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Abstract. We propose the approach of model-based differentially private synthesis (modips) in the
Bayesian framework for releasing individual-level surrogate/synthetic datasets with privacy guar-
antees. The modips technique integrates the concept of differential privacy into model-based data
synthesis. We introduce several variants for the modips approach and multiple procedures for ob-
taining privacy-preserving posterior samples, a key step in the implementation of modips. The un-
certainty from the sanitization and synthetic process in modips can be accounted for by releasing
multiple synthetic datasets. We propose an inferential combination rule across multiple sets to gener-
ate final valid inferences. We run several empirical studies to demonstrate the application of modips
and examine the impacts of the number of synthetic sets and the privacy budget allocation schemes
on statistical inference based on synthetic data.

Keywords. (Bayesian) sufficient statistics, budget allocation, differentially private posterior sam-
pling, inference, multiple synthesis, sanitization, variance combination

1 Introduction

1.1 Background and Motivation

Data synthesis is a statistical disclosure limitation technique that releases pseudo individual-
level data for research and public use. Both parametric and nonparametric Bayesian and
frequentist approaches have been proposed for data synthesis [1, 2, 3, 4, 5, 6, 7, 8]. To cap-
ture the uncertainty introduced during the synthesis process, multiple sets of synthetic data
are often released. Inferential methods that combine information from multiple synthetic
datasets to yield valid inference are available [9, 10]. A long-standing research problem
in statistical disclosure limitation is the lack of a universally applicable and robust mea-
sure of disclosure risk in released data [11, 12]. Many existing disclosure risk assessment
approaches rely on strong and ad-hoc assumptions regarding the background knowledge
and behaviors of data intruders [13, 14, 15, 16, 17, 18, 19].
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Differential privacy (DP) has gained enormous popularity since its debut in 2006 [20]. DP
formalizes privacy in mathematical terms without making assumptions about data intrud-
ers and has nice properties such as privacy loss composition and immunity to post pro-
cessing for the information sanitized through a DP randomized algorithm. DP has spurred
a great amount of work in developing differentially private randomized mechanisms to
release statistics in general settings as well as for specific types of queries or statistical
analyses. The Laplace mechanism [20], the exponential mechanism [21], and the Gaussian
mechanism [22, 23] are common differentially private sanitizers for general purposes. Dif-
ferentially private versions of various statistical analyses are also available, such as point
estimators [24, 25], principle components analysis [26], linear and penalized regression
[27, 28], model selection [29], release of functions [30], the χ2 test in genome-wide asso-
ciation studies [31], and deep learning [32, 33, 34], among others.

In addition to sanitization of aggregate statistics for release, there is also differentially
private synthesis of individual-level data (dips) that releases surrogate privacy-preserving
datasets to original data. An obvious advantage of dips over query-based sanitization and
information release is that users of surrogate data can run analyses of their own as if they
had the original data, whereas query-based data sharing allows only a certain amount or
sometimes only certain types of queries to be answered before a pre-set privacy budget
runs outs.

1.2 Related Work

Early dips approaches are often model-free (without assuming data belong to any particu-
lar parametric probability distribution during sanitization or synthesis) and focus on cate-
gorical data synthesis or require some discretization for numerical attributes. In the frame-
work of categorical data synthesis via model-free approaches, Barak et al. [35] generated
synthetic data via the Fourier transformation and linear programming in low-order contin-
gency tables; Blum et al. [36] discussed the possibility of dips from the perspective of the
learning theory in a discretized domain; Hardt et al. [37] developed the iterative multiplica-
tive weights exponential mechanism algorithm via “matching” on linear queries; Bowen
et al. [38] propose the STEPS procedure that partitions data by attributes according to a
practical or statistical importance measure and synthesize the data from a constructed hi-
erarchical attribute tree; Eugenio and Liu [39] propose the CIPHER procedure to construct
differentially private empirical distributions from a set of low-order marginals through
solving linear equations with l2 regularization.

For model-based categorical data synthesis, the multinomial-Dirichlet synthesizer [40] de-
signs a prior for cell proportions to achieve DP in the Bayesian framework. The approach
was applied to synthesize the US commuting data in Machanavajjhala et al. [41] and its
inferential properties were studied in Charest [42]. McClure and Reiter [43] implemented
a similar concept but with a different prior to synthesize univariate binary data via the
binomial-beta model. Zhang et al. [44] proposed PrivBayes to release high-dimensional
categorical data from Bayesian networks.1

For numerical data synthesis, Wasserman and Zhou [45] proposed several paradigms to
construct differentially private empirical distributions and examined the rate at which the
differentially private distributions converge to the true distribution. Hall et al. [30] pro-
posed a differentially private kernel density estimator. In both works, synthetic data can

1 Bayesian networks are a probabilistic graphical model and does not involve Bayesian modeling or inference;
thus PrivBayes conceptually differs from the Bayesian dips framework that we focus on.
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be sampled and released from the privacy-preserving distributions; and both are subject to
the curse of dimensionality and have trouble of constructing useful differentially private
distributions in high dimensional settings.

For general data synthesis, Li et al. [46] proposed DPCopula to generate synthetic data
from differentially private copulas for multi-dimensional data. Variational inference (VI)
is a state-of-art framework for analytical approximation of hard-to-sample distributions
[47]. Some recent work employs neural networks (NN), including generative adversar-
ial networks [48], to release synthetic data from differentially private generative models
[49, 50, 51, 52]. One advantage of NN-based approaches is that they rely on machine
learning to develop robust generative models and do not make distributional or strong
relational assumptions on sample data. On the other hand, NNs are often subject to over-
fitting and generalization and robustness of a trained NN often need large training data.
The recent normalizing flow VI approach [53] is a powerful approach for approximating
high-dimensional, irregular, or multi-modal distributions. Work that integrates DP in VI
through normalizing flows [54] also exists by achieving DP can be achieved during iter-
ative optimization of the evidence lower bound. The approach at the same size requires
large sample sizes to generate useful synthetic samples in a differentially private manner,
especially when employed normalizing flows have many parameters.

There also exist dips approaches for specific data types. Quick [55] proposed an approach
to generate private synthetic data via the Poisson-gamma model and applied the approach
to disease mapping. There are also dips approaches for specific types of data such as graphs
[56, 57, 58, 59]; mobility data from GPS trajectories [60, 61], and graph data based on expo-
nential random-graph models in social networks [62, 63]. Dips is also a topic for doctoral
dissertation research in recent years [64, 65, 66, 67].

For statistical inference based on differentially private synthetic data, Smith [24] proposed
the “subsample-and-aggregate” technique to obtain differentially private α-Winsorized
means over subsamples. The approach requires the estimates from subsamples are i.i.d.
from an approximately Gaussian distribution with a bounded third moment, for suffi-
ciently large n. Charest [42] explicitly modelled the differentially private mechanism in the
Bayesian inference of synthesized univariate binary data; Karwa and Slavković [68] treated
the Laplace mechanism as a measurement error on the sufficient statistics of the β-model
for random graphs and established the conditions for the existence of the private maximum
likelihood estimator for the degree sequence in graphs that achieves the same convergence
rate as non-private estimators. Karwa et al. [62] modelled the sanitization mechanism when
analyzing synthetic social networks in the framework of exponential family random-graph
models. All the work focuses on either just point estimators, a specific type of analysis, or a
specific type of data; if uncertainty quantification is involved, then the sanitization mecha-
nisms would be modeled explicitly during the inferential process, meaning that data users
would need to be provided with full details of the sanitization mechanism so to model
and incorporate the mechanism in their data analysis procedures. This can be challenging
especially for users who are not familiar with DP and sanitization mechanisms; even for
users who are familiar of DP, incorporating a randomized mechanism in a commonly used
analysis procedure may bring analytical and computational challenges.

1.3 Our Contributions

We develop the model-based differential private synthesis (modips) procedure in the Bayesian
setting, aiming for population-level information preservation in the synthetic data. Differ-
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ent from the existing Bayesian dips approaches such as the multinomial-Dirichlet and the
beta-binomial synthesizers, modips does not achieve DP through prior specification, but
rather through sanitizing the posterior distribution. modips is a general approach that can
handle all data types (numerical, categorical, discrete, graphs) where appropriate Bayesian
models can be constructed. Our main contributions are summarized as follows.

• We achieve DP in the modips procedure through sanitizing posterior distributions of
model parameters. We propose several procedures for obtaining privacy-preserving
posterior samples. The achieved privacy guarantees are preserved in the subsequent
synthesis step and in released surrogate datasets with the immunity to post-processing
property of DP.

• We propose releasing multiple synthetic datasets to account for uncertainty of sanitiza-
tion and synthesis in inference from sanitized data. We provide an inferential combina-
tion rule across multiple synthetic datasets and examine its asymptotic properties. We
run empirical studies to examine the impact of the number of multiple synthetic sets on
inference.

• We propose the concepts of communal sanitization and individualized sanitization and
study the effect of privacy budget allocation on inference in the individualized sanitiza-
tion via empirical studies.

The rest of the paper is organized as follows. Sec. 2 overviews the basic concepts of DP,
some commonly used differentially private mechanisms, and the traditional non-DP mul-
tiple synthesis procedure. Sec. 3 introduces the modips approach and several procedures
for obtaining privacy-preserving posterior samples, a key step in modips. Sec. 4 proposes
an approach to combine inferential results from multiply synthetic datasets for final infer-
ence. Sec. 5 runs simulation studies to illustrate the application of modips, validate the
inferential combination rule, examine the effects of the number of released datasets and
the impact of privacy budget allocation on inferences; it also summarizes the results from
published work that implements the modips approach or uses our inferential combination
rule. The paper concludes in Sec. 6 with final remarks and some topics for future work.

2 Preliminaries
In this section, we present some definitions and concepts in differential privacy (DP) (Sec. 2.1)
and data synthesis (Sec. 2.2) that are referred to or used in later sections of th paper.

2.1 Differential Privacy

DP is a mathematically formulated formal privacy notion and does not make ad-hoc as-
sumptions on the background knowledge or behaviors of data intruders.

Definition 1. [69, 20] A randomized algorithmR is ε-differentially private if, for all datasets
(x,x′) that differ in one individual and all possible subsetsQ to the output range of statistic
s fromR,

∣∣∣log
(

Pr(R(s(x)))∈Q)
Pr(R(s(x′)))∈Q)

)∣∣∣ ≤ ε for ε > 0.

The DP definition implies that the probabilities of obtaining the same statistic from x and
x′ after the sanitization are similar – the ratio between the two probabilities falls within
[e−ε, eε]. ε is often referred as the privacy loss or budget parameter; the smaller ε is, the more
privacy protection will be executed on the individuals in the data through R. In layman’s
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terms, DP implies the chance that an individual in a dataset can be identified based on
released sanitized results is low since the results are about the same with or without that
individual.

