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Abstract. LDP (Local Differential Privacy) has recently attracted much attention as a metric of data
privacy that prevents the inference of personal data from obfuscated data in the local model. How-
ever, there are scenarios in which the adversary wants to perform re-identification attacks to link the
obfuscated data to users in this model. LDP can cause excessive obfuscation and destroy the utility
in these scenarios because it is not designed to directly prevent re-identification. In this paper, we
propose a measure of re-identification risks, which we call PIE (Personal Information Entropy). The PIE
is designed so that it directly prevents re-identification attacks in the local model. It lower-bounds
the lowest possible re-identification error probability (i.e., Bayes error probability) of the adversary.
We analyze the relation between LDP and the PIE, and analyze the PIE and utility in distribution es-
timation for two obfuscation mechanisms providing LDP. Through experiments, we show that when
we consider re-identification as a privacy risk, LDP can cause excessive obfuscation and destroy the
utility. Then we show that the PIE can be used to guarantee low re-identification risks for the local
obfuscation mechanisms while keeping high utility.
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1 Introduction

With the widespread use of personal computers, mobile devices, and IoT (Internet-of-
Things) devices, a great amount of personal data (e.g., location data [91], rating history
data [1], browser settings [31]) are increasingly collected and used for data analysis. How-
ever, the collection of personal data can raise serious privacy concerns. For example, users’
sensitive locations (e.g., hospitals, stores) can be estimated from their location traces (time-
series location trails). Even if location traces are pseudonymized, they can be re-identified
(de-anonymized) to link location traces with user IDs [37, 56, 57]. An anonymized rating
dataset can also be de-anonymized to learn sensitive ratings of users [60].

DP (Differential Privacy) [27, 28] is a privacy metric that protects users’ privacy against
adversaries with arbitrary background knowledge, and is known as a gold standard for
data privacy. According to the underlying architecture, DP can be divided into the central-
ized DP and LDP (Local DP). The centralized DP assumes a centralized model, in which a
trusted data collector, who has access to all user’s personal data, obfuscates the data. On
the other hand, LDP assumes a local model, in which a user obfuscates her personal data

79



80 Takao Murakami et al.

by herself and sends the obfuscated data to a (possibly malicious or untrustworthy) data
collector. While all user’s personal data can be leaked from the data collector by illegal
access in the centralized model, LDP does not suffer from such data leakage. Thus LDP
has been recently studied in the literature [7, 19, 34, 45, 58, 63, 86] and has been adopted by
several industrial applications [24, 31, 77].

However, LDP is designed as a metric of data privacy that aims to prevent the inference
of personal data (i.e., guarantee the indistinguishability of the original data), and there are
scenarios in which we should consider user privacy that aims to prevent re-identification in
the local model. Below we present two examples of the scenarios.

The first example is an application that does not require user IDs. The main application of
LDP is estimating aggregate statistics such as a distribution of personal data [34, 45, 58, 86]
and heavy hitters [7,86]. In this case, what are needed are each user’s obfuscated data (e.g.,
noisy locations, noisy purchase history), and her user ID does not have to be collected. In
fact, some applications (e.g., Google Maps, Foursquare, YouTube recommendations) can be
used without requiring a user login. In such applications, the adversary (who can be either
the data collector or outsider) obtains only the obfuscated data, and wants to perform a
re-identification attack to identify the user who has sent the obfuscated data.

The second example is pseudonymization. Suppose a mobile application which sends both
the user ID and personal (or obfuscated) data to the data collector. The data collector can
pseudonymize all personal (or obfuscated) data to reduce the risks to the users, as described
in GDPR [78]. In this case, an outsider adversary who obtains the personal (or obfuscated)
data via illegal access has to re-identify the user. Despite the importance of re-identification
risks in the local model, a metric of re-identification risks in this model has not been well
established (see Section 2 for details).

One might think that LDP with a small privacy budget ε (e.g., ε ≤ 1 [51]) is enough to pre-
vent re-identification attacks because it guarantees the indistinguishability of the original
personal data. In other words, if personal data are obfuscated so that the adversary cannot
infer the original data, then it seems to be impossible for the adversary to re-identify the
user. This is indeed the case – we also show that LDP with a small privacy budget ε pre-
vents re-identificatiion in our experiments. However, the real issue of LDP is that it is not
designed to directly prevent re-identification, and it makes the original data indistinguish-
able from any other possible data in the data domain. This can cause excessive obfuscation
and destroy the utility, as shown in this paper.

Our Contributions. In this paper, we make the following contributions:

1) PIE (Personal Information Entropy). We propose a measure of re-identification risks in
the local model, which we call the PIE (Personal Information Entropy). The PIE is given by
the mutual information between a user and (possibly obfuscated) personal data. The PIE
is applicable to any kind of personal data, and does not specify an identification algorithm
used by an adversary. The PIE lower-bounds the lowest possible re-identification error
probability (i.e., Bayes error probability) of the adversary. We also propose a privacy met-
ric called PIE privacy that upper-bounds the PIE irrespective of the adversary’s background
knowledge. We also show that pseudonymization (random permutation) alone guarantees a
high re-identification error probability in some cases using our PIE, whereas random per-
mutation alone cannot guarantee DP even using its average versions (e.g., Kullback-Leibler
DP [6, 21], mutual information DP [21]) or recently proposed shuffling techniques [5, 30].

2) Theoretical Analysis of the PIE for Obfuscation Mechanisms. We analyze the PIE for
two existing local obfuscation mechanisms: the RR (Randomized Response) for multiple
alphabets [45] and the generalized version of local hashing in [86], which we call the GLH
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(General Local Hashing). Both of them are mechanisms providing LDP, and can be used to
examine the relationship between LDP and the PIE.

We first show that our PIE privacy is a relaxation of LDP; i.e., any LDP mechanism pro-
vides PIE privacy, hence upper-bounds the PIE. Then we show that this general upper-
bound on the PIE for any LDP mechanism is loose, and show much tighter upper-bounds
on the PIE for the RR and GLH.

3) Theoretical Analysis of the Utility for Obfuscation Mechanisms. We analyze the util-
ity of the RR and GLH for given PIE guarantees. Here, we consider discrete distribution
estimation [2,3,34,45,46,58], where personal data take discrete values, as a task for the data
collector.

In our utility analysis, we show that our PIE privacy has a very different implication for
utility and privacy than LDP. Specifically, let X be a finite set of personal data. Then the
GLH reduces the size |X | of personal data to g (i.e., dimension reduction) via random
projection. When we use LDP as a privacy metric, the optimal value of g is given by:
g = eε + 1 [86], where ε is a privacy budget of LDP. In contrast, we show that when we
use PIE privacy as a privacy metric, a larger g provides better utility. In other words, we
show an intuitive result that compressing the personal data with a smaller g results in the loss of
utility in our privacy metric. This result is caused by the fact that PIE privacy prevents the
identification of users, whereas LDP prevents the inference of personal data.

4) Evaluating the PIE for Obfuscation Mechanisms. We evaluate the privacy and utility
the RR and GLH. We first show that LDP destroys utility when the privacy budget ε is
small. For example, for distribution estimation of the most popular 20 POIs (Point-of-
Interests) in the Foursquare dataset [89], the relative error of the RR was 1.05 (> 1) even
when ε = 10 (which is considered to be still fairly large [51]). In other words, LDP fails to
guarantee meaningful privacy and utility for this task. This comes from the fact that LDP
is not designed to directly prevent re-identification attacks.

We next show that the PIE can be used to guarantee a low re-identification error while
keeping high utility. For example, when we used the PIE to guarantee the re-identification
error probability larger than 0.92, the relative error of the RR for the top-20 POIs was 0.10
(� 1). This suggests that when we consider re-identification as a privacy risk, we should
design a privacy metric that directly prevents re-identification attacks.

5) PSE (Personal Identification System Entropy). As explained above, we show upper-
bounds on the PIE for the RR and GLH. Then a natural question would be “how tight are
these upper-bounds?” To answer to this question, we introduce the PSE (Personal Identi-
fication System Entropy), which is a lower-bound on the PIE and is equal to the PIE under
some conditions. The PSE is designed to be easily calculated by specifying an identifica-
tion algorithm. We show through experiments that our upper-bounds on the PIE for the
RR and GLH are close to the PSE, which indicates that our upper-bounds are fairly tight
and cannot be improved much.

One additional interesting feature of the PSE is that it can be used to compare the identifi-
ability of personal data such as location traces and rating history with the identifiability of
biometric data such as a fingerprint and face. Nowadays biometric authentication is widely
used for various applications such as unlocking a smartphone, banking, and physical ac-
cess control. Our PSE provides a new intuitive understanding of re-identification risks by
comparing two different sources of information.

Note that we do not consider privacy risks or obfuscation (e.g., adding DP noise) for
biometric data. Our interest here is intuitive understanding of the identifiability of personal
data (e.g., locations, rating history) through the comparison with biometric data.
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For example, we show that a location trace with at least 500 locations has higher identifia-
bility than the face matcher in [61]. We also note that the face dataset in [61] has lower errors
than the best matcher in the FRPC (Face Recognition Prize Challenge) 2017 [39] where face
images were collected without tight quality constraints. In other words, we reveal the fact
that the location trace is more identifiable than the face matcher that won the 1st place in the FRPC
2017. We believe that this result is of independent interest.
Remark. Our PIE privacy is based on the mutual information, which quantifies the average
amount of information about a user through observing (possibly obfuscated) personal data.
Thus our PIE privacy is an average privacy notion, as with the KL (Kullback-Leibler)-DP
[6, 21] and the mutual information DP [21]. Average privacy notions have also been used
in some studies on location privacy [65, 69, 71].

The caveat of the average privacy notion is that it may not guarantee the indistinguisha-
bility for every user; e.g., even if it guarantees the re-identification error probability larger
than 0.99, at most 1% of users may be re-identified. Nevertheless, there are application
scenarios in which the average privacy notion is quite useful in practice. One example is
a prioritization system that determines, among several defenses, which one should be (or
should not be) used. Another example is an alerting system adopted in [18], which notifies
engineers if re-identification risks exceed pre-determined limits. Thus, we use the average
privacy notion as a starting point.

We also note that a worst-case privacy notion (e.g., min-entropy [72]) can be used to guar-
antee stronger privacy for every user. We leave extending our PIE privacy to the worst-case
notion for future work (Section 6 describes some open questions in this research direction).
Basic Notations. Let N, R, and R≥0 be the set of natural numbers, real numbers, and non-
negative real numbers, respectively. For a ∈ N, let [a] = {1, 2, · · · , a}. For random variables
A and B, let I(A;B) be the mutual information between A and B. For two distributions
p and q, let D(p||q) be the KL (Kullback-Leibler) divergence [20]. We simply denote the
logarithm with base 2 by log. We use these notations throughout this paper.

2 Related Work

In this section, we review the previous work. Section 2.1 describes LDP [26] and other
privacy metrics. Section 2.2 explains the RR for multiple alphabets [45] and the GLH [7].

