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Abstract. To reduce disclosure risks, statistical agencies and other organizations can release noisy
counts that satisfy differential privacy. In some contexts, the released counts satisfy additive con-
straints; for example, the released value of a total should equal the sum of the released values of its
components. We present a simple post-processing procedure for satisfying such additive constraints.
The basic idea is (i) compute approximate posterior modes of the true counts given the noisy counts,
(ii) construct a multinomial distribution with trial size equal to the posterior mode of the total and
probability vector equal to fractions derived from the posterior modes of the components, and (iii)
find and release a mode of this multinomial distribution. We also present an approach for making
Bayesian inferences about the true counts given these post-processed, differentially private counts.
We illustrate these methods using simulations.
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1 Introduction

Government agencies and other data collectors, henceforth all called agencies, are obligated
to release data in ways that protect the privacy of data subjects’ identities and sensitive at-
tributes. Simply stripping individuals’ identifying information, like names and addresses,
generally does not offer sufficient protection [1]. Even releasing summary statistics—which
is the setting of this article—can result in unintended disclosures [2, 3]. Because of these
threats, some agencies are investigating methods for releasing summary statistics that sat-
isfy differential privacy [4, 5]. For example, the U.S. Bureau of the Census is releasing
differentially private counts from the 2020 population census [6].

In many contexts, agencies seek to release counts that satisfy additive constraints. For
example, the sum of the released population sizes in all fifty states must equal the released
population size of the entire U.S. Such consistency requirements facilitate analyses for end
users of the data. However, when the agency adds differentially private noise indepen-
dently to both the sum and its components—for example, as done in initial steps of the
TopDown Algorithm used by the Census Bureau [7, 8]—the resulting noisy counts may
not obey the additivity constraint.

One way to ensure additivity is to add noise only to components, and generate noisy to-
tals from the sum of the noisy components. This can result in high variances for the noisy

65



66 Ziang Wang, Jerome P. Reiter

totals, as the variance for any total accumulates over its components. An alternative ap-
proach, which we take here, is to enforce additivity after perturbing both the total and its
components; that is, the agency modifies the differentially private counts to ensure additiv-
ity. This is an example of what is called post-processing [9]. Post-processing is commonly
employed in practical implementations of differential privacy to enhance the interpretabil-
ity or accuracy of differentially private data [10]. For example, it can be used to ensure all
released counts are non-negative, which may be important in applications where data users
would not understand how to interpret negative counts. It also has been used to increase
accuracy of differentially private histograms [11].

In this article, we present a post-processing procedure for differentially private counts that
ensures additivity of a set of released values for components and their total. The basic idea
is to begin by applying a differentially private algorithm to add independent noise to each
component count and the total count. Here, we add noise with the geometric mechanism
[12]. We then compute a posterior mode of the true total given the noisy total. For the
components, we posit a multinomial model for the true counts, using the posterior mode
of the total as the trial size and approximate posterior modes of true counts to compute
the multinomial probabilities. This guarantees that the released counts sum to the total,
while also keeping the released counts close to the original noisy counts. We also present
a corresponding procedure to help users obtain posterior inferences about the true counts
given the released counts. We illustrate the post-processing and inference engines using
simulation studies.

The remainder of this article is organized as follows. Section 2 reviews differential pri-
vacy, the geometric mechanism, and an algorithm for finding a mode of the multinomial
distribution. Section 3 introduces the post-processing procedure, including some empir-
ical illustrations of its properties. Section 4 presents the method for obtaining posterior
inferences, including an illustrative example. Section 5 concludes with a summary of the
findings and a discussion of future research.

2 Background

In Section 2.1, we review differential privacy and describe the geometric mechanism. In
Section 2.2, we outline an algorithm for finding a mode of a multinomial distribution.

2.1 Differential privacy and geometric mechanism

To state the definition of differential privacy, we closely follow the notations and defini-
tions in [9], tuned to count data. Let D be a database comprising observations from some
universe D. We measure the distance between two databases D and D′ using the `1 norm,
denoted ||D−D′||1. Here, ||D−D′|| is a measure of the number of records that differ between
D and D′. When ‖D−D′‖1 ≤ 1, we call D and D′ “neighboring databases.”

Definition 1. (ε-differential privacy): A randomized algorithm M with domain ND is ε-
differentially private if for all S ⊂ Range (M) and for all D,D′ ∈ ND such that ||D−D′||1 ≤
1,

Pr[M(D) ∈ S] ≤ exp(ε)Pr[M(D′) ∈ S], (1)

where the probability space is defined byM.