In what follows, we use d(x,x′) = 1 to denote two datasets x,x′ differing by one individual,
which is often defined in two ways. First, x,x′ have the same sample size, but one and only
one record differs in at least one attribute; a substitution would make x,x′ identical(aka
bounded DP in Kifer and Machanavajjhala [70]). In the second definition, one dataset has
one more record than the other, so the sample sizes differ by 1, and deletion (or insertion)
of one record would make x,x′ identical (aka unbounded DP).

In practice, satisfying the pure DP in Definition 1 may lead to much perturbation in re-
leased information. To reduce the amount of sanitization, softer versions of DP have been
developed, such as the (ε, δ)-approximate DP (aDP) [71], the (ε, δ)-probabilistic DP (pDP)
[41], (ε, δ)-random DP (rDP) [72], (ε, τ)-concentrated DP (CDP)[73] and zero concentrated
DP (zCDP) [74], Rényi DP [75], and Gaussian DP [76]. In some relaxed versions of DP, ex-
tra parameters are employed to characterize the amount of relaxation on top of the privacy
budget ε and include the pure DP as a special case. For example, (ε, δ)-aDP and (ε, δ)-pDP
reduce to ε-DP when δ = 0, and (α, ε)-Rényi DP reduces to ε-DP when α =∞. The relaxed
versions are also related; for example, zCDP and Gaussian DP can be converted to aDP,
with ε as a functional of δ.

Many differentially private mechanisms have been proposed to sanitize statistics, among
which the Laplace mechanism, the Gaussian mechanism, and the exponential mechanism
are three popular sanitizers for general purposes, the definitions of which are given below.

Definition 2. [20] Let s = (s1, . . . , sr) be a r-dimensional statistic. The Laplace mechanism of

ε-DP releases sanitized version s∗ of s via s∗i = si + ei, where ei
ind∼ Laplace

(
0,∆1ε

−1) for
i = 1, . . . , r and ∆1 is the global sensitivity of s.

∆1 is a special case of the lp global sensitivity (GS) ∆p = maxx,x′,d(x,x′)=1‖s(x) − s(x′)‖p
when p = 1 [23]. The sensitivity is “global” since it is defined for all possible datasets and
all pairs of two neighboring datasets. The larger the GS is, the larger the privacy risk is
from releasing s, and the more perturbation is needed for s to offset the privacy risk. This
is also reflected in the variance of the Laplace distribution 2

(
δ1ε
−1)2: the larger δ1 or the

smaller ε is, the more spread the distribution of s∗ is, and the more likely that extreme s∗

values that are far away from s will be released.

Definition 3. [23, 77] Let s = (s1, . . . , sr) be a r-dimensional statistic. The Gaussian mech-
anism sanitizes s as in s∗i = si + ei, where ei

ind∼ N (0, σ2) for i = 1, . . . , r with σ ≥ c∆2/ε
(∆2 is the l2 GS of s) for ε < 1 and c2 > 2 log(1.25/δ) in the case of (ε, δ)-aDP and σ ≥
(2ε)−1∆2(

√
(Φ−1(δ/2))2 + 2ε−Φ−1(δ/2)) in the case of (ε, δ)-pDP, where Φ−1 is the inverse

CDF of the standard normal distribution.

Definition 4. [21] Let s = (s1, . . . , sr) be a r-dimensional statistic and S be the set contain-
ing all possible sanitized outputs. The exponential mechanism of ε-DP releases s∗ from p(s∗)∝
exp(u(s∗)ε/(2∆u)), where u(s∗) is the utility score of s∗ and δu = maxx,x′,δ(x,x′)=1 |u(s∗|x)−
u(s∗|x′)| is the maximum change (sensitivity) in score u for all pairs of neighboring datasets
x and x′.

DP has some nice properties that other privacy notions do not possess, and they are key
for successful applications of DP in practical problems. One such property is that released
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sanitized results through a DP mechanism are immune to post-processing in the sense that
they do not leak more private information if further processed after release (as long as there
is no access to the original data from which the results are calculated). Another property is
that the total privacy loss from applying multiple differentially private mechanisms to the
same dataset is closed2 (combining the released results from multiple differentially private
algorithms is still differentially private). There are two basic composition principles in DP:
parallel composition and sequential composition [21]. If mechanismRj is εj-DP for j = 1, . . . , r
and each is applied on disjoint subsets Dj of a dataset D, then

∏
j Rj(y ∩Dj) is max (εj)-

DP per the parallel composition; if Rj is applied to the same dataset D, then
∏
j Rj(y) is

(
∑
j εj)-DP per the sequential composition. Besides the basic compositions, there is also

advanced composition [79] in aDP that provides tighter privacy loss bounds. Some relaxed
DP notions (e.g., CDP, zCDP, Rényi DP, Gaussian DP) allow exact privacy loss composition
or easily track the privacy loss over multiple releases. In summary, immunity to post pro-
cessing and composition allow users of DP to design sophisticated differentially private
algorithms for complicated problems (e.g., releasing intermediate gradients in gradient-
based iterative optimization).

2.2 Multiple Synthesis

Each surrogate dataset to an original dataset x generated through multiple synthesis (MS)
have the same structure and format as x3 but contain pseudo-individuals. Synthetic data
can be generated in several approaches. Depending on whether a parametric statistical
model for synthesis, a MS approach can be model-free or model-based; depending on the
observed data source that synthesis is based on, a MS approach can be population synthesis
and sampling [1, 9] or sample synthesis [80]; by the percentage of the synthetic component
in a released dataset, data synthesis can be partial synthesis or full synthesis [2, 3]. Cross-
labelling of a MS approach is possible, such as “model-based full sample synthesis”.

Fig. 1 depicts a Bayesian MS procedure sample full synthesis, the focus of in this paper.
f(x|θ) is the model assumed on the original data x, which also represents the likelihood
function, f(θ) is the prior and f(θ|x) is the posterior distribution of the model parameters
θ. The MS procedure outputsm ≥ 1 sets of synthetic surrogate data from the posterior pre-
dictive distribution f(x̃|x) by first sampling θ from f(θ|x) and then x̃ from f(x|θ) given the
drawn θ in the previous step, since f(x̃|x) =

∫
f(x̃|θ)f(θ|x)dθ. The size of each surrogate

data set is kept to be the same as the original sample size n.

Figure 1: The traditional MS procedure

The MS procedure in Fig. 1 does not use explicit randomized algorithms to sanitize the

2 See Kifer and Lin [78] for examples on when the property does not hold in some relaxed form of DP.
3 For example, if x is tabular data, then x̃ would have the same dimensionality as x with the same numbers of

samples and attributes; if x is graph data, the number of nodes in x̃ is the same as in x.
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information in x. The argument for privacy guarantees of this approach is rather heuristic
as no individuals in the surrogate data correspond to any real persons. There exists work
that connects posterior sampling, which has inherent randomness, with DP. Wang et al.
[81] proved that the privacy loss for releasing one posterior sample of θ given any prior is
4B, where B is the upper bound of the log-likelihood log(l(θ|x). Dimitrakakis et al. [82]
show that if the change in the log-likelihood between two neighboring datasets (x,x′) is
bounded by a constant C, releasing one posterior sample of θ is 2C-differentially private.
For MS, since m ≥ 1 posterior samples are released, the overall privacy loss becomes 4mB
and 2mC, respectively, per the sequential composition. If the bounds B and C are large,
the privacy loss that relies on the inherent randomness of posterior sampling can be too
large to provide sufficient privacy guarantees.

3 Model-based Differentially Private Data Synthesis (modips)

3.1 The modips Procedure

Fig. 2 illustrates the modips procedure. Compared to the traditional MS procedure in Fig. 1,
the modips procedure incorporates the formal DP notion via an additional sanitization
step prior to synthesis. Instead of sampling from the posterior distribution of f(θ|x), the
modips samples from its sanitized version f∗(θ|x), since the information in the original
data x is passed to the synthetic data x̃ through the samples of θ (refer to Fig. 1), if θ is
privacy-preserving, so are the data x̃ sampled given θ. We regard the original sample size
n as public knowledge and keep the size of each surrogate data set at n in the modips
procedure.4

Figure 2: The modips Procedure (superscript * represents “sanitized”)

Since the modips procedure is model-based, its users need to first specify a model for their
data. In the Bayesian framework, this would involve the specification of prior f(θ) and
likelihood f(x|θ). If users have prior or public knowledge on what f(x|θ) would fit the
data x well, the likelihood can be prespecified without using any specific values in x and
thus costing no privacy; otherwise, the modips procedure starts with a model selection step
given x, consuming a portion of privacy. If uses have a candidate set with a finite number
of models, they may apply the exponential mechanism (Definition 4) to choose a model
with a utility function u that measures the goodness of fit of each model. For example, if
all attributes in x are categorical one may apply a Bayesian network to the data to uncover

4 A variant to the modips procedure in Fig. 2 is the nested modips procedure, the details of which is given in the
Appendix. Since the output volume from the nested modips is t folds of that of the standard modips procedure
and the analysis of the synthetic data is also more complex with the hierarchical data structure, we suggest not
employing the nested modips unless there is an absolute need or interest to separately quantify due to sanitization
vs. synthesis (see Sec. 4 for detail).
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the dependency structure among the attributes with the Bayesian information criterion as
the utility function [83], or using the PrivBayes framework which proposes a novel utility
function with low sensitivity [44]. Once a Bayesian network is selected, one may form a
corresponding joint distribution of the attributes so to construct the likelihood function for
the sanitization and synthesis in subsequent steps. If the attributes are a mixture of numer-
ical and categorical, one may apply sequential regression models to model the dependency
structure among the attributes similar to that used in multiple imputation [84]. Users may
also use any model selection procedure deemed appropriate for their data, but should al-
ways keep in mind this step costs privacy and will need to design a differentially private
mechanism to choose a model.

Algorithm 1 presents the steps of the modips procedure, starting with model selection. One
can also incorporate the model selection step as part of the “for” loop, so each synthetic
dataset is from a different model. There are pros and cons to this approach. On the one
hand,

Algorithm 1: The modips Procedure
input : number of surrogate datasets m, privacy budget ε, original data x
output: surrogate datasets: x̃∗(1), . . . , x̃∗(m)

1 Select a model with a privacy budget portion ε0 for data x if no model is prespecified;
2 for i = 1, . . . ,m do
3 Obtain a posterior sample θ∗(j) from f(θ|x) corresponding to the selected

Bayesian model via a differentially private mechanism with privacy budget
(ε− ε0)/m;

4 Draw x̃∗(j) from f
(
x|θ∗(j)

)
.

5 end

statistical inference based on multiple synthetic datasets ought to be more robust as it is im-
plicitly averaged over multiple synthesis models; on the other hand, the inference is subject
to more variability with the employment of multiple synthesis models, especially consid-
ering that privacy budget ε0 allocated to model selection is further split into m portions,
potentially making model selection less meaningful from a data utility perspective.