2.1 Privacy Metrics

LDP. Let X be a finite set of personal data, and Y be a finite set of obfuscated data. Let
Q be an obfuscation mechanism (a.k.a. masking method [80]), which maps personal data
x ∈ X to obfuscated data y ∈ Y with probability Q(y|x). Then LDP is defined as follows:

Definition 1 (ε-LDP). Let ε ∈ R≥0. An obfuscation mechanism Q provides ε-LDP if for any
x, x′ ∈ X and any y ∈ Y ,

Q(y|x) ≤ eεQ(y|x′). (1)

Intuitively, LDP guarantees that the adversary who obtains y cannot determine whether
it comes from x or x′ for any pair of x and x′ in X with a certain degree of confidence. The
parameter ε is called the privacy budget. When the privacy budget ε is close to 0, all of
the data in X are almost equally likely. Thus LDP strongly protects y when ε is small; e.g.,
ε ≤ 1 [51].
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Other Privacy Metrics. To date, numerous variants of DP (or LDP) have been proposed
to provide different types of privacy guarantees. Examples are: Pufferfish privacy [48],
dx-privacy [16], Rényi DP [54], concentrated DP [29], mutual information DP [21], person-
alized DP [44], utility-optimized LDP [58], and capacity-bounded DP [17]. A recent SoK
paper proposed a systematic taxonomy of relaxations of DP, and classified the relaxations
into seven categories based on which aspect of DP was modified [23].

Our PIE privacy is also a variant of DP because it is a relaxation of LDP, as shown in
Sections 4.1. Our PIE privacy differs from existing variants of DP in that PIE privacy aims
at preventing re-identification attacks. In this regard, PIE privacy is different from any
dimension of seven categories in the SoK paper [23].

Our PIE and PSE are also related to quantitative information flow [4, 10, 65, 72], where the
amount of information leakage is measured by the mutual information or entropy. In par-
ticular, our PSE is closely related to a recent study [65], which uses the mutual information
between a user ID and a re-identified user ID as a measure of re-identification risks.

Our PSE differs from [65] in that the PSE is given by the mutual information between a
user ID and a score vector (vector consisting of similarities or distances for all users) calcu-
lated by the adversary, rather than the re-identified user ID. We use the score vector because
it contains much richer information than the identified user ID (this is well known in bio-
metrics; e.g., see [66]). We also show that although the PSE is upper-bounded by the PIE,
the PSE is equal to the PIE under some conditions (Section 3.2). This property is very useful for
evaluating how tight an upper-bound on the PIE is. In fact, we show that our upper-bounds
on the PIE for the RR and GLH are close to the PSE in our experiments (Section 5). In contrast,
it is difficult to evaluate the upper-bounds on the PIE using the re-identification user ID
because it contains much less information. We also note that a score vector enables us to
output a list of k ∈ [n] users whose similarities (resp. distance) are the highest (resp. lowest)
as an identification result.

2.2 Obfuscation Mechanisms

RR for Multiple Alphabets. The RR (Randomized Response) was originally introduced
by Warner for binary alphabets [87]. Kairouz et al. [45] studied the RR for |X |-ary alphabets.

Given ε ∈ R≥0, let QRR be the ε-RR for |X |-ary alphabets. In the ε-RR, the output range is
identical to the input domain; i.e., |X | = |Y|. Given personal data x ∈ X , the ε-RR outputs
obfuscated data y ∈ X with probability:

QRR(y|x) =

{
eε

|X |+eε−1 (if y = x)
1

|X |+eε−1 (otherwise).
(2)

By (1) and (2), the ε-RR provides ε-LDP.
Note that the ε-RR is a kind of PRAM (Post-RAndomization Method) [53, 76, 80], which

replace a category x ∈ X with another category y ∈ X according to a given transition
matrix (Q can be viewed as a transition matrix), and that there is a connection between the
literature of DP and that of PRAM. For example, Marés and Shlomo [53] consider a PRAM
transition matrix whose diagonal values do not exceed 0.75 to reduce privacy disclosure
risks. When ε = 1 (which is considered to be acceptable in the literature of DP [51]) in the
ε-RR, the diagonal values in QRR are smaller than 0.73 for any |X | ≥ 2 (by (2)).

GLH. Bassily and Smith [7] proposed an obfuscation mechanism based on random projec-
tion that maps personal data x ∈ X to a single bit. Wang et al. [86] called this mechanism
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the BLH (Binary Local Hashing), and generalized it so that x ∈ X is mapped to a value in
[g], where g ∈ N. We call this generalized mechanism the GLH (General Local Hashing).

The GLH consists of the following two steps: (i) apply random projection to x ∈ X , and
then (ii) perturb the data using the RR for multiple alphabets. Formally, let H = {h : X →
[g]} be a universal hash function family [13]; i.e., for any distinct x and x′ in X and a hash
function h chosen uniformly at random inH,

Pr[h(x) = h(x′)] ≤ 1

g
.

Given ε ∈ R≥0, let QGLH be the (g, ε)-GLH. The (g, ε)-GLH is an obfuscation mechanism
with the input alphabet X and the output alphabets Y = (H, [g]). Given x ∈ X , the (g, ε)-
GLH randomly generates a hash function h from H, and outputs (h, y) ∈ Y with probabil-
ity:

QGLH ((h, y)|x) =

{
eε

g+eε−1 (if y = h(x))
1

g+eε−1 (otherwise).
(3)

By (1) and (3), the (g, ε)-GLH provides ε-LDP. Wang et al. [86] found that for a fixed ε, the
value of g that minimizes the variance in distribution estimation is given by: g = eε + 1.

3 Personal Information Entropy

We propose the PIE (Personal Information Entropy) as a measure of re-identification risks
in the local model. We first describe frameworks for obfuscation and identification as-
sumed in our work in Section 3.1. Then in Section 3.2, we introduce the PIE and a pri-
vacy metric called PIE privacy, which upper-bounds the PIE. We also introduce the PSE
(Personal Identification System Entropy), which lower-bounds the PIE by specifying an
identification algorithm. Finally we show several basic properties of the PIE in Section 3.3.

3.1 Obfuscation/Identification Framework

Framework. Figures 1 and 2 show an obfuscation framework and identification frame-
work, respectively. We also show in Table 1 the notations used in this paper. Let Ω be a
finite set of all human beings, and U ⊆ Ω be a finite set of users who use a certain appli-
cation; e.g., location-based service, recommendation service. Let n ∈ N be the number of
users in U , and ui ∈ U be the i-th user; i.e., U = {u1, · · · , un}.

In the obfuscation phase, a user obfuscates her personal data by herself using an obfusca-
tion mechanism Q in her device, and sends the obfuscated data to a data collector. Let U ,
X , and Y be random variables representing a user in U , personal data in X , and obfuscated
data in Y , respectively.

UserU is randomly generated from some distribution over U , which can be either uniform
or non-uniform. Let pU be a distribution of U ; i.e., pU (ui) = Pr(U = ui). Note that pU is a
prior distribution an adversary has before observing Y . In other words, pU is a kind of the
adversary’s background knowledge. For example, suppose that each user sends a single
obfuscated datum to a data collector, and that Alice’s obfuscated data Y is leaked to the
adversary. In this case, the prior distribution pU for this adversary is uniform over U ; i.e.,
pU (ui) = 1

|U| for any ui ∈ U . If some heavy users send obfuscated data many times and the
adversary knows this fact, then U is non-uniformly distributed.
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Figure 1: Framework for obfuscation. Our PIE is built upon this obfuscation framework.
The PIE does not specify any identification algorithm.

�������	

�
	������ℱ

������������

�

����
���������������

�
�
������

�

��������

�
	�������

�������

��������������������
��

 !�������������

�

��������	
������
��

Figure 2: Framework for identification. A score vector s = (s1, · · · , sn) ∈ Rn consists of
a numerical score (similarity or distance) si ∈ R between obfuscated data Y and auxiliary
information ri of user ui. Our PSE is built upon this identification framework.

Table 1: Notations in this paper.
Symbol Description
U Finite set of users.
X Finite set of personal data.
Y Finite set of obfuscated data.
R Finite set of auxiliary data.
n Number of users in U (n ∈ N).
ui i-th user (ui ∈ U).
ri Auxiliary information of user ui.
si Score of user ui (si ∈ R).
s Score vector (s = (s1, · · · , sn) ∈ Rn).
U Random variable representing a user in U .
X Random variable representing personal data.
Y Random variable representing obfuscated data.
S Random variable representing a score vector.
pU Distribution of U .
pX|U=ui

Distribution of X given U = ui.
pU,X Joint distribution of U and X .
Q Obfuscation mechanism.
F Matching algorithm.
G Decision algorithm.
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Given U = ui, personal data X is randomly generated from some distribution over X .
Let pX|U=ui

be a distribution of X given U = ui; i.e., pX|U=ui
(x) = Pr(X = x|U = ui). If

personal data X is uniquely determined given user ui (i.e., 4-digit PIN of Alice is “3928”),
then pX|U=ui

is a point distribution that has probability 1 for a single data point. Otherwise
(e.g., Alice may visit many locations), pX|U=ui

is not a point distribution.
Let pU,X be a joint distribution of U and X ; i.e., pU,X(ui, x) = Pr(U = ui, X = x). Note

that pU,X(ui, x) = pU (ui)pX|U=ui
(x). As with pU , pU,X is also a kind of the adversary’s

background knowledge. Our PIE depends on pU,X , but our PIE privacy does not depend
on pU,X , as described in Section 3.2 in detail.

Given X = x, obfuscated data Y is randomly generated using an obfuscation mechanism
Q, which maps x to y ∈ Y with probability Q(y|x). Examples of Q include the randomized
response [45,87], GLH [86], and RAPPOR [31]. If an obfuscation mechanism Q is not used,
then Y = X . Then the data collector estimates some aggregate statistics; e.g., histogram,
heavy hitters.

Our PIE is built upon the obfuscation framework in Figure 1, and is given by the mutual
information between U and Y , as described in Section 3.2. Therefore, the PIE does not
specify any identification algorithm.

On the other hand, our PSE is designed to evaluate a lower-bound on the PIE through
experiments by specifying an identification algorithm. The PSE is built upon the identifi-
cation framework in Figure 2, where an identification system comprises two algorithms: a
matching algorithm and decision algorithm. These algorithms are widely used for re-identification
attacks in privacy literature [35, 37, 56, 57, 60, 69, 70].

In the identification phase, the matching algorithm takes as input obfuscated data Y and
some auxiliary information of user ui, and outputs a numerical score for ui. The auxiliary
information is background knowledge about user ui the system possesses. The score is
either a similarity or distance between the obfuscated data Y and auxiliary information of
ui. A large similarity (or small distance) indicates that it is highly likely that Y belongs to
ui.

For the auxiliary information, we can consider two possible models: the maximum-knowledge
model and partial-knowledge model [25, 67]. The maximum-knowledge model assumes
a worst-case scenario (though it may not be realistic). Specifically, this model assumes
that the original personal data X is used as auxiliary information. The partial-knowledge
model considers a scenario where the adversary does not know the original personal data.
For example, the auxiliary information in this model can be locations or video browsing
history (other than X) disclosed by the users via SNS (e.g., Foursquare, Facebook). The de-
anonymization attack against the Netflix Prize dataset [60] also assumes that the adversary
knows only a little bit about a user’s rating history (e.g., two or three ratings per user) as
auxiliary information, and therefore falls into the partial-knowledge model.

Formally, letR be the set of auxiliary information, and ri ∈ R be auxiliary information of
user ui. Let F : Y × R → R be the matching algorithm, which takes as input obfuscated
data y ∈ Y and auxiliary information ri ∈ R, and outputs a score F(y, ri) ∈ R. Examples
of F include the algorithms based on the Markov model [37, 56, 57, 70], TF-IDF [35], and
the cosine similarity measure [60]. Let si ∈ R be a score of user ui; i.e., si = F(y, ri). Let
s = (s1, · · · , sn) ∈ Rn be a score vector, and S be a random variable representing a score
vector.