The value of ε, often called the privacy budget, controls the amount of privacy. Smaller
values of ε offer greater privacy protection.
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In Definition 1, and throughout, we consider neighboring databases where D has one
more (or less) record than D′. One also can define neighboring databases as having the
same number of records where one record differs in D and D′. The latter definition of
neighboring databases is useful when the overall number of records in D is known to the
public, which we do not assume here. Our post-processing algorithm also can be applied
with this alternate definition of neighboring databases.

For count data, one method of satisfying differential privacy is the geometric mechanism
[12]. This mechanism relies on the double (two-sided) geometric distribution. This distri-
bution has a probability mass function defined on all integers such that

Pr[∆ = δ] =
1− α
1 + α

α|δ|. (2)

Here, ∆ is a random variable and δ is an integer-valued realization. We say that ∆ ∼
DG(α). The differentially private count d corresponding to the true count t is

d = t+ δ, (3)

where δ ∼ DG(α). It has been shown [12] that (3) offers ε-differential privacy with α =
1/ exp(ε). We refer to counts generated from (3) as the noisy counts.

2.2 Mode of the multinomial distribution

Our post-processing algorithm relies on obtaining a mode of the multinomial distribution.
We do so using Finucan’s algorithm [13, 14], which we now summarize.

Suppose we have a multinomial distribution with m trials and probability vector p =
(p1, . . . , pS). We abbreviate this distribution as MD(m,p). Let b.c denote the floor function
that finds the integer part of a number. Consider initial values ki = b(m+ S/2)pic and
m0 =

∑S
i=1 ki. Set fi = (m + S/2)pi − ki. Finucan’s algorithm for finding the mode of

MD(m,p) proceeds as follows.

1. If m0 < m: Define qi = 1−fi
ki+1 for i = 1, . . . , S.

While m0 < m, set

a = arg mini qi

ka = ka + 1

fa = fa − 1

qa = 1−fa
ka+1

m0 = m0 + 1.

Continue updating all parameters until m0 = m.

2. If m0 > m: Define qi = fi
ki

for i = 1, . . . , S.

While m0 > m, set

a = arg mini qi

ka = ka − 1

fa = fa + 1

qa = fa
ka
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m0 = m0 − 1.

Continue updating all parameters until m0 = m.

3. (k1, . . . , kS) is a mode for MD(m,p).

Given m and p, Finucan’s algorithm finds one mode (k1, . . . , kS), even when multiple
modes exist [15]. In our post-processing operations, finding any mode is sufficient for our
purposes.

3 Description of the Post-processing Procedure

We now present the post-processing algorithm that ensures additivity as well as non-
negativity. To do so, we make use of approximations to the posterior distributions of the
true counts given the noisy counts, which we describe in Section 3.1. We describe the algo-
rithm itself in Section 3.2. We present illustrative simulations in Section 3.3.

3.1 Approximations to posterior distribution of the true count

Suppose we have S true counts, N = (N1, . . . , NS). Let N =
∑S
s=1Ns be the total of the S

counts. We apply the geometric mechanism independently to both N and each component
of N. Let n = N + δ, where δ is noise sampled via the geometric mechanism. For s =
1, . . . , S, let ns = Ns + δs, where again each δs is sampled via a geometric mechanism.
From (2) and (3), we have

p(n | N) = p(δ = n−N) = α|n−N |
(

1− α
1 + α

)
(4)

p(ns | Ns) = p(δs = ns −Ns) = α|ns−Ns|
s

(
1− αs
1 + αs

)
. (5)

We note that n does not necessarily equal
∑S
s=1 ns. Our goal is to apply a post-processing

procedure to the noisy counts (n, n1, . . . , nS) to ensure that the released values of the com-
ponents sum to the released value of the total (and are non-negative), while keeping rea-
sonably close to the values of n and n = (n1, . . . , nS).

To implement the post-processing algorithms, we make use of the posterior distributions
of the true counts given the noisy counts, which we find by Bayesian inference. In doing
so, we treat the noisy counts (n, n1, . . . , nS) as the data and the true counts (N1, . . . , NS) as
random variables. By Bayes’ theorem, we find the posterior distribution,

p(N1, . . . , NS |n1, . . . , nS , n) ∝ p(n1, . . . , nS , n|N1, . . . , NS)p(N1, . . . , NS). (6)

When S is large, computing this posterior distribution can be computationally challenging.
Thus, we consider two approximations to the posterior distribution for purposes of the
post-processing (not inference), described below.