Each synthetic set is sanitized with 1/m of the overall privacy budget per the sequential
composition. Since the amount of noise increases with decreasing privacy budget, one set
of synthetic data with m > 1 is noisier than that with m = 1; however, the total amount
of information collectively across the m > 1 sets may still be compatible with that for
m = 1. More importantly, releasing multiple sets provides an effective and convenient
way to quantify the uncertainty and randomness introduced during the sanitization and
synthesis. This enables valid inferences in the released data when no other sources or
approaches are available to data users to quantify the uncertainty (see Sec. 4 for details).

Proposition 1. The modips procedure in Algorithm 1 is ε-differentially private.

The proof of Proposition 1 is provided in the Appendix. The proof suggests that the step
of drawing x̃∗ does not incur any additional privacy cost as it can be regarded as post-
processing of the already-sanitized θ∗.

Algorithm 1 is also applicable to relaxed versions of DP. For example, if (ε, δ)-aDP is em-
ployed, the data curator would split both ε and δ between the model selection and synthesis
steps and across the m syntheses; the conclusion in Proposition 1 also applies to (ε, δ)-aDP
as it is immune to post-processing and closed under composition.
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3.2 Differentially Private Posterior Sampling

We present a few approaches to obtaining sanitized samples from f(θ|x) (line 3 of Algo-
rithm 1), including 1) direct sanitization, 2) sanitization of sufficient statistics, and 3) sani-
tization of approximate distribution. We introduce each approach in detail below.

1) Direct Sanitization. One may directly sanitize the posterior distribution function f(θ|x)
via a DP mechanism. Though this sounds straightforward conceptually, it can be difficult
to implement practically. One reason is that f(θ|x) is often known up to a constant only in
many practical problems; that is, f(θ|x) ∝ f(x|θ)f(θ) and the normalizing constant f(x)
might not have a close-form expression. This matters in the framework of DP as f(x) is a
function of data x – the target for protection. Even if f(θ|x) has a closed form, sanitizing
f(θ|x) is not as simple as f∗(θ|x) = f(θ|x) + e, say e ∼ Lap(0,∆f ε

−1), as f∗(θ|x) might no
longer integrate to 1 or be a proper density function.

2) Sanitization of Sufficient Statistics (SSS). When f(θ|x) can be reformulated as f(θ|s), where
s is a scalar or multi-dimensional Bayesian sufficient statistic (that is, the posterior distribu-
tion of θ given x only depends on s), one can sanitize s to achieve DP guarantees for f(θ|s)
and thus for f(θ|x) and f(x̃|θ). We expect that SSS is easier to implement compared to the
direct santization as s is of finite dimension and there are many existing mechanisms for
sanitizing statistics. We refer to this variant of the modips procedure as modips.SSS. The
formal privacy guarantee of modips.SSS is provided in Proposition 2 and its proof is given
in the Appendix.

Proposition 2. The modips.SSS procedure satisfies ε-DP.

Figure 3: The modips.SSS Procedure

Fig. 3 presents the modips.SSS procedure. The steps for implementing modips.SSS, are
similar to Algorithm 1, except for line 3, where s is sanitized with privacy budget (ε−ε0)/m

(e.g, via the Laplace mechanism) to obtain s∗(j), and then a posterior sample θ∗(j) is drawn
from f(θ|s∗(j)). Identification of sufficient statistic s in a Bayesian model is critical for
modips.SSS. Generally speaking, classical sufficiency implies Bayesian sufficiency.5

3) Sanitization of Approximate Distribution. The modips.SSS procedure sanitizes sufficient
statistics s, the GS of which can be challenging to obtain, not to mention that not all mod-
els can be expressed using sufficient statistics only. As an alternative, we may sanitize an
approximation to f(θ|x), say g(θ|x), such as through the VI approach as introduced in
Sec. 1. If analytically tractable distributions g(θ|x) (e.g., multivariate normal distributions
or exponential family distributions) with easily identifiable sufficient statistics, can approx-
imate f(θ|x) well, we can apply modips.SSS to g(θ|x) instead. However, in many cases,

5 There are examples of Bayesian sufficient statistics which are not classically sufficient but those are unusual
situations [85, 86, 87].
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f(θ|x) is more complicated than can be well approximated by a “nice” distribution. For
this reason, we propose three simple numerical approaches to achieve DP when releasing
samples from a posterior distribution, which are Sanitization of Discretized Density func-
tion (SiDD), SiDD with Monte Carlo (SiDD.MC), and Sanitization of Posterior Histogram
Counts (SiPHiC).

SiDD: Algorithm 2 presents the SiDD procedure. Though f(θ|x) is listed as the input in
Algorithm 2, it does not need to be normalized. The algorithm starts with cutting f(θ|x)
into b bins, which can be challenging in high-dimensional settings. A simpler approach,

Algorithm 2: The SiDD procedure
input : posterior distribution f(θ|x), number of bins b, privacy budget ε.
output: a privacy-preserving posterior sample θ∗

1 Discretize f(θ|x) into b bins {Bi}i=1,...,B ;
2 Select a bin via the exponential mechanism of ε-DP: Pr(Bi)∝exp(uiε/(2∆u)), where

ui=log
( ∫

1(θ ∈ Bi)f(θ|x)dθ
)
; denote the selected bin by Bk and the index for the

marginal bin in the j-th dimension in bin Bk by j(k) with end points
(cj,j(k)−1, cj,j(k));

3 Draw a sample θ∗ from uniform((c1,1(k)−1, c1,1(k))×· · ·×(cp,p(k)−1, cp,p(k))).

though likely less optimal, is to discretize each dimension separately and the total num-
ber bins across p dimensions is B =

∏p
j=1Bj , where Bj is the number of bins in the jth

dimension. The step that costs privacy is the bin selection from the discretized distribution
(line 2) via the exponential mechanism, with the utility function u being the logarithm of
a bin volume. In other words, the probability of a bin Bi being selected is proportional to
the volume of Bi with a constant exponent (ε/(2∆u) that is calibrated to the privacy budget
and the utility sensitivity. Other utility functions can also be used, as long as there is a good
rationale. The integral

∫
1(θ∈Bi)f(θ|x)dθ in u can be evaluated via numerical approaches

(e.g. MC approaches). One computationally efficient approach is as follows. We set∫
1(θ ∈ Bi)f(θ|x)dθ = f̄i(θ|x)Vi per the mean value theorem, where Vi is the volume of the

hyper-cube defined by the cut points ((c1,1(i)−1, c1,1(i))×· · ·×(cp,p(i)−1, cp,p(i))) surrounding
Bi and f̄i(θ|x) is the average of the density values evaluated at a large number of uniformly
distributed θ points within Bi or can be simply set at f((c1,1(i)−1+c1,1(i))/2, · · · , (cp,p(i)−1+
cp,p(i))/2|x). Though the latter may lead to some accuracy loss, since the goal is not to pre-
cisely estimate

∫
1(θ ∈ Bi)f(θ|x)dθ, but rather to define a reasonable utility function u to

select a bin via the exponential mechanism, the rough estimate would not cause material
harm. Based on f̄i(θ|x)Vi, we can calculate the sensitivity of the utility u, the result of
which is given in Proposition 3 and its proof is provided in the Appendix.

Proposition 3. Let A , supx,θ | log(f(θ|x))|.6 The GS of the utility function u=log
( ∫

1(θ∈
Bi)f(θ|x)dθ

)
in Algorithm 2 is ∆u=maxB,θ,d(x,x′)=1 |ui(x)− u(x′)|=2A.

SiDD.MC: The SiDD procedure can also be implemented in an MC manner by sanitizing

6 A reviewer asked about the rationale behind the usage of “log” and ”supreme”. The reason why supreme
is used is because the upper bound needs to be independent of the data to prevent privacy loss. Supreme here
refers to the smallest upper global bound to the log function. Alternatives, such as maximum, cannot be used as
the maximum of | log(f(θ|x))| as they depend on the data x and thus leak privacy; in other words, the bound A
would be A(x) if the maximum were used. Regarding “log”, since Algorithm 2 uses a log-scale u, its sensitivity
relates to the supremum of log-density log(f(θ|x)); see the proof in the Appendix for the technical details. If
other utility functions are used, the corresponding sensitivities would mostly likely take a different form. The
same rationales above apply to Proposition 4.
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a histogram constructed from a set of posterior samples from f(θ|x), referred to as the
SiDD.MC procedure. The steps are presented in Algorithm 4. The GS for log(N∗i /N) in line
2 of Algorithm 3 is given in Proposition 4; the proof can be found in the Appendix.

Algorithm 3: The SiDD.MC procedure
input : N samples of θ from f(θ|x), privacy budget ε.
output: a privacy-preserving posterior sample θ∗.

1 Construct a histogram estimator of f(θ|x) given the N samples of θ; denote the
number of histogram bins by B;

2 Obtain bin count Ni for i = 1, . . . , B and sanitize log(Ni/N) via the Laplace
mechanism: log(N∗i /N) ∼ Lap(log(Ni/N),∆i/ε) to obtain a sanitized histogram;

3 Normalize N∗i for i = 1, . . . , B so that
∑B
i=1N

∗
i = 1;

4 Draw a sample θ∗ from the histogram with sanitized counts N∗i for i = 1, . . . , B.

Proposition 4. Let A, supx,θ | log(f(θ|x))|, B be the total number of bins in the histogram
constructed from N posterior samples of θ from f(θ|x), and Ni be the count in bin Bi for
i = 1, . . . , B. Then the GS for log(N∗i /N) is ∆i = 2A.

SiDD.MC is asymptotically equivalent to SiDD when N is large and the discretization cut-
points are the same between the two. If N is small, constructed histograms in SiDD.MC
may deviate significantly from discretized f(θ|x) in SiDD, leading to a loss of accuracy and
supposedly some privacy protection. We present the Sanitization of Posterior Histogram
Counts (SiPHiC) procedure in Algorithm 4 that honors the fact that N affects the accuracy
of the histogram and privacy guarantees by sanitizing Ni instead of log(Ni/N). The GS ∆i

in line 2 of Algorithm 4 is given in Proposition 5; the proof is given in the Appendix.

Algorithm 4: The SiPHiC procedure
input : N samples of θ from f(θ|x), privacy budget ε.
output: a privacy-preserving posterior sample θ∗.

1 Construct a histogram estimator of f(θ|x) with the N samples of θ;
2 Obtain bin count Ni for i = 1, . . . , B and sanitize Ni via the Laplace mechanism of

ε-DP: N∗i ∼Lap(Ni,∆i/ε) to obtain a sanitized histogram;
3 Draw a random sample θ∗ from the sanitized histogram with counts N∗i .