The decision algorithm decides who the user is based on a score vector. Formally, let
G : Rn → U be the decision algorithm, which takes a score vector s ∈ Rn as input and
outputs an identified user ID G(s) ∈ U . Typically, the decision algorithm G outputs a user
ID whose similarity (resp. distance) is the highest (resp. lowest) [9, 35, 37, 43, 56, 57, 60, 70].
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We refer to this as a best score rule. The decision algorithm may also output a list of k ∈ [n]
users whose similarities (resp. distance) are the highest (resp. lowest).
Interpretation as Biometric Identification. Readers might have noticed that the frame-
works in Figures 1 and 2 include biometric identification as a special case. Specifically,
the obfuscation mechanism Q can be interpreted as a feature extractor in the context of
biometrics. The auxiliary information r1, · · · , rn can be interpreted as biometric templates
enrolled in the database. The matching algorithm and decision algorithm are commonly
used in biometric identification [9, 43]. Since our PSE is built on these frameworks, it can
also be applied to measure the identifiability of biometric data.

We emphasize again that we do not consider privacy risks or obfuscation (e.g., adding DP
noise) for biometric data. Instead, we provide a new perspective about the identifiability
of personal data through the comparison with another source of information; e.g., the best
face matcher in the prize challenge, as described in Section 1.

3.2 PIE and PSE

PIE. We now introduce the PIE (Personal Identification Entropy) of user U obtained through
obfuscated data Y . Specifically, we define the PIE as the mutual information between U
and Y :

PIE = I(U ;Y ) (bits). (4)

Note that traditional re-identification measures such as the re-identification rate [37, 56,
57] specify an identification algorithm used by an adversary. However, even if the re-
identification rate is low for the specific algorithm, the re-identification rate might be high
for another algorithm used by the adversary. In contrast, the PIE does not specify the iden-
tification algorithm, and therefore is robust to the change of the identification algorithm. It
is also robust to an unknown algorithm that may be used by the adversary in future.

However, we specify a distribution pU,X to calculate I(U ;Y ) in (4). When I(U ;Y ) is close
to 0, almost no information about the user U is obtained through the obfuscated data Y .
Thus it is desirable to make I(U ;Y ) small to prevent identification for any distribution
pU,X . Based on this, we define the notion called (U , α)-PIE privacy:

Definition 2 ((U , α)-PIE privacy). Let U ⊆ Ω and α ∈ R≥0. An obfuscation mechanism Q
provides (U , α)-PIE privacy if

sup
pU,X

I(U ;Y ) ≤ α (bits). (5)

(U , α)-PIE privacy guarantees that the PIE is upper-bounded by α for a user set U . Since
the inequality (5) holds for any distribution pU,X , the PIE is upper-bounded by α irrespective
of the adversary’s background knowledge. In other words, PIE privacy does not specify an
identification algorithm nor the adversary’s background knowledge, hence is robust to the
change of the identification algorithm or the adversary’s background knowledge.

Note that although (U , α)-PIE privacy specifies a user set U , we show in Section 4 that LDP
mechanisms Q such as the RR and GLH provide (U , α)-PIE privacy for any U with |U| = n,
where α depends on n. Therefore, each user only has to know the number of users n in the
application to obfuscate her personal data with PIE guarantees, and does not have to know
who else are using the application. We assume that the number of users n is published by
the data collector in advance.
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The parameter α plays a role similar to the privacy budget ε in LDP. We explain how to set
α in Section 3.3. We also show some basic properties of (U , α)-PIE privacy in Section 3.3.
We show that (U , α)-PIE privacy is a relaxation of ε-LDP in Section 4.1.

Cuff and Yu [21] introduced the mutual information DP, which is a relaxation of DP using
the mutual information. In the local privacy model, the notion in [21] can be expressed as:
I(X;Y ) ≤ α. We call this notion MI-LDP (Mutual Information LDP). MI-LDP aims to prevent
the inference of X , as with LDP. In contrast, PIE privacy aims to prevent the identification
of U . This difference is significant. In fact, we show in Sections 4.4 and 4.5 that our PIE
privacy has a very different implication for utility and privacy than LDP.
PSE. In Section 4, we show that LDP mechanisms Q such as the RR and GLH provide PIE
privacy, which upper-bounds the PIE. To evaluate how tight our upper-bounds are, we also
introduce the PSE (Personal Identification System Entropy), which provides a lower-bound on
the PIE by specifying an identification algorithm.

Specifically, we define the PSE as the mutual information between a user U and a score
vector S:

PSE = I(U ;S) (bits). (6)

It is difficult to calculate the PIE in (4) through experiments, especially when Y is in the
high-dimensional feature space. On the other hand, the PSE can be easily calculated based
on the theoretical results in [74]. Therefore, we use (U , α)-PIE privacy to guarantee that the
PIE is less than or equal to α irrespective of the adversary’s background knowledge, and
use the PSE to evaluate how tight α is. Note that a different identification algorithm leads
to a different value of the PSE. In our experiments, we use an identification algorithm based
on the Markov chain model [37, 56, 57, 70] to maximize the PSE (for details, see discussion
after Proposition 4).

Below we explain how to calculate the PSE. Let fG (resp. fI ) be a one-dimensional dis-
tribution of scores (similarities or distances) output by the matching algorithm F when
the obfuscated data and the auxiliary information belong to the same user (resp. different
users). We refer to fG as a genuine score distribution, and fI as an impostor score distribu-
tion in the same way as biometric literature [9, 43].

Then I(U ;S) converges to the KL divergence [20] between fG and fI as n increases:

Theorem 3 (Theorem 6 in [74]). Let fG be a genuine score distribution and fI be an impostor
score distribution (both fG and fI are one-dimensional). Then

I(U ;S)→ D(fG||fI) (n→∞). (7)

Theorem 3 is proved in [74] when Y is a biometric feature. Theorem 3 means that the PSE
converges to the KL divergence D(fG||fI) as the number of users n increases. In our exper-
iments, we estimate D(fG||fI) by the generalized k-NN estimator [85], which is asymptot-
ically unbiased; i.e., it converges to the true value as the sample size increases.

The following proposition shows the relation between the PIE and PSE:

Proposition 4 (PIE and PSE). For any matching algorithm F and any auxiliary information
r1, · · · , rn,

I(U ;S) ≤ I(U ;Y ) (8)

with equality if and only if U , S, and Y form the Markov chain U → S → Y (i.e., S is a sufficient
statistic for U ).
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Figure 3: Graphical model of user U , obfuscated data Y , auxiliary information R, and score
vector S.

Proof. Let R be a random variable representing the auxiliary information (r1, · · · , rn). By
Figures 1 and 2, U , Y , R, and S are represented as a graphical model in Figure 3. Note
that U (unknown user ID) is generated from pU independently of R, X is generated from
pX|U=ui

, and then Y is generated using Q (as described in Section 3.1). Therefore, R is
independent of both U and Y . Y is called head-to-tail with respect to the path from U to
S [8]. After we observe Y , a path from U to S is blocked. Since the head-to-tail node blocks
the path, U and S are conditionally independent given Y [8]; i.e., U , Y , and S form the
Markov chain U → Y → S.

Then by the data processing inequality [20], which states that post-processing cannot in-
crease information, (8) holds with equality if and only if U → S→ Y .

Proposition 4 states that the PIE can be lower-bounded by the PSE. In addition, the PSE is
equal to the PIE in some cases. For example, let qi be a distribution of obfuscated data y ∈ Y
for user ui ∈ U ; i.e., qi(y) is the likelihood that y belongs to ui. Then the equality in (8)
holds if the adversary uses the likelihood qi(y) as a similarity for user ui; i.e., si = qi(y). (In
this case, qi(y) depends on ui only through si. Then by the Fisher-Neyman factorization
theorem [50], U → S → Y .) In other words, if the adversary knows a generative model of
Y given U = ui, she can use it to achieve PSE = PIE; otherwise, the PSE may be smaller
than the PIE.

In Section 4, we prove upper-bounds on the PIE for the RR and GLH. Then in our exper-
iments, we estimate qi(y) by assuming the Markov chain model [37, 56, 57, 70], and used it
as si. We show that the PSE for this adversary is close to our upper-bounds on the PIE.
BSE. The PSE includes a measure of identifiability for biometric data as a special case.
Specifically, the BSE (Biometric System Entropy) is defined in [74] as the mutual informa-
tion I(U ;S) in the case where Y is a biometric feature. Thus, the BSE is a special case of the
PSE in the case where Y in (6) is a biometric feature.

Based on this, we compare the identifiability of personal data (e.g., location data, rating
history) with that of biometric data (e.g., fingerprint, face) using the PSE in our experi-
ments.

3.3 Basic Properties of the PIE

Here we show several basic properties of the PIE (or PIE privacy).
Privacy Axioms. Kifer and Lin [47] propose that any privacy definition should satisfy
two privacy axioms: post-processing invariance and convexity. We first show that (U , α)-PIE
privacy in Definition 2 provides these privacy axioms:

Theorem 5 (Post-processing invariance). Let n ∈ N and α ∈ R≥0. Let Q an obfuscation
mechanism. Let λ be a randomized algorithm whose input space contains the output space of Q
and whose randomness is independent of both the personal data and the randomness in Q. If the
obfuscation mechanism Q provides (U , α)-PIE privacy, then λ ◦Q provides (U , α)-PIE privacy.
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Theorem 6 (Convexity). Let n ∈ N and α ∈ R≥0. Let Q1 and Q2 be obfuscation mechanisms
that provide (U , α)-PIE privacy. For anyw ∈ [0, 1], let Qw an obfuscation mechanism that executes
Q1 with probability w and Q2 with probability 1− w. Then Qw provides (U , α)-PIE privacy.

The proofs are given in Appendix A. Theorem 5 guarantees that post-processing, which
can be performed by a data collector or an adversary, cannot break (U , α)-PIE privacy. The-
orem 6 allows users to randomly choose which obfuscation mechanism to use.
Identification Error. We can use PIE privacy to lower-bound the lowest possible re-identification
error probability by specifying the prior distribution pU . Specifically, assume an adversary
who has a prior distribution pU and attempts to identify a user U based on a score vector
S. Let βU ∈ [0, 1] and βU |S ∈ [0, 1] be the following probabilities:

βU = 1−max
ui∈U

Pr(U = ui)

βU |S = 1− ES

[
max
ui∈U

Pr(U = ui|S)

]
,

where for a ∈ R, ES[a] represents the expectation of a over S. βU (resp. βU |S) is the Bayes
error probability before (resp. after) observing S. In other words, βU and βU |S are the lowest
possible identification error probabilities for any classifier. Then βU |S is lower-bounded by
the PSE and PIE:

Proposition 7 (Bayes error, PSE, and PIE).

βU |S ≥ 1 +
I(U ;S) + 1

log(1− βU )
≥ 1 +

I(U ;Y ) + 1

log(1− βU )
. (9)

If U is uniformly distributed, then

βU |S ≥ 1− I(U ;S) + 1

log n
≥ 1− I(U ;Y ) + 1

log n
. (10)

Proof. The first inequality in (9) is the generalized Fano’s inequality by Han and Verdú [40].
By (8), the second inequality in (9) holds (note that log(1−βU ) is negative). If U is uniform,
then βU = 1− 1

n . Therefore, (10) holds.