3.1.1 Approximation based on independence assumptions

In this approximation, we assume that the total count and component counts are all inde-
pendent in the posterior distribution, even though in reality they are not. Thus, we have

p(N1, . . . , NS |n1, . . . , nS) ≈ p(N1|n1) · · · p(NS |nS). (7)
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As convenient prior distributions, we assume that N and each Ns are independently and
uniformly distributed on some sufficiently large, integer-valued sample space. Then, we
approximate the posterior distributions as

p(N | n) ∝ p(N)p(n | N) ∝ p(n | N) = α|n−N |
(

1− α
1 + α

)
(8)

p(Ns | ns) ∝ p(Ns)p(ns | Ns) ∝ p(ns | Ns) = α|ns−Ns|
s

(
1− αs
1 + αs

)
. (9)

As we compute the posterior distributions independently for each count, we disregard ad-
ditivity constraints. Doing so makes it much easier to compute the approximate posterior
distribution for the purpose of post-processing.

3.1.2 Approximation based on summed noisy total

In addition to n, n = (n1, . . . , nS) can provide information about N . We may be able to
improve inferences about N by using both n and n. We now describe an approximate
posterior distribution that takes advantage of this information.

Let the sum of the noisy counts be n∗ =
∑
s ns. We define η such that η = n∗−N. We note

that n∗ and n are independent conditional on N .
For convenience, we assume that N follows a uniform distribution on some sufficiently

large integer-valued sample space. Then, the approximate posterior distribution ofN given
(n∗, n) is

p(N | n, n∗) ∝ p(n, n∗ | N)p(N) = p(n | N)p(n∗ | N)p(N). (10)

Here, p(n | N) is the probability of sampling δ = n−N based on (4). And, p(n∗ | N) is the
probability of sampling η from the sum of S independent double geometric distributions.
We approximate p(n∗ | N) as follows.

1. Generate 10000 sets of (δ1, . . . , δS) from the double geometric distributions used to
make (n1, . . . , nS).

2. For each set of (δ1, . . . , δS), calculate the corresponding η =
∑
s δs.

3. The approximate probability of sampling any η is its corresponding frequency di-
vided by 10000.

We use p(N |n, n∗) in lieu of (8), and otherwise use (9) to approximate the posterior distri-
bution of each Ns.

3.2 The algorithm for generating the released counts

We present two flavors of the post-processing algorithm, one that uses the independence
assumption of Section 3.1.1 and one that uses the summed noisy counts of Section 3.1.2. We
first present a version of the algorithm that uses the independence assumption.

1. Add independent noise via the geometric mechanism to N . Call the noisy count n.

2. Add independent noise via geometric mechanisms to each Ns. Call each noisy count
ns.
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3. Under the approximation based on independence, compute the posterior mode of N
based on (8). Call the modal value N̂ .

4. For each s = 1, . . . , S, compute the posterior mode of Ns from (9). Call each modal
value N̂s.

5. Compute the probabilities θs = N̂s/
∑S
s=1 N̂s for each s.

6. Using p = (θ1, . . . , θS) and setting m = N̂ , apply Finucan’s algorithm to find Ñ =

(Ñ1, . . . , ÑS). These counts, along with Ñ = N̂ , are released.

By design, this algorithm generates released counts such that
∑S
s=1 Ñs = Ñ , that is, the

released counts satisfy the additive constraint. With uniform prior distributions, the pos-
terior modes in step 3 and step 4 should equal the noisy counts, except for any ns ≤ 0 (or
n ≤ 0) in which case N̂s = 0 (or N̂ = 0). Thus, because we base each θs on the posterior
mode of Ns, and we also use a mode-finding algorithm for post-processing, we expect that
Ñ generally should be reasonably close to n.
For the approximation based on the summed noisy counts, we replace step 3 with step 3’.

3’. Under the approximation based on the summed noisy total, compute the posterior
mode of N based on (10). Call the model value N̂ .

We emphasize that the post-processing steps in the algorithm, i.e., those after step 2, are
based only on the differentially private counts (n1, . . . , nS , n). These steps do not use the
confidential counts. Hence, as long as the noisy counts generated in step 1 and step 2 are
differentially private, the post-processing property of differential privacy guarantees that
the post-processed counts (Ñ1, . . . , ÑS , Ñ) remain differentially private.