Proposition 5. Let G , supx,θ f(θ|x), b denote the total number of bins in the histogram
constructed from N posterior samples from f(θ|x), and Bj be the number of bins in the
marginal histogram in the j-th dimension for j = 1 . . . , p, and the width of the Bj bins
given by hj = (h1,j , . . . , hBj ,j). The GS for the bin count Ni in bin Bi i = 1, . . . , B is
∆i = N ·G ·

∏p
j=1 hj(i),j , where j(i) = 1, . . . , Bj is the index of the marginal bin in the j-th

dimension for the i-th bin of the p-dimensional histogram.

Proposition 5 suggests the GS ofNi increases linearly with the number of posterior samples
N for a fixed Vi =

∏p
j=1 hj(i),j . Existing bin number determination rules can be used

to calculate hj . For example, if the Sturge’s rule is used to determine the number of bins
separately for each dimension,Bj ≡ B=[log2N ]+1 and all elements in hj areRj/B, where
Rj is the support range of θj ; thus ∆i ≡NG

∏p
j=1(Rj/B) = NG

(∏p
j=1Rj

)
/(log2N+1)p.

Given the relationship, we can back calculate N for a desirable value of ∆i given a fixed B.
For example, if p=1, ∆i=NGR/(log2N+1) increases with N at a sub-linear rate. Say G=
0.1 and R = 6, setting B=20 (thus h=R/B=3/10) and ∆1 =1 leads to N = 1/(Gh) ≈ 24.
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The SiDD, SiDD.MC, and SiPHiC procedures can also be used for differentially private pos-
terior sampling from “regular” f(θ|x) such as multivariate normal (MVN) distributions.
Though theoretically the mean and covariance matrix of a MVN can be directly sanitized
to achieve DP, their GS, as functions of x, can be difficult to derive analytically, depending
on the assumed model on x. In contrast, the application of SiDD only need users to supply
an upper bound on | log(f(θ|x))| or |f(θ|x)|, and calculate either the volume of each bin
in a discretized MVN distribution in Algorithm 2 or the sensitivity in Algorithm 4, both
of which are easy to obtain in the case of MVN. We provide the details how to apply the
SiDD, SiDD.MC, and SiPHiC procedures when f(θ|x) is a MVN in the Appendix.

In summary, all three sanitization of approximate distributions procedures (SiDD, SiDD.MC,
and SiPHiC) require discretization of f(θ|x). The discretization incurs information loss,
which, supposedly, also brings in some degree of privacy protection. At the moment, we
do not take this into account but rely on explicit randomized mechanisms to achieve DP.
The main reason is that the privacy guarantee associated with discretization are not easy to
quantify. We will keep this as a topic for future research.

Finally, it should be noted that though there exist approaches to obtaining a privacy-preserving
density estimator given a set of data samples [45, 88], they do not directly apply to our set-
ting. The reason is as follows. These approaches deal with the problem that the samples
which the density estimate is formed from are the exact data for privacy protection. In our
case, the original data x is subject to privacy protection but its density estimate is not the
target for sanitization or release – but rather f(θ|x); in other words, we aim to protect the
privacy information in x caused by releasing samples of θ from f(θ|x).

3.3 Sanitization of Statistics in modips.SSS

The sufficient statistic s associated with a Bayesian model in the modips.SSS procedure is
often multi-dimensional. For a fixed privacy budget, it would be in the best interest of
data users to preserve as much original information as possible when sanitizing s. Toward
that end, we may first examine whether any elements in s are calculated based on disjoint
subsets of individuals so to leverage the parallel composition principle. For statistics are
based on data from at least one shared individual, there are different schemes for budget
allocation when it comes to sanitization; we introduce two below. For easy illustration,
we present the two definitions in the context of the Laplace mechanism; the definitions are
general and apply to other mechanisms such as the Gaussian mechanism and exponential
mechanism.

Definition 5. Denote the l1-GS of a multidimensional s by δs =
∑r
i=1 ∆i, where ∆i is the

l1-GS of si . The communal sanitization sanitizes si via s∗i = si + ei, where ei
ind∼ Laplace

(0, δsε
−1) for i = 1, . . . , r.

Definition 6. Denote the l1-GS of si in a multidimensional s by δi and by wi the proportion
of ε allocated to si for i = 1, . . . , r, and

∑r
i=1 wi = 1. The individualized sanitization sanitizes

si via s∗i = si + ei, whereei
ind∼ Laplace(0, δi(wiε)

−1).

In short, all elements in s are sanitized via the same Laplace mechanism in the communal
sanitization, while the sanitation is “individualized” for each element in the individualized
sanitization. Remarks 6 compares the communal sanitization and individualized sanitiza-
tion in two special scenarios. The proof can be found in Appendix I.
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Remark 6. (a) The communal sanitization for the Laplace mechanism is a special case of the
individualized sanitization when wi = δi (

∑r
i=1 δi)

−1
= δiδ

−1
s ∝ δi for i = 1, . . . , r. (b) Set

wi ≡ 1/r (equal allocation) in the individualized sanitization. Define the average sensitivity
δ̄s , δs/r. If δi < δ̄s, the scale parameter of the Laplace mechanism for the individualized
sanitization is smaller that in the communal sanitization; in other words, if the sensitivity
of an element si in s is smaller than the average, then allocating the same privacy budget to
si as to every other statistic in s in the individualized sanitization leads to less perturbation
compared to when the communal sanitization is employed. If the sensitivity of an element
si in s is smaller than the average, then allocating the same privacy budget to si as to every
other statistic in s in the individualized sanitization leads to more perturbation compared
to when the communal sanitization is employed.

The individualized sanitization offers more flexibility as it allows users to specify the pri-
vacy budget each si receives. There is no restriction on how to specify wi > 0 as along as∑r
i=1 wi = 1 is satisfied. Equal allocation as in Part (b) of Remark 6 may be used; one may

define wi according to how “important” si is by some importance metrics.7 For example,
in the context of modips.SSS, if an element in s is deemed more influential to the quality of
synthetic data, then it can be deemed important and receive a big portion of ε.

3.4 Model-free dips

Implementation of the modips procedure requires the specification of a Bayesian model
given data x and sanitization of the posterior distribution. If the model does not represent
the underlying unknown population distribution well, synthetic data from modips can
deviate significantly from the original data, leading to the subsequent invalid inference of
population parameters based on the synthetic data. To circumvent this potential problem,
we propose a model-free version for modips, as illustrated in Fig. 4(a).

First, an empirical distribution f̂(x) such as histograms is constructed from x and is then
sanitized in a differentially private manner to obtain f∗(x), from which x̃∗ is sampled.
The synthetic data x̃∗ resembles the original x except for the variability due to sanitization
and the error in constructing f̂(x); however, it ignores the uncertainty of not knowing the
underlying population distribution f(x) where the sample data x come from. This may
lead to under-estimated variance for inference based on x̃∗. One solution to this problem is
to incorporate a bootstrap step to propagate the uncertainty from not knowing f(x) in the
synthetic data, as demonstrated in Fig. 4(b).

The modips.SSS procedure can also be extended to a model-free setting if sufficient statis-
tics s is predictive sufficient, that is, Pr(X̃ = x̃ | X = x) = Pr(X̃ = x̃ | s(X) = s(x)). To
implement the model-free modips.SSS, one would sanitize s to obtain s(i)∗, and then draw
x̃(i)∗ from f(x̃(i)∗|s(i)∗) if this distribution is easy to compute and sample from.

4 Statistical Inference in Differentially Private Synthetic
Data Analysis

To account for the randomness of the synthesis and sanitization process when obtaining
the inference from dips data, there are at least two approaches: 1) explicitly modeling the

7 The definition of “importance” varies from case to case (e.g., statistically v.s. practically important); careful
considerations are required when choosing wi according to importance.
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Figure 4: Examples of model-free dips schemes. (a) sample from sanitized empirical distribution of x; (b) sample
from sanitized empirical distribution of bootstrapped samples of x.

sanitization and synthesis mechanisms and estimating variance either analytically or com-
putationally; 2) propagating uncertainty through MS and apply an appropriate variance
combination rule. The former does not require the release of multiple synthetic datasets
but data users need to be provided with full detail of the sanitization/synthesis mecha-
nisms so to model and incorporate the mechanisms in their data analysis procedures. This
can be challenging especially for users who are not familiar with DP and sanitization mech-
anisms. Even if users are familiar with DP, incorporating a randomized mechanism even
in common statistical analysis procedures may be analytically and computationally chal-
lenging. In contrast, the MS approach is more user-friendly as there is no need to explicitly
model the sanitization mechanism as long as the sanitization/synthesis procedure does
not introduce inferential bias and users can analyze each of the synthetic datasets as if they
had the original data and then combine the results across multiple sets to generate final
inferential results. In what follows, we provide an inferential rule to obtain inferences from
multiple dips datasets. The main results are provided in Theorem 7. Before that, we first
present Definition 7 on which the main results are based.

Definition 7. Suppose f∗(θ|x) is a sanitized version of the original posterior distribution
f(θ|x) via a differentially private mechanism with privacy loss ε. If f∗ε (θ|x) → f(θ|x) as
ε→∞ ∀θ given x, then f∗ε (θ|x) is consistent for f(θ|x).

Theorem 7. Assume the model from which the posterior distribution of θ is obtained in
the modips procedure is the same as the one used for synthesis and that f∗(θ|x) is con-
sistent for f(θ|x). Let x̃∗(j) denote the j-th synthetic dataset given sample θ∗(j) from
f∗(θ|x) for j = 1, . . . ,m. Denote the parameter of inferential interest by β and assume
the statistical procedure to obtain inference for β is the same whether the data is x̃∗(j) or
x. Denote the estimate of β from x by β̂ and the corresponding variance estimate by v,
those based on x̃∗(j) by β̂∗(j) and v̂∗(j), respectively. If β̂

p−→ β, β̂∗(j)
p−→ β∗,E

(
β̂∗(j)|x

)
→

β̂,E
(
m−1

∑m
j=1 V(β∗(j)|x̃∗(j))|x

)
→V(β|x), and E

(
(m−1)−1

∑m
j=1(β̂∗(j)−β̄∗)2|x

)
→V(β∗(j)|x)

as n→∞, where β̄∗ = m−1
∑m
j=1 β̂

∗(j), then
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a) β̄∗ = m−1
∑m
j=1 β̂

∗(j) is a consistent estimator for β;

b) an asymptotically unbiased estimator for the variance of β̄∗ is
u = $ +m−1b, where

$ = m−1
∑m
j=1 v̂

∗(j) and b = (m− 1)−1
∑m
j=1(β̂∗(j) − β̄∗)2;

$ is the averaged within-set variance E(V(β|x)|x∗1), . . . ,x∗(m)). b is the between-set
variance V(E(β|x)|x∗1), . . . ,x∗(m)) that is comprised of two components b1 and b2; b1
is the variability incurred by sanitization and b2 is the variability due to synthesis that
further comprises b21 and b22, corresponding to the posterior variability of θ and the
sampling variability of x given θ, respectively;

c) the inference of β given x̃∗1), . . . , x̃∗(m) is based on tν(β̄∗,m−1b+$), where the degree
of freedom ν = (m− 1)(1 +m$/b)2.

