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Abstract. The release of synthetic data generated from a model estimated on the data helps sta-
tistical agencies disseminate respondent-level data with high utility and privacy protection. Moti-
vated by the challenge of disseminating sensitive variables containing geographic information in the
Consumer Expenditure Surveys (CE) at the U.S. Bureau of Labor Statistics, we propose two non-
parametric Bayesian models as data synthesizers for the county identifier of each data record: a
Bayesian latent class model and a Bayesian areal model. Both data synthesizers use Dirichlet Pro-
cess priors to cluster observations of similar characteristics and allow borrowing information across
observations. We develop innovative disclosure risks measures to quantify inherent risks in the confi-
dential CE data and how those data risks are ameliorated by our proposed synthesizers. By creating
a lower bound and an upper bound of disclosure risks under a minimum and a maximum disclo-
sure risks scenarios respectively, our proposed inherent risks measures provide a range of acceptable
disclosure risks for evaluating risk level in the synthetic datasets.

Keywords. Data privacy protection, Disclosure risks, Identification risks, Attribute risks, Synthetic
data, Bayesian hierarchical models

1 Introduction

The U.S. Bureau of Labor Statistics (BLS) utilizes various survey programs to collect indi-
vidual - level and business establishment-level data. The Consumer Expenditure Surveys
(CE) at the BLS is a survey program that focuses on collecting and publishing information
about expenditures, income, and characteristics of consumers in the United States. The
CE publishes summary, domain-level statistics used for both policy-making and research,
including the most widely used measure of inflation - the Consumer Price Index (CPI),
measures of poverty that determine thresholds for the U.S. Governments Supplemental
Poverty Measure, estimation of the cost of raising a child for making policies on foster care
and child support, and estimation of American spending on health care, to name a few.
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The CE consists of two surveys: i) the Quarterly Interview Survey, which aims to capture
large purchases (such as rent, utilities, and vehicles), contains approximately 7000 inter-
views, and is conducted every quarter; and ii) the Diary Survey, administered on an an-
nual basis, focuses on capturing small purchases (such as food, beverages, and tobacco),
contains approximately 14,000 interviews of households. In this project, we focus on the
CE public-use microdata (PUMD) that result from these instruments. Unlike published CE
tables, which release information from the CE data in aggregated forms, the CE PUMD
releases the CE data at the individual, respondent level, which potentially enables the CE
data users to conduct research tailored to their interests. Directly releasing individual-level
data, however, poses privacy concerns. Under the U.S. Title 13, released versions of public-
use data are subject to privacy and confidentiality protection. Values for sensitive variables
deemed at high risk for privacy protection are often suppressed and not reported.

A class of approaches for encoding privacy protection into sensitive variables to permit
their public release constructs a Bayesian model for the respondent-level variable(s), esti-
mated on the confidential data, from which new data are simulated or “synthesized” from
the estimated model. The new data, commonly called “synthetic data”, are then proposed
for release to the public. The synthetic data generated from flexible models, called synthe-
sizers, should maintain a high level of usefulness (commonly called utility), while smooth-
ing of the data distribution induced by the model often achieves a high level of privacy and
confidentiality protection. Drechsler (2011) provides a comprehensive review of synthetic
datasets for statistical disclosure control.

The current CE PUMD of the Interview Survey contains variables about characteristics of
the consumer units (CU, i.e., households) and CU members, and detailed tax, income, and
expenditure information about the CUs and their members. While rich and useful, a set of
important variables about the detailed location of the CUs is not currently released due to
privacy concerns and other considerations. In this paper, we construct synthesizers for the
county labels variable for CUs, along with new disclosure risk measures to ensure adequate
privacy protection for synthetically-generated county labels, while at the same time ensur-
ing that the synthetic data are useful to the CE data users for various research purposes
of interest to them. Tailored for categorical variables present in the CE data, we propose
two non-parametric Bayesian models as data synthesizers. The first synthesizer employs a
Dirichlet Process mixtures of products of multinomials (DPMPM), which directly models
the county labels variable as a categorical variable where each county in the data receives
a unique code. The second synthesizer constructs a new, nonparametric version of areal
models with Dirichlet Process priors (DP-areal), which models counts of county labels of
observations sharing similar characteristics, such as gender, income, and age categories.
We choose non-parametric models because they are flexible. Such flexibility is desired be-
cause we cannot anticipate what uses (i.e., analyses) that the data analysts will have.

On utility of the synthetic datasets, we demonstrate and compare the effectiveness of the
proposed DPMPM and DP-areal synthesizers in preserving important global and local dis-
tributional characteristics of the CE data. On disclosure risks evaluation (i.e., evaluating
the risks of disclosure by releasing the synthetic data, as the level of disclosure risks is neg-
atively proportional to privacy protection), we propose new disclosure risks measures to
capture inherent risk in the original, confidential data to help set context for the reduction
in disclosure risks offered by our two candidate synthesizers. Specifically, we consider the
inherent minimum and maximum disclosure risks, which give us a lower bound and an
upper bound of acceptable disclosure risks.
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Table 1: Variables in the CE data sample.