Corollary 8 (Bayes error and PIE privacy). Let U ⊆ Ω and α ∈ R≥0. If an obfuscation mecha-
nism Q provides (U , α)-PIE privacy, then

βU |S ≥ 1− α+ 1

log(1− βU )
. (11)

If U is uniformly distributed, then

βU |S ≥ 1− α+ 1

log n
. (12)

Corollary 8 is immediately derived from Definition 2 and Proposition 7. Corollary 8 means
that (U , α)-PIE privacy provides an absolute guarantee about the posterior error probability
as a function of α and the prior error probability. Given a required identification error
probability, we can use Corollary 8 to derive α that satisfies the requirement.

For example, assume that there are n = 106 users in a certain application and each user
sends a single personal datum. In this case, we can assume that pU is uniform, as described
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in Section 3.1. If we require βU |S > 0.8 (resp. 0.5), then we should set α < 2.07 (resp. 6.21).
In our experiments, we also evaluate how tight the lower-bounds in Proposition 7 (i.e., (9)
and (10)) are.

Remark. As described in Section 3.2, PIE privacy is a privacy metric that does not depend
on the adversary’s background knowledge. On the other hand, (11) in Corollary 8 depends
on the prior Bayes error probability βU , hence depends on the prior distribution pU of the
adversary.

Nevertheless, we emphasize that Corollary 8 is useful because we can make a reasonable
assumption about the prior distribution pU in many practical applications; e.g., if each user
sends a single personal datum, then the prior distribution pU is uniform, as described in
Section 3.1.

PIE and Obfuscation Mechanism. Finally, we show the relation between the PIE and the
obfuscation mechanism Q. The PIE is a measure of leakage between U and Y , whereas Q
transforms X into Y . The following proposition provides a simple guideline on when to
use Q to prevent re-identification:

Proposition 9 (PIE and obfuscation mechanism).

I(U ;Y ) ≤ min{I(U ;X), I(X;Y )}. (13)

Proof. U , X , and Y form the Markov chain U → X → Y . Then by the data processing
inequality [20], (13) holds.

Proposition 9 states that we do not need to use Q when I(U ;X) is small. For example, as-
sume that there are n = 108 users in a certain application. Each user sends a single (possibly
obfuscated) personal datum; i.e., U is uniform for the adversary. Here the personal datum
is his/her income (dollars) discretized as in [81]: 0, [1, 14999], [15000, 29999], [30000, 60000],
or [60000,∞) (i.e., five categories). The data collector pseudonymizes (randomly permu-
tates) the personal or obfuscated data of all users, as described in Section 1. Consider the
risk of re-identification.

In this example, even if Q is not used (i.e., Y = X), I(U ;Y ) = I(U ;X) ≤ H(X) ≤
log 5. Then by (10), βU |S ≥ 0.88. This means that pseudonymization (random permutation)
alone achieves (U , log 5)-PIE privacy and fairly prevents the risk of re-identification in this
case. More generally, pseudonymization alone prevents re-identification when |X | is small.
Although we assume that U is uniform in the above example, we can also make a similar
argument even whenU is non-uniform. For example, if n = 108, |X | = 5, and the maximum
of Pr(U = ui) over U is 0.01 (i.e., 106 times larger than the average), then pseudonymization
alone achieves βU |S ≥ 0.5 (by (9)).

This example illustrates the difference between PIE privacy (user privacy) and LDP (data
privacy). Recent studies [5, 30] have shown that ε in LDP can be significantly reduced
by introducing a server (shuffler) that randomly permutes all obfuscated data. However,
when each user does not obfuscate her personal data (i.e., when ε = ∞ at the client side),
then this technique does not provide DP (ε is still ∞ after the random permutation in [5,
30]). It follows from [21] that when ε in DP is∞, ε in its average versions (i.e., KL-DP [6,21],
mutual information DP [21]) is also ∞. On the other hand, our PIE privacy guarantees a
high re-identification error probability even in this case, given that |X | is small.

Proposition 9 shows that when |X | is large (and so is I(U ;X)), we should use Q to prevent
re-identification. In Section 4, we show how much the PIE can be reduced by using LDP
mechanisms Q (e.g., RR, GLH).
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4 Theoretical Analysis

We now investigate the effectiveness of ε-LDP mechanisms Q in terms of (U , α)-PIE privacy
and utility. Section 4.1 shows a general bound on α, which holds for any ε-LDP mechanism.
Sections 4.2 and 4.3 show that much tighter bounds can be obtained for the ε-RR and (g, ε)-
GLH, respectively. Section 4.4 analyzes the utility of the ε-RR and (g, ε)-GLH for given
PIE guarantees. Section 4.5 discusses implications for privacy and utility based on our
theoretical results.

The proofs of all statements in this section are given in Appendix B.

4.1 LDP and PIE

We first show the relation between LDP and PIE privacy:

Proposition 10 (LDP and PIE). If an obfuscation mechanism Q provides ε-LDP, then it provides
(U , α)-PIE privacy for any U ⊆ Ω such that |U| = n, where

α = min{ε log e, ε2 log e, log n, log |X |}. (14)

Proposition 10 is derived from Proposition 9. Specifically, we use Lemma 1 in [21], which
states that Q satisfies I(X;Y ) ≤ min{ε log e, ε2 log e} (bits), and the fact that I(U ;X) ≤
min{log n, log |X |}. See Appendix B for details.

Proposition 10 means that (U , α)-PIE privacy is a relaxation of ε-LDP; i.e., any LDP mech-
anism provides PIE privacy. This is a general result that holds for any LDP mechanism.
However, the bound in (14) is loose, as we will show below.

4.2 PIE of the RR

If we consider a specific LDP mechanism, a much tighter bound on the PIE can be obtained.
We first show such a bound for the ε-RR in Section 2.2.

Theorem 11 (PIE of the RR). Let θRR = eε−1
|X |+eε−1 . For any distribution pU,X , the ε-RR satisfies

I(U ;Y ) ≤ θRRI(U ;X). (15)

Therefore, the ε-RR provides (U , α)-PIE privacy for any U ⊆ Ω such that |U| = n, where

α = θRR min{log n, log |X |}. (16)

By (15), the ε-RR can decrease the mutual information between a user and personal data
by θRR = eε−1

|X |+eε−1 . Thus we refer to θRR as the MI (Mutual Information) loss parameter.
Figure 4 shows the relation between ε in LDP and α in PIE privacy. Here we set n =

1370637 and |X | = 10500393 because these values were used in our experiments using the
location data. Figure 4 shows that α in Theorem 11 is much smaller than α in Proposition 10
for both small ε (0.05 to 1) and large ε (1 to 20). For example, when ε = 0.1, 1, and 10,
α in Proposition 10 is α = 0.014, 1.4, and 14, respectively, whereas α in Theorem 11 is
α = 2.0× 10−7, 3.3× 10−6, and 0.043, respectively. As the input alphabet size |X | increases,
the difference between two α values becomes larger because the MI loss parameter θRR
decreases with increase in |X |. In other words, α in Theorem 11 is much tighter, especially
when |X | is large. In our experiments, we also show that α in Theorem 11 is close to the
PSE for a specific identification algorithm.

We also show that the ε-RR has compositionality [28] in that α in (16) increases linearly
for multiple personal data:
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Figure 4: Relation between ε in LDP and α in PIE privacy (n = 1370637, |X | = 10500393).

Theorem 12 (Composition of the RR). Let θRR = eε−1
|X |+eε−1 . Assume that a user U has t ∈ N

personal data and obfuscates each of the data by using the ε-RR. For i ∈ [t], let X(i) and Y (i) be
random variables representing the i-th personal data and obfuscated data, respectively. Then the
combined release Y = (Y (1), · · · , Y (t)) provides (U , tα)-PIE privacy, where α = θRR min{log n,
log |X |}.

Theorem 12 upper-bounds the PIE when a user has multiple personal data and obfuscates
each of them using the ε-RR. Note that Theorem 12 holds irrespective of whether there are
correlations between X(1), · · · , X(t) (see Appendix B for details).

4.3 PIE of the GLH

Next we show a tighter bound on the PIE for the (g, ε)-GLH in Section 2.2:

Theorem 13 (PIE of the GLH). Let θGLH = eε−1
g+eε−1 . For any distribution pU,X , the (g, ε)-GLH

satisfies

I(U ;Y ) ≤ θGLHI(U ;X). (17)

Therefore, the (g, ε)-GLH provides (U , α)-PIE privacy for any U ⊆ Ω such that |U| = n, where

α = θGLH min{log n, log |X |}. (18)

Theorem 13 can be proved in an analogous way to Theorem 11 because the (g, ε)-GLH
uses the RR after applying random projection to x ∈ X , as shown in (3).

By (17), the (g, ε)-GLH can decrease the mutual information between a user and personal
data by θGLH . As with θRR, we call θGLH the MI loss parameter. α in Theorem 13 is much
tighter than α in Proposition 10, especially when g is large.

As with the ε-RR, the (g, ε)-GLH also composes (irrespective of whether there are correla-
tions between X(1), · · · , X(t)):

Theorem 14 (Composition of the GLH). Let θGLH = eε−1
g+eε−1 . Assume that a user U has t ∈ N

personal data and obfuscates each of the data by using the (g, ε)-GLH. For i ∈ [t], let X(i) and Y (i)

be random variables representing the i-th personal data and obfuscated data, respectively. Then the
combined release Y = (Y (1), · · · , Y (t)) provides (U , tα)-PIE privacy, where α = θGLH min{log n,
log |X |}.
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Relation between the MI Loss Parameter and the Bayes Error Probability. In both the
RR and GLH, we can set the MI loss parameter to achieve a required identification error
probability.

For example, assume that each user sends a single personal datum (i.e., U is uniform)
and that we require the Bayes error probability to be βU |S > 0.5. By Proposition 7 and
Theorem 11 (resp. Theorem 13), this requirement is satisfied by setting the MI parameter to
θRR = 0.5 (resp. θGLH = 0.5) when n is large.

4.4 Utility Analysis

Finally, we analyze the utility of the ε-RR and the (g, ε)-GLH. Here as with [45, 58, 86], we
assume that each user sends a single datum and consider distribution estimation as a task
for a data collector.
Preliminaries. For i ∈ [n], let Xi and Yi be random variables representing user ui’s per-
sonal data and obfuscated data, respectively. Let X1:n = (X1, · · · , Xn) and Y1:n = (Y1, · · · , Yn).
Let C be the probability simplex, and p ∈ C be an empirical distribution of X1:n, whose
probability of x ∈ X is given by p(x). In distribution estimation, the data collector esti-
mates p from Y1:n.

For estimating p from Y1:n, we use an empirical estimator in the same way as [3, 42, 45,
58, 86] because it is easy to analyze. Let p̂RR be an empirical estimate of p when the ε-RR
is used. Simple calculations from (2) show that:

p̂RR(x) =
1

µRR − νRR

(
cRR(x)

n
− νRR

)
, (19)

where µRR = eε

|X |+eε−1 , νRR = 1
|X |+eε−1 , and cRR(x) is the number of x ∈ X in Y1:n (note

that X = Y in the RR).
Similarly, let p̂GLH be an empirical estimate of p when the (g, ε)-GLH is used. Let Yx =
{(h, y) ∈ Y|y = h(x)} ⊆ Y . Then the empirical estimate p̂GLH can be written as follows
[86]:

p̂GLH(x) =
1

µGLH − νGLH

(
cGLH(x)

n
− νGLH

)
, (20)

where µGLH = eε

g+eε−1 , νGLH = 1
g , and cGLH(x) is the number of (h, y) ∈ Yx in Y1:n.