The proof is provided in Appendix H. Though Part b) decomposes the between-set variance
component b , there is seldom an interest in quantifying b1 and b2 separately. If there is such
a need, it can be fulfilled via the nested modips procedure presented in the appendix.

We expect the results in Theorem 7 also apply to general dips approaches including both
model-based and model-free approaches that do not have to generate dips data in the
Bayesian framework. Depending on the dips procedure, the nature of the between vari-
ability b may differ. For example, if we use a model-free dips approach given in Fig. 4(a),
then b comprises the sanitization variability b1 and part of the sanitization variability b2 (i.e.,
the sampling variability b22 from f̂(x) but not the uncertainty from not knowing the distri-
bution of x). Note that this is not the problem of the variance formula $ + b/m, but rather
because the dips approach in Fig. 4(a) does not take into account the fact that the popula-
tion distribution f(x) is unknown. If the procedure in Fig. 4(b) is used, then b includes b1
and both components of b2 as the uncertainty of f(x) is captured through bootstrap.

The formula u = $ +m−1b in Theorem 7 and the formula for variance combination across
MS data generated for the partial sample synthesis approach in the non-DP setting [10] 8

are the same, which seems to be a coincidence at first glance. Further analysis, however,
suggests that the equivalence between two formulas is not coincidental as the modips pro-
cedure can be viewed as a differentially private version of the full sample synthesis with an
extra step of explicitly sanitizing the posterior distribution. In other words, we can regard
the full sample synthesis as the asymptotic case of modips approach as ε→∞.

In the non-DP data synthesis setting, the choice of m is mostly driven by computational
time and storage considerations; thus small m is preferred as long as it is large enough to
capture the between-set variance and deliver valid inference. The empirical studies [10, 9]
suggest small m (e.g., ≤ 10 ∼ 15) seems to work. In contrast, in the DP setting, the decision
on m is driven by the utility of the sanitized data at a pre-specified privacy budget ε and it
is not necessarily true that a larger m yields better utility in the synthetic datasets overall.
This is because each synthesis receives only 1/m of the total budget. While a too small
m may not be sufficient to capture the b component, a too large m risks spreading ε too
thin over m sets and each synthetic set is so“over-perturbed” that aggregating information
across m synthetic set cannot remedy the information loss.

We examine the effect of m on the inference in dips data empirically in Sec. 5.1 and plan to

8 The formula is also applicable to the non-DP partial and full sample synthesis, as it can be viewed as a special
case of partial sample synthesis with a 100% synthesis proportion.

TRANSACTIONS ON DATA PRIVACY 15 (2022)



156 Fang Liu

provide more theoretical analysis on this problem in the future, which can be a challenging
task. We expect that m synthetic sets differ more and more as m increases, leading to
an increase in b at least initially. On the other hand, if m is very large, the large amount
of perturbation may push each synthetic data to some consistent extremes, causing b to
decrease instead. In addition, $ may also change with m in a manner that depends on
how much the randomized mechanism perturbs the original data in what way. If m does
affect $, its effect is expected to be smaller compared to that on b (see the experimental
results in Sec. 5.2). The difficulty in the theoretical analysis lies in obtaining a functional
form for u(m) = $(m) + m−1b(m), which may vary case by case. If close form for u(m)
exists for some problems, the rate of the change of u(m) with m cam be quantified by
its first derivative $′(m) + m−1b′(m) − m−2b(m). If m2$′(m) + mb′(m) < b(m), then
u(m) decreases with m; otherwise, u(m) increases with m. Whether there exists an m the
leads to a minimum or maximum in u depends on specific problems (see Sec. 5.1); general
meaningful theoretical results may not exist.

5 Numerical Examples
This section presents numerical examples to examine the effects ofm on statistical inference
based on differentially private synthetic data; to demonstrate the validity of the inferential
procedure in Sec. 4; and to investigate the impact of budget allocation on inference based
on the synthetic data via modips.SSS. We also survey and summarize the published work
that has implemented the modips procedure or the inferential combination rule.

Prior to the presentation of the main observations and findings in Sec. 5.1 to 5.4, we first
use a simple example to demonstrate the implementation of the modips procedure. This
example (Fig. 5) is also part of the simulation studies in Sec. 5.1 and 5.2. The original data
x contains a single binary variable X ∈ {0, 1}. Even before seeing the actual values in x,
a natural model choice for binary data is xi ∼ Bernoulli(p) for i = 1, . . . , n, where p is the
unknown proportion pfX = 1. A common prior for p is the conjugate prior to the Bernoulli
likelihood f(x|p) = pn1(1 − p)n0 (assuming the n data points are independent) is f(p) =
beta(α, β), where n1 =

∑n
i=1 xi, n0 = n− n1, and α, β are user-specified hyper-parameters.

The posterior distribution is f(p|x) = beta(n0 +α, n1 +β), with Bayesian sufficient statistic
n1 (or n0). Since the likelihood is chosen without using any specific value in x, all privacy
budget ε can be used toward sanitizing n1 via modips.SSS. Suppose the Laplace mechanism
is employed to obtain sanitized n∗1 = n1+Laplace(0,mε−1) (the GS of n1 is 1). Plugging in
n∗1 in the posterior distribution, we have sanitized f∗(p|x) = beta (n∗0 +α, n−n∗1β). Finally,
we sample p∗ from f∗(p|x) and x̃i from Bernoulli(p∗) for i = 1, . . . , n to generate one set of
synthetic data x̃∗. The sanitization of n1 and sampling of p∗ and x̃∗ are repeated m times to
obtain m sets of synthetic binary data.

Figure 5: Implementation of modips.SSS in univariate binary data
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Upon receiving them datasets, users would run the analysis of their choice on each set as if
they had the original data and then combine the results across the m sets to obtain the final
inference using the inferential rule in Sec. 4. For example, if they are interested in estimating
p and its 95% CI, they would calculate the sample proportion p̂(j) and the corresponding
variance $(j) = n−1p̂(j)(1 − p̂(j)) from x̃∗(j) for j = 1, . . . ,m. The final p estimate based
on the information from the m sets is p̄ = m−1

∑
j p̂

(j) and (p̂+ t0.025,ν
√
v), p̂+ t0.975,ν

√
v),

where v = m−1
∑
j $

(j) +m−1b, b = (m− 1)−1
∑
j(p̂

(j)− p̄)2, and ν = (m− 1)(1 +m$/b)2.

5.1 Impact of m on Inference

We present two simulation studies to examine the impact ofm on statistical inference based
on released dips data. The first is the binary data example described above. We simulated
binary data for two values on p (0.1, 0.5; p = 0.1 represents an unbalanced data scenario).
The prior for p is beta(1, 1) and thus f(p|x) = beta(n0 + 1, n1 + 1). The second example con-
cerns Gaussian data and the parameter of interest is mean µ (σ2 = 1 and assumed known);
we set µ = 0 in the simulation. With prior f(µ) ∝ constant, f(µ|x) = N (x̄, n−1), where
x̄ is the sample mean and also the sufficient statistic in f(µ|x). The GS of µ is (c1 − c0)/n,
where [c0, c1] are the global bounds on data x [89]. We examined two sets of bounds9:
[c0, c1] = [−4, 4] and [4, 5]. Given Pr(|X|>4)=0.0063%, the truncated data can still be well
approximated by a Gaussian distribution. The sanitized statistics via the Laplace mech-
anism can be out of bounds (< 0 or > 1 for sanitized sample proportions, and < c0 or
> c1 for sanitized sample means) as the support for the Laplace distribution is the real
line. There are two ways to legitimize the out-of-bound values – truncation and boundary
inflated truncation (BIT) [89]. The former throws away out-of-bound values and the latter
sets the values smaller than the lower bound at the lower bound and those larger than the
upper bound at the upper bound.

In both studies, we examine two sample sizes n at 100 and 1000, respectively. We set m ∈
[2, 500] with the understanding that largem is for investigation purposes and unlikely used
in practice. The overall privacy budget is ε = 1, split equally across m synthetic datasets.
The inferential procedure on p is given above in the binary data case; that on µ in the
Gaussian data case is similar with µ estimated by the sample mean in each synthetic set
and $ = n−1σ2. We summarize the bias, standard deviation (SD) estimation, and coverage
probability (CP) of the 95% CIs in the inference of p and µ over 5,000 repetitions in Figs 6
and 7, respectively.

The main observations from Fig. 6 are as follows. 1) There is minimal bias in p̄∗ (point es-
timate of p) for all the examined m in all the scenarios except for the slight over-estimation
(bias∼ 0.01) form > 200 when n = 100 and p = 0.1; such a largem is unlikely to be used in
practical applications. 2) The SD estimate for p̄∗ based on the sanitized data is larger than
that based on the original data, which is expected since not only are the synthetic data sub-
ject to the sampling error as the original data, but also they have two additional variability
sources from sanitization (noise injection to satisfy DP) and synthesis (incorporation of the
uncertainty of knowing the underlying population model or parameters) that the original
data do not have. For both n = 100 and n = 1, 000, the SD decreases as m increases, gets
lose to the original SD around m = 30 ∼ 40, and then increases with m though minimally
at n = 100. 3) The CP is near nominal (95%) for almost allmwith the slight under-coverage
but still ∼ 92.5% at m = 2 and severe under-coverage when m > 200, n = 100, p = 0.1, a
consistent observation with the large bias in the same condition.

9 Bounds are required for DP purposes; see Liu [89]
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Figure 6: Effect of m (on log scale) on inference based on synthetic binary data via modips.SSS at ε = 1
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Figure 7: Effect of m (on log scale) inference based on synthetic Gaussian data via modips.SSS at ε = 1

For the Gaussian case in Fig. 7,m has a smaller impact on the inference when the bounds are
symmetric (−4, 4) around the true mean (µ = 0) than with the asymmetric bounds (−4, 5).
Specifically, 1) there is minimal bias in the estimation of µ for all m when the bounds case
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are symmetric and there is obvious bias for m > 10 in the asymmetric bounds case when
n = 100. 2) How the variance estimate changes with m is similar between the symmetric
and asymmetric bounds cases. When n = 1, 000, the variance estimate remains roughly
constant form < 10 and then increases withm, reaches its peak aroundm = 50 (truncation)
to 150 (BIT) before decreasing withm. When n = 100, the variance increase withm, reaches
its peak around m = 20 (truncation) to m = 40 (BIT), and then decreases with m. 3) The
CP is near nominal (95%) across most m with slight under-coverage (∼ 91%) at m = 2
and some over-coverage for m > 40 when n = 100 when the bounds are symmetric. For
the asymmetric bounds case, there is severe under-coverage for m > 20 (truncation) and
m > 40 (BIT) when n = 100, and for m > 80 ∼ 150 when n = 1, 000.