Variable Description
Gender Gender of the reference person; 2 categories.
Income Imputed and reported income of the CU; 4 categories (based on 4 quartiles).
Age Age of the reference person; 5 categories (<20, 20-40, 40-60, 60-80, >80).
County County label of the CU; 133 categories.

1.1 The CE data

The CE data sample in our application comes from the 2017 1st quarter Interview Survey.
There are n = 6208 consumer units (CU) in this sample. We focus on synthesizing the
sensitive county variable.

To include predictors, since most variables in the internal CE data suffers from high rate of
missingness, Economists on the team that manages the CE survey have suggested a subset
of fully-observed variables that are historically good at predicting county labels: gender,
income, and age. After some experimentation, we validated their predictive utility.

Gender is categorical, with 2 levels as coded in the CE data sample. Income and age
are discretized, with 4 levels and 5 levels respectively, based on the recommendations by
the economists on the CE program. These three variables are non-geographic variables. See
Table 1 for details of the variables. Working with this set of variables allows the effective use
of the DP-areal synthesizer, which limits itself to a moderate set of multi-level predictors
due to its computational scalability, and that we show in the sequel produces a robust risk-
utility trade-off.

The county variable represents the county labels of the CUs. As a variable containing
detailed geographic information, it is currently not released in the CE PUMD for privacy
protection. In the 2017 1st quarter CE data sample, there are 133 counties observed, i.e.,
133 counties are sampled. These 133 counties are only a small subset of the total num-
ber of counties and county-equivalents in the US (3,142 counties and county-equivalents
in 2018). The observed 133 counties are scattered around across the nation. Their sparsity
in geographic locations results in the county labels carrying little geographic information.
Therefore, we consider county as a categorical variable with 133 levels. We define a “pat-
tern” as a unique composition of non-geographic variables, i.e., a pattern is determined by
intersection of categories for the three non-geographic variables {Gender, Income, Age}.
The cross tabulation of these three non-geographic variables creates 40 different patterns in
total (2× 4× 5 = 40).

As evident in Table 1 of the list of 40 patterns in the Supplementary Material, the number
of observations in every pattern varies greatly, from the maximum 454 observations in
Pattern 18 to the minimum 3 observations in Patterns 6, 11, and 36. The presence of patterns
with a small number of observations motivates us to develop data synthesizers that allow
borrowing information across patterns to strengthen estimation for patterns with small
numbers of observations.

1.2 Literature review

1.2.1 Synthetic data

Depending on the sensitivity levels of the variables in a study, statistical agencies can ei-
ther generate fully synthetic datasets, where all variables are deemed sensitive, therefore
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synthesized (Rubin, 1993), or generate partially synthetic datasets, where only some vari-
ables are deemed sensitive and synthesized, and other variables are un-synthesized (Little,
1993). In the CE data sample, since only the county label is deemed sensitive, we aim to
generate partially synthetic data where only the county is synthesized. Gender, income,
and age are not synthesized. The record label is maintained in partially synthetic data,
though the synthesized variable is generated from the posterior predictive distribution of
the synthesizer.

1.2.2 Synthesis of labels of locations

In general, variables containing geographic information are deemed sensitive; however,
these variables are extremely helpful for data analysts to conduct research related to loca-
tions. Therefore, a number of researchers have proposed synthesizers to generate synthetic
geographic data.

One stream of work has treated the geographic location as variable(s) carrying little geo-
graphic information, therefore their proposed synthesizers do not incorporate spatial mod-
eling. Wang and Reiter (2012); Drechsler and Hu (2021) developed CART models (Reiter,
2005b) to synthesize continuous longitude and latitude. In addition, Drechsler and Hu
(2021) combined the continuous longitude and latitude variables into a single categorical
geographic variable, and used versions of categorical CART models for its synthesis. The
authors used the DPMPM synthesizer (Hu et al., 2014) to generate synthetic categorical
locations.

Another stream of work has explicitly incorporated spatial modeling in their synthesizers
for densely-observed geographic variables. Paiva et al. (2014) aggregated counts of geo-
graphic locations to a pre-defined grid level, modeled the counts through areal level spa-
tial model, which included spatial random effects with Conditional Autoregressive (CAR)
priors (Besag et al., 1991), then synthesized counts of locations from the estimated model
to release. Quick et al. (2015) developed synthesizers based on Bayesian marked point
process (Liang et al., 2009). Zhou et al. (2010); Quick et al. (2018) developed differentially
smoothing-based synthesizers based on spatially-indexed distances.

Considering the county labels in the CE data sample, especially the fact that the observed
133 county labels is only a small subset (a little over 4%) of the total number of 3,142 coun-
ties and county-equivalents in the US, we believe the county labels themselves carry little
spatial correlation information. Therefore, we work with synthesizers that do not incor-
porate spatial modeling. Specifically, we choose the DPMPM synthesizer, and we develop
a new, non-spatial version of the count-based areal synthesizer in Paiva et al. (2014) with
non-spatial, nonparametric priors, labeled as DP-areal synthesizer.