As with [45, 58, 86], we use the expected l2 loss between the true probability and the esti-
mate as a utility measure. Specifically, we fix X1:n (and hence p). Given the estimate p̂ of
p, we evaluate:

E[(p(x)− p̂(x))2] (21)

for each input symbol x ∈ X , where the expectation is taken over all possible realizations of
Y1:n (hereinafter we omit the subscript Y1:n in E). Note that when the empirical estimator
is used, the expected l2 loss is equal to the variance of p̂(x) because the empirical estimate
is unbiased [45, 86].
Expected l2 Loss. We first show the expected l2 loss for the ε-RR and the (g, ε)-GLH:

Proposition 15 (l2 loss of the RR). For any x ∈ X ,

E[(p(x)− p̂RR(x))2] =
|X |+ eε − 2

n(eε − 1)2
+

p(x)(|X | − 2)

n(eε − 1)
. (22)
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Proposition 16 (l2 loss of the GLH). For any x ∈ X ,

E[(p(x)− p̂GLH(x))2]

=
(g + eε − 1)2

n(eε − 1)2(g − 1)
+

p(x)(g2 − 2g − eε + 1)

n(eε − 1)(g − 1)
. (23)

The first terms in (22) and (23) are shown in [86] for the task of estimating counts of x ∈ X
inX1:n (we need to multiply the values in [86] by 1/n2 to normalize counts to probabilities).
The second terms in (22) and (23) are obtained by simple calculations.

Next we show an optimal parameter g in the (g, ε)-GLH while fixing the bound on α.
Specifically, by Theorem 13, the MI loss parameter θGLH (= eε−1

g+eε−1 ) determines the bound
on α for fixed n and |X |. Therefore, we fix θGLH and find the optimal g that minimizes the
expected l2 loss. Note that for a fixed θGLH (= eε−1

g+eε−1 ), ε increases with increase in g.
For a fixed privacy budget ε in LDP, the optimal g that minimizes the expected l2 loss is

given by: g = eε + 1 [86]. In contrast, we show that for a fixed θGLH , a larger g provides
better utility:

Theorem 17 (Optimal g in the GLH). For a fixed θGLH (= eε−1
g+eε−1 ), the expected l2 loss of the

(g, ε)-GLH in (23) is monotonically decreasing in g and

E[(p(x)− p̂GLH(x))2]→ p(x)(1− θGLH)

nθGLH
(g →∞). (24)

Recall that g in the (g, ε)-GLH is the output size of the hash function h : X → [g]. A larger
g preserves more information about the personal data x ∈ X . Therefore, Theorem 17 is
intuitive in that compressing the personal data x with a smaller g results in the loss of information
about x, and hence causes the loss of utility.
RR vs. GLH. We compare the expected l2 loss of the RR with that of the GLH. Here we set
the MI loss parameters θRR and θGLH to the same value (θRR = θGLH ) so that the bounds
on α in (16) and (18) are the same. We assume that g in the GLH is very large and compare
the right side of (22) with the right side of (24).

When θRR = θGLH , the right side of (24) can be written as: p(x)(1−θGLH)
nθGLH

= p(x)(1−θRR)
nθRR

=
p(x)|X |
n(eε−1) , where ε satisfies θRR = eε−1

|X |+eε−1 . Then for a large |X |, we obtain:

the right side of (24) ≈ the second term in (22).

Therefore, the remaining question is how large the first term in (22) is compared to the
second term in (22).

As an example, we consider the case where θRR = θGLH = 0.5 (which guarantees the
Bayes error probability βU |S to be larger than 0.5). In this case, simple calculations show
that the first and second terms in (22) are almost equal to 2

n|X | and p(x)
n , respectively. For

a popular symbol x ∈ X with a large probability p(x) � 1
|X | , we obtain 2

n|X | �
p(x)
n .

Therefore, the RR and GLH have almost the same utility for estimating the probabilities for
popular symbols x ∈ X ; i.e., heavy hitters [7, 15, 31, 41, 63].

For an unpopular symbol x ∈ X with a small probability p(x) � 1
|X | , we obtain 2

n|X | �
p(x)
n . This means that the RR has much larger l2 loss for the unpopular symbol. This is

caused by the fact negative values are assigned to many unpopular symbols in the RR [3].
However, zero (or very small positive) values can be assigned to the estimates p̂(x) below a
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significance threshold (determined via Bon-ferroni correction) [31]. Then both the RR and
GLH would have small l2 losses for unpopular symbols.

In our experiments, we show that the RR and GLH have almost the same utility for both
popular and unpopular symbols when we use the significant threshold. We also note that
the communication cost of the RR and GLH can be expressed as O(log |X |) and O(log g),
respectively. When |X | < g, the RR is better than the GLH in terms of the communication
cost.

4.5 Implications for Privacy and Utility

Theorem 17 indicates that a larger g results in a smaller l2 loss when (U , α)-PIE privacy is
used as a privacy metric. On the other hand, the optimal value of g that minimizes the l2
loss is g = eε + 1 [86] when ε-LDP is used as a privacy metric. This is counter-intuitive
because reducing g from a larger value to eε + 1 decreases the l2 loss. In other words,
compressing the personal data x with a smaller g results in higher utility until g = eε + 1.

One explanation for this counter-intuitive result is as follows. LDP is data privacy that
makes the original data X indistinguishable from any other possible data in X . Here it be-
comes more difficult to guarantee the indistinguishability as the size |X | of the data domain
increases. Thus, for a fixed ε, a larger |X | results in lower utility. In fact, by (2), the RR with
the same ε requires more noise for a larger |X |. A similar phenomenon occurs in matrix
factorization under LDP [68] – a large amount of noise is added in [68] due to high dimen-
sionality of data. This is caused by the fact that LDP guarantees the indistinguishability
of data. One way to increase the utility while fixing ε is dimension reduction; i.e., reducing
the value of g (dimension reduction is also adopted in [68]). It should be noted, however,
that too small g results in a significant loss of information about the personal data x. The
optimal g, which balances these two effects, is g = eε + 1.

Our PIE privacy has a different implication for privacy and utility. PIE privacy is user pri-
vacy that aims to prevent the identification of U (rather than the inference of X) by bound-
ing I(U ;Y ). Consequently, the MI loss parameter θGLH (= eε−1

g+eε−1 ) in the GLH does not
depend on |X |. Therefore, for a fixed θGLH , dimension reduction only results in the loss of
information about x. This explains the reason for an intuitive result that a larger g provides
better utility in our notion.

5 Experimental Evaluation

We proposed the PIE as a measure of re-identification risks in the local model, and an-
alyzed the PIE and utility for the RR and GLH. Based on this, we would like to pose the
following two basic questions: 1) How identifiable are personal data such as location traces
and rating history? 2) Is the PIE able to guarantee low re-identification risks for local ob-
fuscation mechanisms such as the RR and GLH while keeping high utility? We conducted
experiments to answer to these questions.

5.1 Experimental Set-up

In our experiments, we used five large-scale1 datasets:

1The biometric datasets are much smaller than the Foursquare and MovieLens datasets. This is because it is
very hard to collect large-scale biometric data. We emphasize that each biometric dataset used in our experiments
is one of the largest biometric datasets; e.g., much larger than [33, 36, 49, 62, 79, 82, 90].
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Location Trace. As a location trace dataset (denoted by LT), we used the Foursquare
dataset (Global-scale Check-in Dataset with User Social Networks) [89]. This dataset in-
cludes 90048627 check-ins by 2733324 users on POIs all over the world. Each check-in is
associated with its timestamp. We extracted 1370637 users who had at least 10 check-ins.
The total number of POIs checked in by these users was 10500393; i.e., |U| = 1370637,
|X | = 10500393.

For each user ui ∈ U , we divided the location trace (time-series check-in data) into two
disjoint traces of the same size. We used the former trace as training data in the partial-
knowledge model, and the latter trace as personal data X . We used the training data of
user ui as auxiliary information ri available to the adversary.

Rating History. As a rating history dataset (denoted by RH), we used the MovieLens Latest
dataset [55], which includes 27753444 ratings by 283228 users. Ratings are made on a 5-star
scale with half-star increments (0.5 to 5). Each rating is associated with its timestamp. We
used 4 to 5 star ratings that represent “likes” and extracted 185107 users who provided
at least 10 such ratings. The total number of movies rated by these users was 58098; i.e.,
|U| = 185107, |X | = 58098.

Since each user rates each movie at most once, it is difficult for the adversary to identify
a user based on training data completely separated from personal data X . Therefore, for
each user ui ∈ U , we used the whole rating history (time-series rating data) as personal data
X , and used the first 1 to 5 events (ratings) in X as training data in the partial-knowledge
model.

Face. The NIST BSSR1 Set3 dataset [61] includes face scores (similarities) from 3000 users;
i.e., |U| = 3000. Face scores were calculated by two matchers (“C” and “G”). We used scores
from the matcher G because some users had inappropriate scores (= −1) in the matcher C.
We used 3000 × 3000 scores in total. The face matcher G has lower errors than the best
matcher in the FRPC 2017 [39], as described in Section 5.2 in detail.

Fingerprint. The CASIA-FingerprintV5 dataset [14] (denoted by FP) includes 20000 fin-
gerprint images of 4000 fingers (5 images per finger). We assumed that each finger was
presented by a different user; i.e., |U| = 4000. For each finger, we used the first and sec-
ond images as a template and biometric data presented at authentication, respectively. To
calculate a score between two fingerprint images, we used the VeriFinger SDK 7.0 [84], a
state-of-the-art commercial fingerprint matcher. We extracted 4000× 4000 scores in total.

Finger-Vein. The finger-vein dataset in [88] (denoted by FV) includes 33330 finger-vein
images of 3030 fingers (11 images per finger); i.e., |U| = 3030. For each finger, we used two
images as a template and biometric data at authentication, respectively. To calculate a score,
we used the CIRF (Correlation Invariant Random Filtering) [73, 75]. We used 3030 × 3030
scores between the transformed finger-vein features.

To calculate scores in LT and RH, we used the matching algorithm based on the Markov
chain model, because this model is effective for location privacy attacks [37, 56, 57, 70] and
personalized item recommendation [12, 64]. Specifically, we trained a transition matrix
Λi ∈ [0, 1]|X |×|X| for each user ui from training data via the MLE (Maximum Likelihood Es-
timation). We also trained a visit probability vector πi ∈ C, which represents a probability
distribution of personal data in X , for each user ui via the MLE; i.e., πi is an empirical dis-
tribution of the training data. The auxiliary information ri of the user ui can be expressed
as: ri = (Λi, πi). Given obfuscated data Y and ri, we calculated a likelihood that Y belongs
to ui as follows. We calculated the likelihood for the first event in Y via πi and for the
subsequent events in Y via Λi. Then we multiplied them to obtain the likelihood for Y .
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Figure 5: PSE in the maximum-knowledge attacker model. In LT and RH, the adversary
uses X as training data. Then in the left figure, each user sends X without obfuscation
(Y = X). In the right figure, each user sends the first 1 to 5 events in X as Y .

Here we assigned a small positive value (= 10−8) to zero elements in Λi and πi so that the
likelihood never becomes 0 [56, 57]. We used the likelihood for Y as a score si.

Based on genuine scores (scores for the same user) and impostor scores (scores for differ-
ent users) for |U| users, we evaluated the PSE by estimating D(fG||fI). Note that D(fG||fI)
measures the PSE for a very large value of n (when n goes to infinity), as in Theorem 3.
To estimate D(fG||fI), we used the generalized k-NN estimator [85] because it is asymp-
totically unbiased; i.e., it converges to the true value as the sample size increases. We also
confirmed that for each dataset, D(fG||fI) converges as the number of users increases.