In summary, Figs 6 and 7 suggest that m affects inference based on sanitized data and in
what way depends on true parameter values, global bounds on data, truncation schemes,
etc. Variance estimation is the most sensitive to the change in m value, compared to bias
and CP. At least in these two examples, m ∈ [3, 10] seems to be a good choice for satisfac-
tory performance in inference; a large m is unnecessary from a computation and storage
perspective and sometimes undesirable from an inferential perspective.

5.2 Variance Combination Rule

We use similar simulation settings to Sec. 5.1 but with smaller n (10 and 100) to compare
the variance combination rule $ +m−1b in Theorem 7 with three other variance combina-
tion rules developed for different but related settings10: 1) (1 + m−1)b + $ that combines
inferences from multiply imputed datasets for missing data analysis [90]; 2) (1+m−1)b−$
for inference in the population full synthesis in the non-DP setting [9]; 3) (1 + 2/m)$ for
MS in non-DP setting [91]. We used m = 10 in all cases. Since the results for asymmetric
and symmetric bounds [c0, c1] in the Gaussian case and the results from the two bounding
schemes (BIT and truncation) are similar, we present those from the symmetric bounds and
the BIT scheme only.

The main observations on CP in Table 1 are summarized as follows. 1) Our proposed
variance rulem−1b+$ provides nominal coverage in all simulation scenarios. 2) (1+2/m)b
provides nominal coverage when ε is large (≥ 10) and n = 100, but leads to severe under-
coverage when n or ε is small. 3) (1 + 1/m)b − $ leads to either under-coverage or over-
coverage and hardly produces nominal coverage. (4) (1 +m−1)b+$ is overly conservative
and delivers close to 100% coverage in all cases. (5) As expected, the single synthesis leads
to severe under-coverage as it does not capture the synthesis and sanitization uncertainty
unless users explicitly model the synthesis and sanitization process.

Fig. 8 plots the SD estimates. In the binary case, (1 + m−1)b + $ produces the largest SD
estimate, as expected, followed by (1 +m−1)b−$, $+ b/m, and (1 + 2/m)$. $+ b/m and
(1 + 2/m)$ are similar when ε > 1 for all the examined simulation scenarios. When ε > 1,
(1 + m−1)b − $ yields similar results to $ + b/m and (1 + 2/m)$. In the Gaussian case,
(1 +m−1)b+$ and (1 +m−1)b−$ produce very similar results, followed by $+ b/m and
(1+2/m)$; the latter two are similar for ε > 10. All rules are similar at ε = 100 when n = 10
and for ε > 10 when n = 100. In both the binary and Gaussian cases, the SD estimate is
roughly constant across ε for (1+2/m)$ as the formula ignores bwhich changes drastically
with m in the DP setting, implying the inappropriateness of the formula for DP-based MS.
For the other three rules that contain the b component, the SD estimate stabilizes after a

10 As stated in Sec. 4, the formula in [10] for the partial sample synthesis in the non-DP setting is the same as in
Theorem 7 and there is no need to include it as a comparison method.
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Table 1: Coverage probability of 95% CI using different variance combination rules (m = 10)

(a) Binary Data
scenario original multiple synthesis single

ε n p B/m+W (Thm 7) (1+2/m)$ (1+1/m)B−$ (1+1/m)B+$ synthesis
100 10 0.5 0.946 0.948 0.948 0.798 0.999 0.736
100 10 0.1 0.935 0.950 0.949 0.793 0.996 0.738
100 100 0.5 0.945 0.952 0.952 0.797 0.999 0.747
100 100 0.1 0.949 0.949 0.950 0.791 0.998 0.743
10 10 0.5 0.942 0.945 0.945 0.814 0.998 0.723
10 10 0.1 0.930 0.946 0.946 0.835 0.997 0.732
10 100 0.5 0.946 0.947 0.947 0.792 1.000 0.738
10 100 0.1 0.952 0.948 0.950 0.795 0.998 0.747
1 10 0.5 0.938 0.947 0.865 0.994 1.000 0.730
1 10 0.1 0.936 0.961 0.840 0.994 0.999 0.726
1 100 0.5 0.948 0.946 0.938 0.898 0.999 0.746
1 100 0.1 0.950 0.952 0.931 0.958 1.000 0.749

0.5 10 0.5 0.942 0.941 0.707 0.999 1.000 0.715
0.5 10 0.1 0.928 0.946 0.532 0.998 0.999 0.686
0.5 100 0.5 0.955 0.953 0.924 0.972 1.000 0.730
0.5 100 0.1 0.949 0.949 0.869 0.992 1.000 0.756

(b) Gaussian Data
scenario original multiple synthesis single
ε n B/m+W (Thm 7) (1+2/m)$ (1+1/m)B−$ (1+1/m)B+$ synthesis

100 10 0.951 0.953 0.946 0.825 0.997 0.743
100 100 0.949 0.952 0.952 0.795 0.997 0.741
10 10 0.951 0.952 0.836 0.999 1.000 0.720
10 100 0.948 0.946 0.933 0.924 0.998 0.739
1 10 0.948 0.951 0.392 0.998 0.999 0.450
1 100 0.953 0.956 0.454 1.000 1.000 0.674

0.5 10 0.951 0.954 0.334 0.997 0.998 0.275
0.5 100 0.950 0.951 0.274 1.000 1.000 0.551

certain ε, the value of which depends on n and data type, among others.
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Figure 8: Standard error estimate via different variance combination rule
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In summary, the variance combination rule (1 + 2/m)$ ignores the b component, which
matters in the DP setting, leading to under-estimated variance and under-coverage, and is
thus invalid. (1 + 1/m)b + $ is overly conservative for synthetic data in the DP setting.
(1 + 1/m)b − $ does not provide the correct combination between b and $ either as it
focuses wrongly on b when $ is the main contributor to the total variance at large ε or
tends to over-weigh b when it is large at small ε. All taken together, none of the three
is suitable for inference in the analysis of MS data in the DP setting. In addition, even
(1 + 1/m)b−$ is not smaller than m−1B +$, the former stills leads to under-coverage as
the former uses z-statistic for inferences and the latter is based on t-distributions. Finally,
(1 + 1/m)b −$ is smaller than (1 + 1/m)b + $ by 2$; but the difference is not obvious at
small ε. This is because b is the dominant contributor to the total variance and overshadows
the contribution from $. The difference at large ε between the two is more obvious in the
binary case than in the Gaussian case.

5.3 Impact of Budget Allocation on Inference

We examine how budget allocation schemes in the individualized sanitization (Definitions
5 and 6) affect inference based on synthetic data in this simulation study. We simulated
data x from N (µ = 0, σ2 = 1). We examine two sample size cases n = 100 and 1, 000,
the symmetric and asymmetric bounds scenarios (c0, c1) = (−4, 4) and (−4, 5) on x, and
the BIT and truncation bounding schemes. The bounds for sanitized means and synthetic
data are (c0, c1), and for sanitized variances, are (0, (c1 − c0)2/4). We are interested in
the inference for both µ and σ2. With the Gaussian likelihood and prior f(µ, σ2) ∝ σ−2,
the posterior distribution f(µ, σ2|x) is inverse-gamma((n − 1)/2, (n − 1)s2/2)N (x̄, σ2/2),
and the Bayesian sufficient statistics are the sample mean x̄ and variance s2, the l1 GS of
which are (c1 − c0)/n and (c1 − c0)2/n, respectively [89]. Denote the proportion of the
privacy budget ε allocated to sanitizing x̄ and s2 by w ∈ (0, 1) and 1 − w, respectively.
When w = (c1−c0)/((c1−c0)+(c1−c0)2) = 1/(1+c1−c0), the individualized sanitization
becomes the communal sanitization. We set atm = 10 and ε = 1 and examine howw affects
the inference of µ based on sanitized data. The results on the bias, CP, and half-width of
95% CIs are summarized over 5,000 repeats in Fig. 9.11

The findings are summarized as follows. 1) When the bounds (c0, c1) are symmetric around
µ, w barely affects the accuracy of the point estimate ¯̃x∗ except for some numerical fluctua-
tion. When the bounds are asymmetric, there is obvious bias at n = 100, which decreases
as w increases and remains roughly constant for w > 0.5. 2) The CP is around nominal
95% with slight over-coverage for w ≥ 0.5 for the BIT bounding scheme. For the truncation
bounding scheme, there is obvious under-coverage at all w when n = 100 and at w > 0.5
when n = 1, 000. 3) It is expected that the half-width of the 95% CI based on the sanitized
data is larger than the original CI half-width given the additional variability due to saniti-
zation and synthesis in modips. Specifically, the half-width significantly deviates from the
original for all w at n = 100 but decreases as w increases; and is close to the original for
w > 0.5 at n = 1, 000.

In conclusion, larger w (portion of budgets allocated to sanitizing x̄ tends to offer more pre-
cise inference for µ with non-inferior accuracy than lower w. The equal allocation scheme,
w = 0.5 in this case, is a reasonable and convenient choice for this example; the “default”

11The inference for µ in Fig. 9 are less accurate and precise than those from the Gaussian example in Sec. 5.1
because the same privacy budget is used to sanitize two statistics (sample mean and variance) instead of just
sample in the example in Sec. 5.1.
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Figure 9: Effect of budget allocation on inference of µ based on sanitized data (m=10, ε = 1)

communal sanitization might not lead to the most efficient or accurate inference for param-
eters of inferential interest.

5.4 Summary of results in the literature on the application of modips
and inferential combination rule

The modips approach and Theorem 7 have been employed in some later work on dips
in the literature since an early version of this paper was uploaded onto arXiv.org. We
summarize some of those results below.

Chanyaswad et al. [92] proposed the RON-Gauss approach that combines dimensionality
reduction via random orthonormal projection and Gaussian generative models to synthe-
size differentially private data. They run experiments to compare RON-Gauss with 4 other
dips methods, including the modips.SSS approach, at the same privacy cost (ε = 1) for var-
ious data types and learning tasks (image data for grammatical facial expression clustering,
mobile-sensing time series data for activity classification, and Twitter data to predict topic
popularity) with a large number of attributes p and cases n (p =77, 117, 301 and n =573820,
216752, 27936, respectively). Since RON-Gauss was the newly proposed method, it is not
surprising that it is the best performer in utility. Compared to the other 3 methods, the
performance of modips varies, depending on the tasks; specifically, it was the second-best
in classification and clustering, and was the worst in regression.

Bowen and Liu [93] surveyed various dips techniques including the modips.SSS method,
compared them conceptually and empirically, and evaluated the statistical utility and in-
ferential properties of the synthetic data via the techniques through extensive simulation
studies. The work employs the inferential rule in Sec. 4 when obtaining inference from
multiply synthetic data (m = 5). The main conclusions are that with appropriate model
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specification, modips.SSS can generate synthetic data with valid statistical inference for
a practically reasonably small privacy budget but are often less precise compared to the
non-parametric dips that do not consider sampling variability during synthesis.