3.3 Illustrative simulations of the post-processing algorithm

To illustrate the performance of the post-processing algorithm, we use repeated sampling
simulations. Specifically, for a fixed set of true counts, we iterate the procedure from Section
3.2 for 10000 times. We consider two sets of fixed true counts: a scenario with several large
and small counts (Scenario 1) and a scenario with mostly small counts and one relatively
large count (Scenario 4). For these two simulation scenarios, we use ε = 1 for all counts.
We also consider a Scenario 2 where we use ε = 0.1 for N and ε = 5 for each Ns, and a
Scenario 3 where we use ε = 5 for N and ε = 0.1 for each Ns. We use the true counts from
Scenario 1 in these two scenarios.

In Scenario 2 and Scenario 3, the differences in ε for the total and components are more
extreme than what might be chosen in practice. They represent scenarios where using
the summed noisy counts could be especially beneficial or mostly pointless, and hence
facilitate comparisons of the post-processing algorithm based on Section 3.1.1 and Section
3.1.2. To see this, note that the theoretical variances of the summed noisy totals, V ar(n∗),
before post-processing are (92.1, 0.7, 9991.7, 92.1) in Scenarios 1 – 4, respectively. Thus, in
Scenario 2, n∗ is likely to estimate N far more accurately than n does, but in Scenario 3,
n∗ is a highly variable estimate of N . The large variance of n∗ in Scenario 3 also illustrates
why it can be beneficial to add noise to both the total and components.

For Scenarios 1 – 3, we simulate counts of 50 components including three values of 0;
one value each of 1, 2 and 3; five values between 15 and 60; and the remainder of values
scattered uniformly between 60 and 1000. The counts are displayed in Figure 1. We present
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Figure 1: Distribution of true counts Ns in simulations in Scenarios 1 – 3.

Count 1 2 3 4 5 6 7 8 9 10
Instances 7 5 3 6 3 2 2 4 4 1

Count 11 12 13 14 16 18 27 36 53 435
Instances 1 1 1 2 1 2 2 1 1 1

Table 1: True counts for the simulation in Scenario 4.

results of the post-processing algorithm for six counts: the minimum Nmin = 0, the first
quantile Nq1 = 60, the median Nmed = 382, the third quantile Nq3 = 736, the maximum
Nmax = 977, and the totalN = 21249. For Scenario 4, we generate counts as shown in Table
1, resulting in Nmin = 1, Nq1 = 2, Nmed = 6, Nq3 = 11, Nmax = 435, and N = 863.

In all simulations, we use a computationally convenient approximation to the double ge-
ometric distribution. Specifically, we truncate the sample space of ∆ to values that have
non-negligible mass under the appropriate DG(α). For example, for ε = 1, the chance of
generating a |δ| ≥ 50 is very small (about 1 × 10−22). Thus, for the simulation we restrict
the support of the noise distribution to [−50, 50]. When necessary, we increase to an appro-
priate range that captures nearly all the probability mass.

Table 2 displays the average and variance of each element in (Ñmin, Ñq1, Ñmed, Ñq3,
Ñmax, N) over the 10000 simulation runs for the algorithms based on both the indepen-
dence approximation and the summed noisy total approximation. In general, across all
scenarios and both algorithms, the averages are close to the true counts. The only instance
of non-negligible relative bias in the post-processed counts is for Nmin in Scenario 3. As
we use ε = 0.1 in this scenario, the generated value of nmin can be far from zero. For any
nmin ≤ 0, the posterior mode N̂min = 0, and for any nmin > 0 we have N̂min = nmin.
Thus, N̂min, and hence Ñmin, has an upward bias. The bias is more substantial in Scenario
3 compared to others where Ñmin is based on ε ≥ 1 because (i) the number of simula-
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Count Nmin Nq1 Nmed Nq3 Nmax N
Scenario 1

True Count 0 60 382 736 977 21249
Indep. 0.4 (0.7) 60 (2.0) 382 (2.0) 736 (2.0) 977 (2.0) 21249 (1.8)
Summed. 0.4 (0.7) 60 (2.0) 382 (2.0) 736 (2.0) 977 (2.0) 21249 (1.8)