5.2 Results for No Obfuscation Cases

We first evaluated the identifiability of personal data when no obfuscation mechanisms
were used. Figure 5 shows the PSE in the maximum-knowledge model [25, 67] where the
adversary uses personal data X (the latter half of the trace in LT and the whole rating
history in RH) as training data. In the left figure, each user sends X without obfuscation;
i.e., Y = X . In the right figure, each user sends the first 1 to 5 events in X as Y . We note
again that we measure the PSE for a very large value of n (when n goes to infinity); e.g., in
Figure 5, the PSE of FV is larger than log 3030 = 11.6.

The left figure shows that LT and RH have almost the same identifiability as the com-
mercial fingerprint matcher (FP) in the maximum-knowledge model. Moreover, the right
figure shows that only three locations are enough to have almost the same identifiability
as a fingerprint. This is consistent with the fact that only three locations are enough to
uniquely characterize about 80% of individuals among one and a half million people [22].

Although the maximum-knowledge model reflects the worst-case scenario where the max-
imum auxiliary information is available to the adversary, it may not be realistic. For ex-
ample, it is natural to consider that the whole location trace X is not available as auxiliary
information in practice (unless the adversary tracks the user all the time). In this case,
even if X is highly unique (as shown in [22] for location data), it might be difficult for the
adversary to identify a user.

Therefore, we evaluated the identifiability of LT and RH in the partial-knowledge model.
In LT, we extracted 1896 users who had at least 1000 check-ins. Then for each user, we
used the former half of the trace as training data, and the latter half of the trace as personal
data X . We changed the number of training events (locations) from 100 to 500. In RH, we
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Figure 6: PSE in the partial-knowledge attacker model. In LT, the adversary uses training
data separated from X . In RH, the adversary uses the first 1 to 5 ratings in X as training
data. Then each user sends X without no obfuscation; i.e., Y = X .
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Figure 7: DET curve in the partial-knowledge attacker model. In LT, the number of training
locations is 500.

extracted 1888 users who had at least 500 ratings with 4 to 5 stars. Then we used the first
1 to 5 events (ratings) in X as training data. In both LT and RH, we used no obfuscation
mechanisms (Y = X).

Figure 6 shows the results. In both LT and RH, the PSE increases with increase in the
number of training events. The PSE of LT (resp. RH) is larger than that of the face matcher
in [61] when the number of training events is larger than or equal to 200 (resp. 3). We
emphasize that although a part of X was used as training data in RH, the training data in
LT was completely separated from X .

We also evaluated FAR (False Acceptance Rate) and FRR (False Rejection Rate), commonly
used accuracy measures in biometrics [9, 43]. FAR (resp. FRR) is the proportion of verifica-
tion attempts in which the system incorrectly accepts an impostor (resp. rejects a genuine
user). In the local privacy model, FAR (resp. FRR) corresponds to the error rates in which,
given auxiliary information ri of some user, the adversary incorrectly decides that obfus-
cated data Y and ri belong to the same user (resp. different users). We evaluated the DET
(Detection Error Tradeoff) curve [52], which is obtained by plotting FAR against FRR at
various thresholds, using genuine and impostor scores for |U| users.

Figure 7 shows the DET curve of LT in the partial-knowledge model (500 training loca-
tions) and biometric data. This figure shows that LT provides smaller FAR and FRR than
the face, which is consistent with the PSE in Figure 6.

We also note that the best matcher in the FRPC (Face Recognition Prize Challenge) 2017
[39] had FRR of about 0.15 (resp. 0.1) at FAR of 0.01 (resp. 0.1), which is worse than that of
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the face matcher in Figure 7. The high FAR and FRR in the FRPC 2017 were caused by the
fact that face images were collected without tight quality constraints. In particular, uncon-
strained yaw and pitch pose variation caused errors [39]. Similarly, Figure 7 shows that FRR
of FP is high (even using the commercial fingerprint matcher). This is because users were
asked to rotate their fingers with various levels of pressure in the CASIA-FingerprintV5
dataset [14].

In summary, our answers to the first question at the beginning of Section 5 are as follows:

• Three locations are enough to have almost the same identifiability as the commercial
fingerprint matcher in the maximum-knowledge model (ratings need more events).

• A long location trace (≥ 500 locations) has higher identifiability than the face matcher
in [11] and the best face matcher in the FRPC 2017 [39] in the partial-knowledge model
where training data is separated from X .

We emphasize that the second answer illustrates an interesting feature of our PSE that
provides a new intuitive understanding of re-identification risks; i.e., a long location trace is
more identifiable than the best face matcher in the prize challenge. For example, the EU’s AI Act
[32] states that (both ‘real-time’ and ‘post’) remote biometric identification systems should
be classified as high-risk. Based on the second answer, we argue that systems collecting
location traces should also be considered as high-risk in terms of the re-identification risk.

5.3 Results for the RR and GLH

Next we evaluated the privacy and utility of the RR and GLH. Here we focused on LT
because it has higher identifiability than RH as shown in Figure 5.

We used location traces of all users (|U| = 1370637). We assumed that each user obfuscates
the first location X in the latter half of the trace using the RR or GLH, and sends the ob-
fuscated location Y to a data collector. In other words, we assumed that each user sends a
single datum as in Section 4.4. Note that a single location may be enough to identify a user,
as shown in Figure 5. For example, a user’s home or work location is highly identifiable
information [38]. We also note that the privacy of the RR and GLH in the case of multiple
obfuscated data can be discussed based on the composition theorems (Theorems 12 and
14).

We first examined how tight our upper-bounds on the PIE for the RR and GLH (The-
orems 11 and 13) are. To this end, we evaluated the PSE, which lower-bounds the PIE
(Proposition 4). As training data of the adversary, we used the former half of the trace; i.e.,
partial-knowledge model.

Figure 8 shows the upper-bounds (α in Proposition 10, Theorem 11, and Theorem 13) and
lower-bounds (PSE) on the PIE. Here we set g in the GLH to g = 108. Figure 8 shows that
the values of α in Theorems 11 and 13 are much smaller than α in Proposition 10, and are
close to the PSE. This indicates that our upper-bounds for the RR and GLH in Theorems 11
and 13 are fairly tight and cannot be improved much.

We also examined how tight the lower-bounds on the identification error probability βU |S
in Proposition 7 are. To this end, we performed the re-identification attack for each obfus-
cated location Y using the matching algorithm based on the Markov chain model and the
best score rule (described in Section 3.1). Then we evaluated the identification error rate,
which is the proportion of correct identification results.

Figure 9 shows the results. Here the lower-bounds on βU |S are obtained by assigning
α (resp. PSE) in Figure 8 to (12) (resp. (10)). Figure 9 shows that the gap between the
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Figure 8: Upper-bounds (α in Proposition 10 and Theorems 11 and 13) and lower-bounds
(PSE) on the PIE in the ε-RR and (g, ε)-GLH (g = 108).
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Figure 9: Identification error rate in the ε-RR and (g, ε)-GLH (g = 108). The lower-bounds
(blue and black lines) are obtained by assigning α (resp. PSE) in Figure 8 to (12) (resp. (10)).

identification error rate and the lower-bound is caused by two factors. Specifically, the gap
between “Identification error rate” (red line) and “Lower-bound (PSE)” (blue line) is caused
by the generalized Fano’s inequality [40]; i.e., the first inequality in (10). The gaps between
“Lower-bound (PSE)” (blue line) and the other lower-bounds (black lines) are caused by
the gap between the PSE and α in PIE privacy (α in Proposition 10 and Theorems 11 and
13). Figure 9 also shows that the lower-bounds by Theorem 11 and 13 are much tighter
than the lower-bound by Proposition 10.

Finally, we evaluated the utility. As a task for a data collector, we considered distribution
estimation. For a distribution estimation method, we used the empirical estimator without
a significant threshold (denoted by emp) and the empirical estimator with a significant
threshold [31] (denoted by emp+thr). In emp+thr, we set the significance level to 0.05 in the
same way as [31, 58, 86], and assigned zero to probabilities below a significance threshold.
Then we evaluated the sum of l2 losses (p(x) − p̂(x))2 over the top φ ∈ {100, |X |} POIs
whose probabilities p(x) are the largest. The top φ = 100 POIs correspond to heavy hitters.

Figure 10 shows the results (g = 108). Here the left figures show ε in LDP, whereas the
right figures show the lower-bounds on the Bayes error probability βU |S obtained by PIE
privacy (Corollary 8 and Theorems 11 and 13). Figure 10 shows that the utility is improved
by using the significant threshold. This is because emp assigns negative values to many
input symbols [3]. However, emp+thr still provides poor utility when ε ≤ 10. We also
show in Figure 11 the probabilities p(x) of the top-20 POIs (red bars) and the estimates

TRANSACTIONS ON DATA PRIVACY 14 (2021)



102 Takao Murakami et al.

��� ��� ��� ��� ��� ��	 ��
 ��� ��� �

�������	
� � 100� �������	
� � |�|�

���	
� � 100� ���	
� � |�|�

������

�����	


���

� �
��
�
�

���

���

����

�����

����

����

� � � � �� �� �� �� �� ��

� ��������	
���
������������������

���

�

����

���

� ��� ��� ��� ��� ��� ��	 ��
 ��� ��� �

���

���

���

����

�����

����

����

���

�

����

�����	
���

���

� �
��
�
�

���

���

����

�����

����

����

� � � � �� �� �� �� �� ��

� ��������	
���
������������������

���

�

����

��� ���

���

���

����

�����

����

����

���

�

����

�����	
���
���� ����

Figure 10: Sum of the l2 losses over the top φ ∈ {100, |X |} POIs with various values of ε
(g = 108).

p̂(x) by emp+thr when we use the RR with ε = 10 (white bars). The RR with ε = 10

performs poorly. The relative error |p(x)−p̂(x)|p(x) of the RR with ε = 10 for each of the top
20 POIs was on average 1.05 (> 1). Note that ε = 10 is considered to provide almost no
privacy guarantees for personal data [51], because eε in (1) is e10 = 22026. This means that
LDP fails to guarantee meaningful privacy and utility for this task.

On the other hand, our PIE privacy can be used to prevent re-identification attacks while
keeping high utility. For example, Figure 10(a) shows that LDP requires ε > 12 (no mean-
ingful privacy guarantees) to achieve the l2 loss of 10−6 using emp+thr (φ = 100). In con-
trast, PIE privacy guarantees the Bayes error probability to be βU |S > 0.92 with the same
l2 loss. Figure 11 shows the estimates p̂(x) by the RR and emp+thr in this case (blue bars).
The RR accurately estimates the distribution for the 20-POIs while satisfying βU |S > 0.92.
The relative error of the RR in this case was 0.10, which was much smaller than 1. There-
fore, PIE privacy can be used to guarantee the identification error probability larger than
0.92 while keeping high utility in this task.

We finally set the MI loss parameters in the RR and GLH to θRR = θGLH = 0.5 (which
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Figure 11: Probabilities of the top-20 POIs and estimates by emp+thr. The relative error
of the RR with βU |S > 0.92 guaranteed by PIE privacy (resp. ε = 10 in LDP) was 0.10
(resp. 1.05)
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Figure 12: Sum of the l2 losses over the top φ ∈ {100, |X |} POIs with various values of g
when the Bayes error probability βU |S larger than 0.5 (θRR = θGLH = 0.5).

guarantees the Bayes error probability βU |S larger than 0.5), and changed the parameter g
in the GLH from 103 to 2×109 while fixing the MI loss parameter θGLH . Then we evaluated
the sum of the l2 losses over the top φ ∈ {100, |X |} POIs.

