

N G
[o) e}

McClure and Reiter [195]

McClure [196]

Miille et al. [197]

Neel et al. [198]

O\ M| O — [

Park and Kim 199[]

—_
[e]

Ping et al. [200]

Rodriguez and Howe [201]

Shlomo [202]

Snoke and Slavkovic [203]

Snoke [204]

Triastcyn and Faltings [205]

Ullman [206]

Vilhuber et al. 207[]

Wang et al. [208

—_

~

~
a1

Wang et al. [209]

Weggenmann and Kerschbaum [210]

Xu et al. [211]

Yu [212]

Zhang [213]

Zhang et al. [214]

= Q1O O = =[N W =[O N O N~ NN

Zhou et al. [215]
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