Scenario 2
True Count 0 60 382 736 977 21249
Indep. 0.01 (0.0) 60 (0.1) 382 (0.1) 736 (0.3) 977 (0.5) 21249 (191)
Summed 0.01 (0.0) 60 (0.0) 382 (0.0) 736 (0.0) 977 (0.1) 21249 (0.7)

Scenario 3
True Count 0 60 382 736 977 21249
Indep. 5 (71) 60 (191) 381 (187) 735 (184) 976 (193) 21249 (0.0)
Summed 5 (71) 60 (191) 381 (187) 735 (184) 976 (193) 21249 (0.0)

Scenario 4
True Count 1 2 6 11 435 863
Indep. 1.0 (1.1) 2.0 (1.5) 5.9 (1.8) 11.0 (1.8) 438 (19) 863 (1.8)
Summed 1.0 (1.1) 2.0 (1.5) 5.9 (1.8) 11.0 (1.8) 438 (19) 863 (1.8)

Table 2: Averages and variances of post-processed, differentially private counts over 10000
simulation runs for each scenario. Here, “Indep.” refers to algorithms based on indepen-
dence approximation, and “Summed” refers to the algorithms based on the summed noisy
total approximation.

tion runs where nmin < 0 is largest in Scenario 3—these numbers are (2714, 72, 4765, 1045)
in Scenario 1 through Scenario 4, respectively—and (ii) when positive, nmin has a higher
chance of being far from Nmin. Unsurprisingly, the variances for the component counts are
largest in Scenario 3. In the other scenarios, the variability in the post-processed counts is
generally small compared to the corresponding true counts.

The results in Scenario 1 and Scenario 4 offer additional insight into the effects of the post-
processing algorithms. In particular, since the post-processing operations do not affect
Ñ , we know that the variance associated with N (1.8 in both settings) approximates the
variance from applying the geometric mechanism with ε = 1, without post-processing,
regardless of the true count. Using this fact, we see that the post-processing operations
generally do not add much to the variances for the counts that are not large; in fact, they
actually can decrease the variance. The post-processing does increase the variance forNmax
in Scenario 4. The distribution of Nmax in this scenario is right-skewed, with around a 2%
chance that Ñmax ≥ 450 and almost no chance that Ñmax < 430. Evidently, when the
posterior modes equal zero for many of the small counts, the probability θNmax

associated
with the largest count can increase. As a result, Finucan’s algorithm finds a multinomial
mode with Ñmax greater than its true value of 435.

Comparing the algorithms based on the independence approximation and the summed
noisy total approximation, we see few practical differences for each of the five values of Ns
and N across Scenarios 1, 3, and 4. In these scenarios, the variance of n∗, which accumu-
lates over S = 50 draws of the geometric mechanism, is large compared to the variance
of n. Hence, in these scenarios the summed noisy total adds little information about N .
However, we see a marked difference in Scenario 2. For Ñ , the variance for the algorithm
based on the summed noisy total is orders of magnitude smaller than the variance for the
algorithm based on the independence assumption. We also see reductions in the variances
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for some of the component counts. Because we use ε = 5 for the components, n∗ typically
is much closer to N than is n, which is based on ε = 0.1. Since (10) takes advantage of both
sources of information aboutN , the algorithm based on the summed noisy total offers more
accurate post-processed counts in this scenario.

4 Posterior Inferences for the True Counts

Given the post-processed, differentially private counts, (Ñ1, . . . , ÑS , Ñ), analysts need to
estimate the values of the confidential counts, (N1, . . . , NS , N). Here we outline a Bayesian
inference procedure for point and interval estimation of (N1, . . . , NS , N). In doing so, we
explicitly seek to preserve the additivity constraint. This was not essential in Section 3
when we constructed the post-processing algorithm, but it is necessary to have the right
posterior distribution for inference.

To begin, we assume that the analyst specifies prior distributions for each Ns ∈ N. Here,
we use uniform distributions over a sufficiently large domain, requiring N = N1 + · · · +
NS . Marginally, this implies a prior distribution on N that is not a uniform distribution;
rather, it follows a sum of uniform distributions. Alternatively, the analyst could set a prior
distribution on N directly, such as a uniform distribution on some suitable range. Then,
p(N1, . . . , NS , N) = p(N)p(N1, . . . , Ns | N), and the analyst must specify p(N1, . . . , NS |
N). For example, this could be a uniform distribution over all combinations of (N1, . . . , NS)
that sum toN or a multinomial distribution with a priori probabilities for the S components.
We do not investigate such prior specifications here.