Liu et al. [63] proposed the DP-ERGM procedure that synthesizes network data via the
exponential random graph model (EGRM) in the DP framework. DP-ERGM is a modips
procedure and employs Algorithm 4 for deferentially private posterior sampling of ERGM
parameters. The work also uses the inferential rule in Sec. 4 with m = 4. The experi-
ment results suggest that DP-EGRM preserves the original information significantly better
than two competitors in both network summary statistics and statistical inference of some
parametric network models.

Bowen et al. [38] and Eugenio and Liu [39] proposed the STEPS and the CIPHER proce-
dures, respectively, to generate differentially private synthetic data to aim for better utility
or reduced computational/storage costs. Both methods are model-free in terms of synthe-
sis. Both works obtained the inference from multiply synthetic datasets (m = 5) using the
inferential rule in Sec. 4 with in their experiments.

6 Discussion
We propose the modips approach for differentially private data synthesis, along with sev-
eral procedures to obtain differentially private posterior samples for the implementation of
modips. In addition, we propose an inferential combination rule to obtain valid inferences
based on multiply synthetic datasets. Our empirical studies demonstrate the validity of
the combination rule for inference from differentially private synthetic data and provide
insights on the impacts of the number of synthetic datasets and privacy budget allocation
schemes on statistical inference.

Regarding the choice of m in multiple synthesis, our empirical study suggests that m ∈
[3, 10] is likely to be a proper range for practical use, consistent with the publish work on
dips data, where m = 3 to 5 is used [63, 38, 39]. In general, we expect the “optimal” m,
in the sense that the original information preservation is maximized with proper uncer-
tainty quantification at a given privacy budget, varies case by case and depends on n, p,
sanitization mechanisms, among others. If things are equal, a relatively small m would
be preferable so that each synthesis receives a reasonable amount of budget, as long as it
is large enough to capture the between-set variability. Small m also helps to save com-
putational/storage costs. We will continue to investigate theoretically and empirically the
choice of m for general settings in the future. Note that if a dataset is used mainly for
exploratory data analysis or data mining purposes, releasing a single surrogate dataset is
workable. If statistical inference or uncertainty quantification are of interest, besides releas-
ing multiple synthetic datasets, direct modelling of sanitization and synthesis mechanisms
is another approach but is not as convenient or user-friendly as MS as long as the privati-
zation and synthesis procedure is not biased.

We focus on the modips procedure in the context of the pure ε-DP. Extensions of modips
to softer versions of DP that are immune to post processing and closed under composition,
such as (ε, δ)-aDP and Rényi DP, are straightforward. The only modification is to replace
the DP mechanism of ε-DP with a mechanism that satisfies the softer version of DP.

We presented modips in the context of the full sample synthesis. It may be possible to
extend modips to full population synthesis, which will make an interesting topic for fu-
ture research, but there will be some technical challenges given the missing values in the
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unsampled set of a population and the extra sampling step for data release. While it is pos-
sible to apply DP in the framework of partial synthesis, we doubt that the robustness and
rigor of the privacy guarantees can be retained in the synthetic data, which arguably one of
the biggest advantages of DP over other disclosure risk control approaches. This is because
partial synthesis assumes that there is minimal privacy risk from retaining and releasing a
subset of the original information (a subset of attributes or individuals), the idea of which
already contradicts the concepts of DP in some sense.

The modips procedure can be challenging for high-dimensional data with a large number
of attributes of various types. The difficulty resides in the construction of a parsimonious
but representative Bayesian model; identification, and sanitization of sufficient statistics
in the case of modips.SSS; and posterior sampling in the high-dimensional setting. An
alternative is to sanitize the likelihood or the posterior distribution density (or their log
versions) directly if they are bounded while ensuring the sanitized likelihood and posterior
distribution density still lead to proper posterior distributions.
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Appendix

A Nested modips

The nested modips in Fig. A.1 is a variant of the standard modips (Fig. 3). In brief, for a
given i = 1, . . . ,m, t > 1 sets of θ∗(i,1), . . . ,θ∗(i,t) are sampled, each of which leads to a syn-
thetic dataset. The releasedm×t sets of surrogate data x̃∗(1,1), . . . , x̃∗(1,t), . . . , x̃∗(m,1), . . . , x̃∗(m,t)

takes a 2-layer hierarchical structure. The nested modips is useful when users of the modips
procedures are interested in separately quantifying the variability from sanitization and
synthesis when running analysis on released synthetic data (see Sec. 4).

Figure A.1: The nested modips procedure

B Proof of Proposition 1

Proof. To show that the modips procedure in Algorithm 1 satisfied ε-DP, we follow the DP
definition 1, which states that a randomized algorithmR is ε-differentially private if, for all
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datasets (x,x′) that differ in one individual and all possible subsets Q to the output range
of statistics s fromR,

∣∣∣log
(

Pr(R(s,x))∈Q)
Pr(R(s,x′))∈Q)

)∣∣∣ ≤ ε for ε > 0.

In the case of the modips procedure, the output is synthetic data x̃∗(j). Denote the total
privacy budget by ε, the portion allocated to model selection by ε0 and and the number of
released dataset is m. Then the budget left to synthesizing each set is ε′ = (ε − ε0)/m DP.
Per the DP definition, we aim to establish

e−ε
′
Pr(x̃∗(j) ∈ Q|x′) ≤ Pr(x̃∗(j) ∈ Q|x) ≤ eε

′
Pr(x̃∗(j) ∈ Q|x′). (B.1)

Since
Pr(x̃∗(j)∈Q|x)=Ex̃∗(j)(Eθ∗(j)(1(x̃∗(j)∈Q)|θ∗(j))|x)

=

∫
x̃∗(j)

∫
θ∗(j)

1(x̃∗(j)∈Q)f(x̃∗(j)|θ∗(j))f(θ∗(j)|x)dθ∗(j)dx̃∗(j)

=

∫
x̃∗(j)

∫
θ∗(j)

1(x̃∗(j)∈Q)f(x̃∗(j)|θ∗(j)) f(θ∗(j)|x)

f(θ∗(j)|x′)
f(θ∗(j)|x′)dθ∗(j)dx̃∗(j).

θ∗(j) is of ε′=(ε− ε0)/m-DP, that is, e−ε
′≤ f(θ∗(j)|x)

f(θ∗(j)|x′)≤e
ε′ , implying that

e−ε
′
∫
x̃∗(j)

∫
θ∗(j)

1(x̃∗(j) ∈ Q)f(x̃∗(j)|θ∗(j))f(θ∗(j)|x′)dθ∗(j)dx̃∗(j)

≤
∫
x̃∗(j)

∫
θ∗(j)

1(x̃∗(j)∈Q)
f(θ∗(j)|x)

f(θs∗(j)|x′)
f(x̃∗(j)|θ∗(j))f(θ∗(j)|x′)dθ∗(j)dx̃∗(j)

≤eε
′
∫
x̃∗(j)

∫
θ∗(j)

1(x̃∗(j) ∈ Q)f(x̃∗(j)|θ∗(j))f(θ∗(j)|x′)dθ∗(j)dx̃∗(j).

Together with ∫
x̃∗(j)

∫
θ∗(j)

1(x̃∗(j)∈Q)f(x̃∗(j)|θ∗(j))f(θ∗(j)|x′)dθ∗(j)dx̃∗(j)

=Es∗(j)(Eθ∗(j)(1(x̃∗(j) ∈ Q)|s∗(j))|x′)=Pr(x̃∗(j)∈Q|x′),
we arrive at Eqn B.1

e−ε
′
Pr(x̃∗(j) ∈ Q|x′) ≤ Pr(x̃∗(j) ∈ Q|x) ≤ eε Pr(x̃∗(j) ∈ Q|x′).

�

C Proof of Proposition 2

Proof. In the i-th synthesis for i = 1, . . . ,m,

Pr(θ∗(j) ∈ Q|x) = Es∗(j)(Eθ∗(j)(1(θ∗(j)∈Q)|s∗(j))|x)

=

∫
s̃∗(j)

∫
θ∗(j)

1(θ∗(j)∈Q)f(θ∗(j)|s∗(j))f(s∗(j)|x)dθ∗(j)ds∗(j)

=

∫
x̃∗(j)

∫
θ∗(j)

1(θ∗∈Q)f(θ∗|s∗)
f(s∗|x)

f(s∗(j)|x′)
f(s∗(j)|x′)dθ∗(j)ds∗(j).

Since s∗(j) is obtained through a ε′-DP mechanism, e−ε
′≤ f(s∗(j)|x)

f(s∗(j)|x′)≤e
ε′ and

e−ε
′
∫
s̃∗(j)

∫
θ∗(j)

1(θ∗(j)∈Q)f(θ∗(j)|s∗(j))f(s∗(j)|x′)dθ∗(j)ds∗(j)

TRANSACTIONS ON DATA PRIVACY 15 (2022)



166 Fang Liu

≤
∫
s̃∗(j)

∫
θ∗(j)

1(θ∗(j)∈Q)
f(s∗(j)|x)

f(s∗(j)|x′)
f(θ∗(j)|s∗(j))f(s∗(j)|x)dθ∗(j)ds∗(j)

≤eε
′
∫
s̃∗(j)

∫
θ∗(j)

1(θ∗(j)∈Q)f(θ∗(j)|s∗(j))f(s∗(j)|x′)dθ∗(j)ds∗(j)

Together with ∫
s̃∗(j)

∫
θ∗(j)

1(θ∗(j)∈Q)f(θ∗(j)|s∗(j))f(s∗(j)|x)dθ∗(j)ds∗(j)

=E(s∗(j)Eθ∗(j)(1(θ∗(j)∈Q)|s∗(j))|x) = Pr(θ∗(j)∈Q|x),

similarly when x is replaced by x′, we have

e−ε Pr(θ∗(j) ∈ Q|x′) ≤ Pr(θ∗(j) ∈ Q|x) ≤ eε
′
Pr(θ∗(j) ∈ Q|x′),

e−ε
′
≤ Pr(θ∗(j) ∈ Q|x)

Pr(θ∗(j) ∈ Q|x′)
≤ eε

′
;

that is, releasing a random sample θ∗(j) in the modips.SSS procedure satisfies ε′-DP. The
rest of the proof is the same as the proof for Proposition 1, leading to the conclusion that
sanitized data x from the modips.SSS satisfy DP. �

D Proof of Proposition 3

Proof. ui = − log
( ∫

1(θ ∈ Bi)f(θ|x)dθ
)

= −(log(f̄i(θ|x)) + log(Vi)) and |ui(x) − u(x′)| =
| log(f̄i(θ|x)) − log(f̄i(θ|x′))| < 2A. Therefore, ∆u = maxB,θ,d(x,x′)=1 |ui(x) − u(x′)| <
2A. �

E Proof of Proposition 4

Proof. Draw N samples from f(θ|x) and f(θ|x′), where x and x′ are a pair of neigh-
boring datasets, and form histograms based on the N samples in each case, where the
two histograms share the same bin cut points. The number of bins in each histogram is
B =

∏p
j=1Bj , and the number of bins in the j-th marginal is Bj for j = 1 . . . , p with the

widths of the bins hj = (h1,j , . . . , hBj ,j).