Figure 12 shows the result. In the GLH, the l2 loss decreases with increase in g, which is
consistent with Theorem 17. The GLH with a large g has almost the same utility as the RR
for φ = 100. When we use emp, the GLH with a large g has slightly better utility than the
RR for φ = |X |. However, when we use emp+thr, they have almost the same utility for
φ = |X | because zero values are assigned to unpopular symbols in both the RR and GLH,
as discussed in Section 4.4.

In summary, our answers to the second question at the beginning of Section 5 are as fol-
lows:

• Our PIE guarantees the identification error probability larger than 0.92 while keeping
high utility in distribution estimation. On the other hand, LDP destroys the utility
even when ε = 10.

• Compressing the personal data X with a smaller value of g in the GLH results in
the loss of utility for given PIE guarantees, which is consistent with our theoretical
results.
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6 Conclusion

We proposed the PIE (Personal Information Entropy) as a measure of re-identification risks
in the local model. We conducted experiments using five datasets, and showed that a loca-
tion trace has higher identifiability than the face matcher in [61] and the best matcher in the
FRPC 2017 [39] in the partial-knowledge model. We also showed that the PIE can be used
to guarantee low re-identification risks for the RR and GLH while keeping high utility in
distribution estimation.

As described in Section 1, our PIE privacy is an average notion (though it differs from
the re-identification rate in that PIE privacy does not specify an identification algorithm
nor the adversary’s background knowledge, as described in Section 3.2). One way to ex-
tend our PIE privacy from the average notion to the worse-case notion is to use α-mutual
information [83], which is an extension of the mutual information using Rényi divergence.
Rényi divergence with α = 1 is equivalent to the KL divergence, whereas Rényi divergence
with α = ∞ is equivalent to the max divergence, which is a worst-case analog of the KL
divergence. Therefore, we can extend our PIE privacy to the the worst-case privacy metric
by using α-mutual information with a large α. Then the following questions remain open:
How do the theoretical properties of the PIE (shown in Section 3.3) change? How do the
bounds on privacy and utility for obfuscation mechanisms (e.g., RR, GLH) change? As
future work, we would like to investigate these open questions.
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sional densities via k-nearest-neighbor distances. IEEE Trans. Information Theory, 55(5):2392–
2405, 2009.

TRANSACTIONS ON DATA PRIVACY 14 (2021)



Toward Evaluating Re-identification Risks in the Local Privacy Model 109

[86] Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. Locally differentially private
protocols for frequency estimation. In Proceedings of the 26th USENIX Security Symposium
(USENIX’17), pages 729–745, 2017.

[87] Stanley L. Warner. Randomized response: A survey technique for eliminating evasive answer
bias. Journal of the American Statistical Association, 60(309):63–69, 1965.

[88] Takashi Yanagawa, Satoshi Aoki, and Tetsuji Ohyama. Diversity of human finger vein patterns
and its application to personal identification. Bulletin of Informatics and Cybernetics, 41:1–9, 2007.

[89] Dingqi Yang, Bingqing Qu, Jie Yang, and Philippe Cudre-Mauroux. Revisiting user mobility
and social relationships in LBSNs: A hypergraph embedding approach. In Proceedings of the
2019 World Wide Web Conference (WWW’19), pages 2147–2157, 2019.

[90] Yilong Yin, Lili Liu, and Xiwei Sun. SDUMLA-HMT: a multimodal biometric database. In
Proceedings of the 6th Chinese Conference on Biometric Recognition (CCBR’11), pages 260–268, 2011.

[91] Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. Mining interesting locations and travel
sequences from GPS trajectories. In Proceedings of the 18th International Conference on World Wide
Web (WWW’09), pages 791–800, 2009.

A Proofs of Statements in Section 3

Proof of Theorem 5 (Post-processing invariance). Let Y ′ be the range of the randomized algo-
rithm λ, and Y ′ be a random variable representing obfuscated data output by λ ◦Q.

The obfuscation mechanism Q takes as input personal data X of a user U and outputs Y .
Then the randomized algorithm λ takes as input Y and outputs Y ′. Thus, U , X , Y and Y ′

form the Markov chain; i.e., U → X → Y → Y ′. Then by the data processing inequality [20]
and (5), we obtain:

I(U ;Y ′) ≤ I(U ;Y ) ≤ α (bits).

Therefore, λ ◦Q provides (n, α)-PIE privacy.

Proof of Theorem 6 (Convexity). Let Yw, Y1, and Y2 be random variables representing obfus-
cated data output by Qw, Q1, and Q2, respectively. Given a user U , let pX|U , pYw|U , pY1|U ,
pY2|U be a probability distribution of X , Yw, Y1, and Y2, respectively. Then the probability
of outputting y from Qw is written as follows:

pYw|U (y) =
∑
x∈X

Qw(y|x)pX|U (x)

=
∑
x∈X

(wQ1(y|x) + (1− w)Q2(y|x)) pX|U (x)

= wpY1|U (y) + (1− w)pY2|U (y). (25)

The mutual information I(U ;Yw) is convex in pYw|U (see Theorem 2.7.4 in [20]). In addition,
I(U ;Y1) ≤ α and I(U ;Y2) ≤ α because Q1 and Q2 provide (n, α)-PIE privacy. Then by (25),
we obtain:

I(U ;Yw) ≤ wI(U ;Y1) + (1− w)I(U ;Y2)

≤ wα+ (1− w)α

= α.

Therefore, Qw provide (n, α)-PIE privacy.
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B Proofs of Statements in Section 4

Proof of Proposition 10 (LDP and PIE). We use the following lemma:

Lemma 18. If an obfuscation mechanism Q provides ε-LDP, then

I(X;Y ) ≤ min{ε log e, ε2 log e} (bits). (26)

This is a special case of Lemma 1 in [21] in the local model. By (13) in Proposition 9, (26),
and I(U ;X) ≤ min{log n, log |X |}, we obtain:

I(U ;Y ) ≤ min{ε log e, ε2 log e, log n, log |X |}.

Note that this holds for any distribution pU,X . Thus Proposition 10 holds.

Proof of Theorem 11 (PIE of the RR). Let pU be a probability distribution of U . Let pY be a
probability distribution of Y , and pY |U=ui

be a conditional probability distribution of Y
given U = ui. Then I(U ;Y ) can be written as follows:

I(U ;Y ) =

n∑
i=1

pU (ui)D(pY |U=ui
||pY ). (27)

Let puni be a uniform distribution over X ; i.e., puni(x) = 1
|X | for any x ∈ X . Let pX be a

probability distribution of X , and pX|U=ui
be a conditional probability distribution of X

given U = ui. By (2), we can regard the ε-RR as a mechanism that given x ∈ X , outputs
y = x with probability θRR (= eε−1

|X |+eε−1 ) and outputs a value randomly chosen from X
(including x) with probability 1 − θRR. Therefore, given U = ui, Y is generated from
pX|U=ui

with probability θRR, and is generated from puni with probability 1 − θRR. Then
we obtain:

D(pY |U=ui
||pY )

= D(θRRpX|U=ui
+(1−θRR)puni||θRRpX+(1−θRR)puni)

≤ θRRD(pX|U=ui
||pX) + (1− θRR)D(puni||puni)

(by the convexity of the KL divergence [20])
= θRRD(pX|U=ui

||pX). (28)

By (27) and (28), we obtain:

I(U ;Y ) ≤
n∑
i=1

pU (ui)θRRD(pX|U=ui
||pX)

= θRR

n∑
i=1

pU (ui)D(pX|U=ui
||pX)

= θRRI(U ;X). (29)

Therefore, (15) holds. Note that this holds for any distribution pU,X . (16) is immediately
derived from (15) because I(U ;X) ≤ H(U) ≤ log n and I(U ;X) ≤ H(X) ≤ log |X |.
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Proof of Theorem 12 (Composition of the RR). For i ∈ [t], let Yi = (Y (1), · · · , Y (i)). Then, by
the chain rule for the mutual information [20], we obtain:

I(U ;Y ) = I(U ;Y (1)) +

t∑
i=2

I(U ;Y (i)|Yi−1). (30)

Let pU and pYi be a probability distribution ofU and Yi, respectively. Let pY (i)|U=ui,Yi−1=yi−1

(resp. pY (i)|Yi−1=yi−1 ) be a conditional probability distribution of Y (i) given U = ui and
Yi−1 = yi−1 (resp. given Yi−1 = yi−1). Then I(U ;Y (i)|Yi−1) in (30) can be written as
follows:

I(U ;Y (i)|Yi−1)

=
∑

yi−1∈Yi−1

pYi−1(yi−1)

n∑
i=1

pU (ui|yi−1)D(pY (i)|U=ui,Yi−1=yi−1 ||pY (i)|Yi−1=yi−1). (31)

Let puni be a uniform distribution over X . Let pX(i)|U=ui,Yi−1=yi−1 (resp. pX(i)|Yi−1=yi−1 )
be a conditional probability distribution of X(i) given U = ui and Yi−1 = yi−1 (resp. given
Yi−1 = yi−1). By (2), the ε-RR takes as input x ∈ X , and outputs y = xwith probability θRR
(= eε−1
|X |+eε−1 ) and outputs a value randomly chosen from X (including x) with probability

1− θRR. Note that this is independent of the other input and output data. In other words,
given X(i), the ε-RR outputs Y (1) = X(i) with probability θRR and a random value from X
(including X(i)) with probability 1− θRR, irrespective of whether there are correlations between
X(1), · · · , X(t). Thus we obtain:

D(pY (i)|U=ui,Yi−1=yi−1 ||pY (i)|Yi−1=yi−1)

= D(θRR pX(i)|U=ui,Yi−1=yi−1 + (1− θRR)puni||θRR pX(i)|Yi−1=yi−1 + (1− θRR)puni)

≤ θRRD(pX(i)|U=ui,Yi−1=yi−1 ||pX(i)|Yi−1=yi−1)

(by the convexity of the KL divergence [20] and D(puni||puni) = 0). (32)

By (31) and (32), we obtain:

I(U ;Y (i)|Yi−1)

≤
∑

yi−1∈Yi−1

pYi−1(yi−1)

n∑
i=1

pU (ui|yi−1)θRRD(pX(i)|U=ui,Yi−1=yi−1 ||pX(i)|Yi−1=yi−1)

= θRRI(U ;X(i)|Yi−1) (33)

By (30) and (33), we obtain:

I(U ;Y ) ≤ θRRI(U ;X(1)) +

t∑
i=2

θRRI(U ;X(i)|Yi−1). (34)

In (34), I(U ;X(i)|Yi−1) ≤ H(U |Yi−1) ≤ log n and I(U ;X(i)|Yi−1) ≤ H(X(i)|Yi−1) ≤
log |X |. Therefore, the combined release Y provides (n, tα)-PIE privacy, where α = θRR
min{log n, log |X |}.
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Proof of Theorem 13 (PIE of the GLH). Let pU be a probability distribution of U . Let pY be a
probability distribution of Y , and pY |U=ui

be a conditional probability distribution of Y
given U = ui. Then I(U ;Y ) can be written as follows:

I(U ;Y ) =

n∑
i=1

pU (ui)D(pY |U=ui
||pY ). (35)