With the uniform prior distribution, the posterior distribution can be written as

p(N1, . . . , NS | Ñ1, . . . , ÑS) ∝ p(Ñ1, . . . , ÑS | N1, . . . , NS)p(N1, . . . , NS)

∝
∑
n1

· · ·
∑
nS

∑
n

p(Ñ1 . . . ÑS , n1, . . . , nS , n | N1, . . . , NS)

=
∑
n1

, . . . ,
∑
nS

∑
n

p(Ñ1, . . . , ÑS | n1, . . . , nS , n,N1, . . . , NS)

× p(n1, . . . , nS , n | N1, . . . , NS). (11)

We note that (n1, . . . , ns, n) are unobserved. Thus, we need to average over p(n1, . . . , ns, n |
N1, . . . , Ns).

We present an illustration of the use of (11) for S = 2 components. We do so for post-
processed counts that derive from the algorithm based on the independence assumption.
To compute p(Ñ1, Ñ2, n1, n2, n | N1, N2), we proceed as follows.

1. For a given (N1, N2), enumerate all possible combinations of (n1, n2) from a suitably
large region around (N1, N2). For example, with ε = 1, a reasonable range spans
(N1±30)×(N2±30). The size of each interval depends on the value of ε for that count.
One should use a wider range when ε < 1. Under the post-processing algorithm,
generally Ñ = N̂ = n, so we do not need to consider any other plausible values of n.

2. For a particular combination of (n1, n2, n), compute p(n1, n2, n | N1, N2) using (4) and
(5).

3. For the same particular combination of (n1, n2 | N1, N2), find the posterior modes N̂1

and N̂2 using step 4 in Section 3.2. Compute θ = (θ1, θ2) per step 5 in Section 3.2.
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N1 N2 N Probability
250 357 607 0.21
251 356 607 0.13
251 357 608 0.08
250 356 606 0.08
249 358 607 0.07
250 358 608 0.05
249 357 606 0.05
251 358 609 0.03
249 356 605 0.03
252 355 607 0.03

Table 3: Ten highest posterior probabilities of true counts. The post-processed, differen-
tially private counts are Ñ1 = 250, Ñ2 = 357, and Ñ = 607.

4. Apply Finucan’s algorithm to find a mode, using m = n as the trial size and θ

as the probabilities. When the mode from Finucan’s algorithm equals (Ñ1, Ñ2), set
p(Ñ1, Ñ2 | n1, n2, n) = 1, otherwise set p(Ñ1, Ñ2 | n1, n2, n) = 0.

5. Multiply the probabilities in step 2 and step 4, and save the product.

6. Repeat steps 2 – 5 for all combinations identified in step 1.

We repeat steps 1 – 6 over all possible combinations of (N1, N2) from a suitably large
region around (Ñ1, Ñ2); for example, (Ñ1 ± 30)× (Ñ2 ± 30). After cycling through the full
space of (N1, N2), we normalize by summing over the products from all the step 6s. The
result is an estimate of the posterior distribution in (11).

We illustrate the posterior inferences using ε = 1 for both the total and components. We
suppose that Ñ1 = 250, Ñ2 = 357, and Ñ = 607. Table 3 displays the combinations of
(N1, N2) with the ten highest posterior probabilities. The modal combination equals the
post-processed, differentially private counts. It is clearly separated from the next highest
combination. Nonetheless, the top ten probabilities reveal posterior mass away from the
mode, indicating the importance of characterizing the uncertainty.

We also can view the marginal posterior distributions of N1, N2, and N , which are shown
in Figure 2a, Figure 2b, and Figure 2c, respectively. We obtain the marginal distribution
for any of the variables by accumulating the posterior probability for each value in the
sample space of that variable. We see that the posterior distributions are centered around
the post-processed counts with most posterior mass within ±4 of the these counts.

5 Discussion

To summarize, the post-processing algorithm can generate released counts that are close
to the true counts, at least for the values of ε examined here. Additionally, we find no
practical differences between the algorithms based on the independence approximation
and the summed noisy total approximation, except for the case where the ε values for the
components are large compared to the ε value for the total. On the downside, when a set
of true counts has many small values, e.g., they equal zero, and only a few large values,
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(a) Marginal distribution of N1. (b) Marginal distribution of N2.

(c) Marginal distribution of N .