Denote the counts Ni and N ′i in bin Bi in the two histograms, respectively. The maxi-
mum change in the log(proportion) of bin Bi given one-individual change from x to x′ is
∆1 = max{| log(Ni/N)− log(N ′i/N)|}. Since Ni/N ≈ f̄θ∈Bi

(θ|x)
∏p
j=1hj(i),j and N ′i/N ≈

f̄θ∈Bi
(θ|x′)

∏p
j=1hj(i),j , ∆1 = max{| log(f̄θ∈Bi

(θ|x)−log(f̄θ∈Bi
(θ|x′))|}<2A. �

F Proof of Proposition 5

Proof. The proof is similar to that of Proposition 4 except for the last step. Specifically, let∏p
j=1 hj(i),j =Wi. Since Ni ≈Nf̄θ∈Bi

(θ|x)Wi and N ′i ≈Nf̄θ∈Bi
(θ|x′)Wi, ∆i = max{|Ni −

N ′i |} ≈ NWi max{f̄θ∈Bi
(x)− f̄θ∈Bi

(x′)} < NVi max{f̄θ∈Bi
(x), f̄θ∈Bi

(x′)} < NWiG. �

G Application of SiDD, SiDD.MC, and SiPHiC when f(θ|x) is MVN)

The application of SiDD.MC is straightforward and only a upper bound on | log(f(θ|x))|.
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For SiDD, in addition to an upper bound on | log(f(θ|x))|, one would calculate the volume
of each bin in the discretized MVN distribution for the exponential mechanism in Algo-
rithm 2, which does not change when the MVN is standardized (mean 0 and marginal vari-
ance is 1 for each dimension) as long as the cut points for the bin is also relocated and scaled.
After the standardization, the MVN can be expressed as N (0, r); the same bound [−C,C]
and the number of bins B can be applied to each of the p dimensions of θ. Set C > 0 at a
large number so that there is ignorable probability mass outside [−C,C]; let h=2C/B and
the set of cut points for the bins in each dimension be C=[−C, h−C, · · · , C−h,C]; and de-
note the left cut point for bin Bi in the j-th dimension by C[j(i)], where j(i) = 1, . . . , B+ 1.
The volume of Bi is Vi = Φ((C[1(i)+1], · · · ,C[p(i)]+1);0, r)−Φ((c[1(i)], · · · ,C[p(i)]);0, r)},
where Φ is the CDF of N (0, r). The posterior correlation matrix r is a function of x and
needs to be sanitized or specified independently of x using prior knowledge to save pri-
vacy cost. For example, since the larger the elements in r are, the larger ∆ is, we may set
all correlations in r at some rarely large value in practice to be conservative. This approach
is employed in Liu et al. [63] to obtain privacy-preserving posterior samples of ERGM pa-
rameters fitted on network data.

For SiPHiC, in addition to an upper bound on f(θ|x), one can easily calculate the sensi-
tivity in Algorithm 4 by ∆i=N maxi{Vi} ≤ N(Φ(h/2;0, r)−Φ(−h/2;0, r)), where hp×1 =
(h, . . . , h)T . The specification of r is similar to that for the SiDD procedure.

H Proof of Theorem 7

Part a). The likelihood is f(x|θ). Synthetic data x̃∗ via the modips procedure is generated
from f(X|θ∗), where θ∗(j) is a random sample from the sanitized posterior distribution
f∗(θ|x). We assume that f∗(θ|x) is consistent for f(θ|x). WLOS, suppose θ is a scalar.
If the estimator of θ̂ based on original x is consistent (e.g., MLE, posterior mean) for the
parameter of interest θ, then the same estimator θ̂∗ but based on the sanitized x̃∗ is consis-
tent for θ∗ as the distribution that generates x and x̃∗ are the same except the underlying
parameter values. The mean squared error of θ̂∗ as an estimate for θ is

EX∗(θ̂
∗ − θ)2 = EX∗(θ̂

∗ − θ∗ + θ∗ − θ)2

= EX∗(θ̂
∗ − θ∗)2 + EX∗(θ

∗ − θ)2 + 2EX∗ [(θ̂
∗ − θ∗)(θ∗ − θ)]

= EX∗(θ̂
∗ − θ∗)2 + (θ∗ − θ)2 + 2(θ∗ − θ)EX∗(θ̂

∗ − θ∗) (H.1)

→ (θ∗ − θ)2 as n→∞, which → 0 as ε→∞.

The first and third terms EX∗(θ̂
∗ − θ∗)2 and EX∗(θ̂

∗ − θ∗)→ 0 as n→∞ in Eqn (H.1) with
the consistency of θ̂∗ for θ∗. θ∗ in the second term (θ∗ − θ)2 is a draw from the sanitized
posterior distribution f∗(θ|x). If there is no sanitization, f(θ|x) approaches a degenerate

distribution at point θ as n → ∞; in other words, f(θ|x)
d→ θ as n → ∞. With sanitization,

since f∗(θ|x)
d→ f(θ|x) as ε → ∞ per consistency (definition 7) and f(θ|x)

d→ θ as n→∞,

then f∗(θ|x)
d→ θ as n→∞ and ε→∞. Taken together, (θ∗−θ)2 → 0 as n→∞ and ε→∞.

In cases where the parameter of inference interest on the users’ side is β, rather than θ
– the parameter in the sanitization and synthesis on the data curator’s side, assume the
distribution or model used by the users of the released sanitized data is congenial in a
similar sense as in Meng [94], then β should be a function of θ; that is, β = h(θ) and
β∗ = h(θ∗). By the continuous mapping theorem, since θ̂∗ is consistent for θ as n → ∞
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and ε → ∞, so is β̂∗ for β. With m set of synthetic data, if β̂∗(j) is consistent for β for
i = 1, . . . ,m, so is m−1

∑m
i=1 β

∗(j) per the Slutsky’s theorem.

Part b). The proof is based in a similar framework as in Rubin [90] (inferences from mul-
tiple imputation) and Reiter [10] (inferences from partial sample synthesis without saniti-
zation), with necessary modifications to allow for the extra variability introduced during
the sanitization of the posterior distribution before sampling. We first provide s a Bayesian
derivation of the inference and then list the conditions under which these inferences are
valid from a frequentist perspective.

In the Bayesian framework, the posterior variance of β given synthetic data x̃∗(j) for i =
1, . . . ,m is

V(β|x̃∗1), . . . , x̃∗(m)) = V(E(β|x)|x̃∗1), . . . , x̃∗(m))+E(V(β|x)|x̃∗1), . . . , x̃∗(m))

=V(β̂|x̃∗1), . . . , x̃∗(m)) + E(v̂|x̃∗1), . . . , x̃∗(m)), (H.2)

where β̂ and v̂ are the posterior mean and variance of β, respectively, given the original data
x; β̂∗(j) and v̂∗(j) are the posterior mean and variance of β∗(j), respectively, given x̃∗(j). By
the large-sample theory, as n→∞,

β|x ∼ N(β̂, v̂) (H.3)

β∗(j)|x∗(j) ∼ N(β̂∗(j), v̂∗(j)). (H.4)
Since β∗(j) is independent for i = 1, . . . ,m conditional on x̃∗(j), we have, from Eq. (H.4),

m−1
∑m
i=1 β

∗(j)|x̃∗(j) ∼ N(m−1
∑m
i=1 β̂

∗(j),m−2
∑m
i=1 v̂

∗(j)). (H.5)

Since f(β∗|x)
d−→ f(β|x), per the Lyapunov CLT, we have, as m→∞
β|β∗1), . . . , β∗(m) ∼ N(m−1

∑m
i=1 β

∗(j),m−2
∑m
j=1 v(β∗(j))) (H.6)

Eqs (H.3), (H.5), and (H.6) taken together, it suggests

β̂|x̃∗1), . . . , x̃∗(m) ∼ N(m−1
∑m
i=1 β̂

∗(j),m−2
∑m
i=1(v(β∗(j)) + v̂∗(j))). (H.7)

In a similar manner, we obtain the conditional distribution of v(x) given x̃∗1), . . . , x̃∗(m)

v(x)|x̃∗1), . . . , x̃∗(m)∼N(m−1
∑m
i=1 v̂

∗(j),m−2
∑m
i=1(vv(β

∗(j)) + v̂∗(j))). (H.8)
Replace the two terms in Eq (H.2) with the conditional variance from Eq (H.7) and mean
from Eq (H.8) and denotem−1

∑m
i=1

(
v(β∗(j)) + v̂∗(j))

)
by b andm−1

∑m
i=1 v̂

∗(j)) by$, then

V(β|x̃∗1), . . . , x̃∗(m)) = m−1b+$.

For finite m, b is approximated by (m− 1)−1
∑m
i=1(β̂∗(j) − β̄∗)2 and $ by m−1

∑m
i=1 v̂

∗(j).

Similar to Reiter [10], the regularity conditions for m−1b + $ being an asymptotically
unbiased estimator for β̄∗ in the frequentist framework include 1) E

(
β̂∗(j)|x

)
→ β̂; 2)

E
(
m−1

∑m
i=1 v̂

∗(j)|x
)
→ v̂; and 3) E

(
(m−1)−1

∑m
i=1(β̂∗(j)−β̄∗)2|x

)
→V(β∗(j)|x).

Part c). The results in parts a) and b) suggest β|x̃∗1), . . . , x̃∗(m) ∼ N(β̄∗,m−1b + $). For
a finite m, the distribution can be obtained in a similar manner as in Reiter [10], which is
f(β|x̃∗1), . . . , x̃∗(m)) ∼ tν(β̄∗,m−1b+$) with ν = (m− 1)(1 +m$/b)2.

I Proof of Remark 6

Part a). In the communal sanitization, the scale parameter of the Laplace distribution is
λ = δsε

−1 = rδ̄sε
−1, where δ̄s is the average GS. When wi ≡ r−1, every statistic receives

the same amount of privacy budget ε/r in the individualized sanitization and the scale
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parameter of the Laplace distribution for si is λ′ = δi(εwj)
−1 = rδiε

−1, which is < λ if
δi < δ̄s; and > λ otherwise.

Part b). In the individualized sanitization, the scale parameter of the Laplace distribution
for si is δi(εwi)−1 = ε−1δsi(δsi)

−1∑r
i=1δi = ε−1

∑r
j=1 δi, the same as the scale parameter

for the Laplace distribution in the communal sanitization.
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