The (g, ε)-GLH outputs (h, y) ∈ Y with probability in (3). We denote the probability that
the (g, ε)-GLH outputs h, y, and (h, y) simply by Pr(h), Pr(y), and Pr(h, y), respectively.
Then, D(pY |U=ui

||pY ) in (35) can be written as follows:

D(pY |U=ui
||pY )

=
∑

(h,y)∈Y

Pr(h, y|U = ui) log
Pr(h, y|U = ui)

Pr(h, y)

=
∑
h∈H

Pr(h)
∑
y∈[g]

Pr(y|h, U = ui) log
Pr(h) Pr(y|h, U = ui)

Pr(h) Pr(y|h)

(by Pr(h|U = ui) = Pr(h))

=
∑
h∈H

Pr(h)
∑
y∈[g]

Pr(y|h, U = ui) log
Pr(y|h, U = ui)

Pr(y|h)
. (36)

Let quni be a uniform distribution over [g]. Given x ∈ X , let z be a hash value z = h(x) ∈
[g], and Z be a random variable representing a hash value. Let H be a random variable
representing a hash function. Furthermore, let pZ|H=h,U=ui

(resp. pZ|H=h) be a conditional
probability distribution of Z given H = h and U = ui (resp. given H = h). By (3), the
(g, ε)-GLH outputs y = z with probability θGLH (= eε−1

g+eε−1 ) and outputs a value randomly
chosen from [g] (including z) with probability 1 − θGLH . Therefore, given H = h and
U = ui, Y is generated from pZ|H=h,U=ui

with probability θGLH , and is generated from quni
with probability 1− θGLH . Then D(pY |U=ui

||pY ) in (36) can be written as follows:

D(pY |U=ui
||pY )

=
∑
h∈H

Pr(h)D(θGLH pZ|H=h,U=ui
+ (1− θGLH)quni||θGLH pZ|H=h + (1− θGLH)quni)

≤
∑
h∈H

Pr(h)θGLHD(pZ|H=h,U=ui
||pZ|H=h)

(by the convexity of the KL divergence [20] and D(quni||quni) = 0)

= θGLH
∑
h∈H

Pr(h)D(pZ|H=h,U=ui
||pZ|H=h). (37)

Note that by expanding I(U ;H,Z) in the same way as (35) and (36), I(U ;H,Z) can be
expressed as follows:

I(U ;H,Z)

=

n∑
i=1

pU (ui)
∑
h∈H

Pr(h)
∑
z∈[g]

Pr(z|h, U = ui) log
Pr(z|h, U = ui)

Pr(z|h)

=

n∑
i=1

pU (ui)
∑
h∈H

Pr(h)D(pZ|H=h,U=ui
||pZ|H=h). (38)
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By (35), (37), and (38), I(U ;Y ) can be written as follows:

I(U ;Y )

≤ θGLHI(U ;H,Z)

≤ θGLHI(U ;X) (by the data processing inequality [20]). (39)

Therefore, (17) holds. This holds for any distribution pU,X . (18) also holds because I(U ;X) ≤
H(U) ≤ log n and I(U ;X) ≤ H(X) ≤ log |X |.

Proof of Theorem 14 (Composition of the GLH). For i ∈ [t], let Yi = (Y (1), · · · , Y (i)). Let H(i)

and Z(i) be random variables representing the i-th hash function and hash value, respec-
tively.

By the chain rule for the mutual information [20], we obtain:

I(U ;Y ) = I(U ;Y (1)) +

t∑
i=2

I(U ;Y (i)|Yi−1). (40)

In the proof of Theorem 12, we showed (31), (32), and (33). They differ from (27), (28),
and (29), respectively, in that they add Yi−1 as a condition. Similarly, by adding Yi−1 as a
condition in (35), (36), (37), and (38), we can show the following inequality:

I(U ;Y (i)|Yi−1)

≤ θGLHI(U ;H(i), Z(i)|Yi−1)

≤ θGLHI(U ;X(i)|Yi−1)

(by the data processing inequality [20]). (41)

By (40) and (41), we obtain:

I(U ;Y ) ≤ θGLHI(U ;X(1)) +

t∑
i=2

θGLHI(U ;X(i)|Yi−1). (42)

In (42), I(U ;X(i)|Yi−1) ≤ H(U |Yi−1) ≤ log n and I(U ;X(i)|Yi−1) ≤ H(X(i)|Yi−1) ≤
log |X |. Therefore, the combined release Y provides (n, tα)-PIE privacy, where α = θGLH
min{log n, log |X |}.

Proof of Proposition 15 (l2 loss of the RR). Let p̂∗RR(x) = E[p̂RR(x)]. Then the expected l2 loss
can be written as follows:

E[(p(x)− p̂RR(x))2]

= E
[
((p̂RR(x)− p̂∗RR(x)) + (p̂∗RR(x)− p(x)))2

]
= E

[
(p̂RR(x)− p̂∗RR(x))2

]
+ (p̂∗RR(x)− p(x)))2

+ 2(p̂∗RR(x)− p(x))E [(p̂RR(x)− p̂∗RR(x))]

= E
[
(p̂RR(x)− p̂∗RR(x))2

]
+ (p̂∗RR(x)− p(x)))2. (43)

The first term in (43) is the variance, whereas the second term in (43) is the bias. In
other words, the expected l2 loss consists of the bias and variance, which is called the
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bias-variance trade-off [59]. It is well known that the empirical estimate is unbiased; i.e.,
p̂∗RR(x) = p(x) [45, 86]. Therefore, we obtain:

E[(p(x)− p̂RR(x))2] = E
[
(p̂RR(x)− p̂∗RR(x))2

]
= E

[
(p̂RR(x)− p(x))2

]
. (44)

By (19), µRR = eε

|X |+eε−1 , and νRR = 1
|X |+eε−1 , the right side of (44) can be written as

follows:

E
[
(p̂RR(x)− p(x))2

]
=

(
1

µRR − νRR

)2 Var[cRR(x)]

n2

=

(
|X |+ eε − 1

eε − 1

)2 Var[cRR(x)]

n2
, (45)

where for a ∈ R, Var[a] represents the variance of a.
Recall that cRR(x) is the number of x ∈ X in Y1:n = (Y1, · · · , Yn). For i ∈ [n], let bi(x) ∈
{0, 1} be a value that takes 1 if Yi = x and 0 if Yi 6= x. Then cRR(x) =

∑n
i=1 bi(x). By (2),

bi(x) is randomly generated from the Bernoulli distribution with parameter µRR (resp. νRR)
if Xi = x (resp. Xi 6= x). The number of x in X1:n is np(x), whereas the number of the
other input symbols in X1:n is n(1− p(x)). Therefore, Var[cRR(x)] in (45) can be written as
follows:

Var[cRR(x)]

= np(x)µRR(1− µRR) + n(1− p(x))νRR(1− νRR)

=
np(x)eε(|X | − 1)

(|X |+ eε − 1)2
+
n(1− p(x))(|X |+ eε − 2)

(|X |+ eε − 1)2
. (46)

By (44), (45), and (46), we obtain:

E[(p(x)− p̂RR(x))2]

=
p(x)eε(|X | − 1) + (1− p(x))(|X |+ eε − 2)

n(eε − 1)2

=
|X |+ eε − 2

n(eε − 1)2
+

p(x)eε(|X | − 2)− p(x)(|X | − 2)

n(eε − 1)2

=
|X |+ eε − 2

n(eε − 1)2
+

p(x)(|X | − 2)

n(eε − 1)
.

Therefore (22) holds.

Proof of Proposition 16 (l2 loss of the GLH). As with (44), the expected l2 loss of the GLH is
equal to the variance of the GLH:

E[(p(x)− p̂GLH(x))2] = E
[
(p̂GLH(x)− p(x))2

]
. (47)
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By (20), µGLH = eε

g+eε−1 , and νGLH = 1
g , the right side of (47) can be written as follows:

E
[
(p̂GLH(x)− p(x))2

]
=

(
1

µGLH − νGLH

)2 Var[cGLH(x)]

n2

=

(
g(g + eε − 1)

geε − (g + eε − 1)

)2 Var[cGLH(x)]

n2

=

(
g(g + eε − 1)

(g − 1)(eε − 1)

)2 Var[cGLH(x)]

n2
. (48)

Recall that cGLH(x) is the number of (h, y) ∈ Yx in Y1:n = (Y1, · · · , Yn) and Yx = {(h, y) ∈
Y|y = h(x)}. For i ∈ [n], let b′i(x) ∈ {0, 1} be a value that takes 1 if Yi is in Yx and
0 otherwise. Then cGLH(x) =

∑n
i=1 b

′
i(x). Assume that Xi 6= x. In this case, bi(x) is

1 if the output of the hash function h with input Xi collides with h(x), which happens
with probability νGLH = 1

g . Then by (3), b′i(x) is randomly generated from the Bernoulli
distribution with parameter µGLH (resp. νGLH ) if Xi = x (resp. Xi 6= x). The number of
x in X1:n is np(x), whereas the number of the other input symbols in X1:n is n(1 − p(x)).
Therefore, Var[cGLH(x)] in (48) can be written as follows:

Var[cGLH(x)]

= np(x)µGLH(1− µGLH) + n(1− p(x))νGLH(1− νGLH)

=
np(x)eε(g − 1)

(g + eε − 1)2
+
n(1− p(x))(g − 1)

g2
. (49)

By (47), (48), and (49), we obtain:

E[(p(x)− p̂GLH(x))2]

=
p(x)g2eε

n(eε − 1)2(g − 1)
+

(1− p(x))(g + eε − 1)2

n(eε − 1)2(g − 1)

=
(g + eε − 1)2

n(eε − 1)2(g − 1)
+

p(x)(g2eε − g2 − 2g(eε − 1)− (eε − 1)2)

n(eε − 1)2(g − 1)

=
(g + eε − 1)2

n(eε − 1)2(g − 1)
+

p(x)(g2 − 2g − eε + 1)

n(eε − 1)(g − 1)
.

Therefore (23) holds.

Proof of Theorem 17 (Optimal g in the GLH). By (23) and θGLH = eε−1
g+eε−1 , the expected l2 loss

can be written as follows:

E[(p(x)− p̂GLH(x))2]

=
(g + eε − 1)2

n(eε − 1)2(g − 1)
+

p(x)(g2 − 2g − eε + 1)

n(eε − 1)(g − 1)

=
(g + eε − 1)2

n(eε − 1)2(g − 1)
+

p(x)g(g − 1)

n(eε − 1)(g − 1)
− p(x)(g + eε − 1)

n(eε − 1)(g − 1)

=
1

nθ2GLH(g − 1)
+

p(x)g

n(eε − 1)
− p(x)

nθGLH(g − 1)

=
1− p(x)θGLH
nθ2GLH(g − 1)

+
p(x)g

n(eε − 1)
(50)
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By θGLH = eε−1
g+eε−1 and 1− θGLH = g

g+eε−1 , (50) can be expressed as follows:

E[(p(x)− p̂GLH(x))2] =
1− p(x)θGLH
nθ2GLH(g − 1)

+
p(x)(1− θGLH)

nθGLH
. (51)

Now we consider increasing g while fixing θGLH in (51). Note that 0 ≤ p(x) ≤ 1 and
0 ≤ θGLH ≤ 1. Moreover, n and p(x) do not depend on g. Therefore, (51) is monotonically
decreasing in g. In addition, the first term in (51) goes to zero as g goes to infinity. Therefore,

E[(p(x)− p̂GLH(x))2]→ p(x)(1− θGLH)

nθGLH
(g →∞),

which proves Theorem 17.
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