Figure 2: Marginal posterior distributions of (N1, N2, N) given (Ñ1, Ñ2) = (250, 357) and
Ñ = 607, computed using the independence assumption.

the post-processing algorithm can result in bias as well as increased variability for large
counts. This is the price one pays to enforce the additivity and non-negativity constraints.

Using the properties of the geometric mechanism and Finucan’s algorithm, analysts can
obtain posterior inferences about the true counts using a Bayesian approach. We illustrated
the algorithm with S = 2 counts. These computations took about 3.5 minutes on a standard
desktop with an implementation in the software packageR with minimal efforts at making
run times efficient. Nonetheless, computations following this “brute force” approach get
cumbersome with larger S. For example, if one considers a ±30 grid of values for each
additional Ns, a naive accounting of the number of additional computations increases by a
factor of roughly 612, which could translate to a huge increase in computational time. How-
ever, there are ways to speed up the computations; for example, one easily could spread
computations over many processors, which would dramatically reduce the run time. Effi-
cient coding aside, with larger S, most combinations will have very low probabilities that
practically do not need to be computed. Thus, a next step of the research is to consider
alternatives to the “brute force” approach that explore regions of high probability, such as
those based on Markov chain Monte Carlo sampling.

The post-processing algorithm here is particularly suited to settings where the agency
adds noise to both a total and its components. In such settings, agencies should account
for the aggregate privacy loss when selecting values of ε. For example, when adding noise
with ε = 1 to each element of (N,N1, N2, N3), where (N1, N2, N3) are counts from disjoint
groups, the aggregate privacy loss is ε = 2, not ε = 1. Agencies may be able to use sophisti-
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cated methods like the matrix mechanism [16] to generate (n, n1, . . . , nS) with lower error
than those generated by the independent geometric mechanisms used here. We expect that
the post-processing algorithm (from step 3 and 3’ onward) can be applied to such counts
with satisfactory performance.

Our methods are targeted at the setting where an agency releases a set of differentially
private counts one time. As noted by a reviewer, in the interactive setting, analysts can
query a system repeatedly for differentially private counts. In this case, an analyst could
request a noisy version of the same count, say Nk, multiple times, and get a different value
of nk each time (presuming the total privacy budget allows, as the privacy loss may grow
by ε each time a new noisy version of the count is released). If the analyst wanted to use
the post-processing strategy presented here, the analyst would need to compute the pos-
terior mode of Nk using the appropriate posterior distribution, e.g., p(Nk | n1k, n2k) where
(n1k, n

2
k) are two differentially private versions. After finding all modes, the post-processing

algorithm could be used as illustrated in the simulations.
Other post-processing algorithms can be used to ensure additivity (and non-negativity)

constraints are satisfied, such as those based on optimization routines [10]. As our post-
processing algorithm is based on posterior modes, it inherits some benefits of Bayesian
modeling. In particular, our approach naturally allows agencies to leverage prior informa-
tion about the true counts in post-processing. Related, it offers a principled way to utilize
the information in the summed noisy total potentially to improve the accuracy of the post-
processed total. Typical implementations of optimization algorithms, such as minimizing
the squared distance between the post-processed and noisy counts subject to the additivity
(and non-negativity) constraints, may not do so. However, unlike other post-processing
algorithms, our algorithm applies only when the set of counts can be expressed as a satu-
rated multinomial model. This is not the case, for example, in the U. S. decennial census
application, in which an optimization routine is run on noisy counts from k-way marginal
tables.

Our post-processing algorithm tries to find the (approximately) highest probability set of
counts, which could differ from a solution found by another post-processing algorithm.
For a simple example, suppose we have S = 2 counts with (n1, n2, n) = (1, 9, 11). Using
the independence approximation, our algorithm returns a highest probability solution of
(Ñ1, Ñ2, Ñ) = (1, 10, 11). The post-processing algorithm that minimizes squared distances
between released and noisy counts could generate this solution, but it also could generate
(2, 9, 11) or (1, 9, 10), depending on where the optimization algorithm starts. Of course, it
is difficult to say whether one solution is “better” than the others, as it depends on the
definition of “better.”

Finally, a potential alternative to post-processing entirely is to generate differentially pri-
vate counts that automatically satisfy the additivity constraints. This would follow the
general strategy of simultaneous editing and disclosure limitation [17, 18, 19, 20, 21, 22].
To date, we are not aware of approaches for doing so with differentially private counts, al-
though it may be possible to do so via a congenial differential privacy approach like those
proposed in [23]. This represents an important area of research.
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