1.2.3 Disclosure risks

Developing appropriate synthesizers allows statistical agencies to generate useful synthetic
datasets; however, before the release of synthetic data to the public, the data disseminating
agencies have to evaluate the level of privacy protection (or the lack of) provided by the
synthetic data. Synthetic data release takes place only if the synthetic data expresses a
sufficient level of privacy protection. Typically, privacy protection in the synthetic data is
determined by the evaluation of its disclosure risks. The higher the disclosure risks, the
lower the privacy protection, and vice versa.

There are two general categories of disclosure risks in synthetic datasets: i) identification
disclosure risks, and ii) attribute disclosure risks. For partially synthetic data, such as only
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synthesizing the county labels and keeping other non-geographic variables un-synthesized
in the CE data sample, both identification disclosure risks and attribute disclosure risks
exist (Hu, 2019).

Identification disclosure risks exist when an intruder has access to information about some
of the variables for a target record through external files, and tries to match those val-
ues with available information in the released data to identify the name associated to that
record. Widely used measures for this type of risks are based on Bayesian probabilistic
matching (Duncan and Lambert, 1986, 1989; Lambert, 1993; Reiter, 2005a; Reiter and Mitra,
2009) and record linkage methods (Torra et al., 2006). We consider the former approach in
this work. For example, in the CE data sample, suppose an intruder knows the particular
age and gender combination, as well as the county label, of a person named “Betty”. The
intruder wants to identify which record in the CE synthetic data belongs to Betty. Intu-
itively, the intruder will go through the synthetic datasets by matching the known age and
gender combination, and the synthesized county label. Suppose record, i, belongs to Betty.
Let ci denote the number of records in the sample sharing the same combination and the
true county label (in the original data) for record i. Then 1/ci gives a probability of the
intruder randomly and correctly guessing the record attached to Betty based on matching
attribute values. In general, the larger the value of ci, the lower the identification disclosure
risks for record i. If the county label in the released synthetic data for record i is different
from the true label in the real data, then record i will not be among the ci records, which
means Betty is not among the those records. Let Ti ∈ {0, 1} be a binary indicator of whether
the true match is among the ci records. If the county label in the synthetic data for Betty’s
record, i, is the same as the real data, then Ti = 1; otherwise, if the county label in the
synthetic data for record i is different from that in the real data, then Ti = 0. If Ti = 1, the
intruder has a 1/ci probability of finding the record belonging to Betty. If Ti = 0, however,
the intruder has a 0 probability of finding the record belonging to Betty because her record
is not among the ci. Therefore, the ratio Ti/ci provides a measure of expected identification
match risk for record i.

In addition to the expected match risks, measures such as the true match rate (the percent-
age of true unique matches among target records) and the false match rate (the percentage
of false matches among unique matches) are also useful (Reiter and Mitra, 2009; Drechsler
and Reiter, 2010; Hu and Hoshino, 2018; Hu, 2019; Drechsler and Hu, 2021). Hornby and
Hu (2021) presents the IdentificationRiskCalculation R package to perform these
identification risk calculations (Hornby and Hu, 2020).

Attribute disclosure risk measures how likely an intruder is to discover the true value of
synthesized variables; in our case the county label. Reiter (2012); Wang and Reiter (2012);
Reiter et al. (2014) proposed a Bayesian approach to compute a posterior probability of iden-
tifying the true attribute for each record under the synthesizer (Hu et al., 2014; Paiva et al.,
2014; Wei and Reiter, 2016; Hu et al., 2018; Manrique-Vallier and Hu, 2018). This general
framework has the advantages of providing interpretable probability statements of the at-
tribute disclosure risks (Hu, 2019). Yet, the procedure requires that the intruder knows the
true attribute values of the synthesized variables for every other record except the target
record in order to make the approach computationally tractable. The approach does not
scale up well to multiple categorical synthesized variables or a synthesized variables with
many categories, such as our county label variable (with 133 categories). In our synthetic
CE data application, we construct an attribute disclosure risk measure from our identifi-
cation risk formulation. Our approach counts the number of records in the file where the
synthesized value matches the true data value to provide an overall file level summary that
contrasts with the record level statistic in Hu et al. (2014).
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Moreover, in the sequel we extend these identification and attribute disclosure risk mea-
sures in a novel way to capture disclosure risks inherent in the real data, independent of
the synthesizers. We create risk measures under a minimum scenario and a maximum
scenario, and obtain a lower bound and an upper bound, respectively. We argue that dis-
closure risks in the synthetic datasets may be judged based on how they fit within these
bounds.

1.2.4 Roadmap of the paper

The remainder of the paper is organized as follows: In Section 2, we describe the DPMPM
synthesizer, the DP-areal synthesizer, and the computation details of their implementation.
Section 3 presents the utility measures and results of the synthetic CE; Section 4 presents
the proposed disclosure risks measures for the original CE data, and the disclosure risks
results of the synthetic CE data. The paper concludes with discussion in Section 5.

2 Synthesizers

Our proposed synthesizers focus on generating partially synthetic data for multivariate
categorical data. The synthesizers will allow non-zero probabilities for unobserved combi-
nations of variables, provided the unobserved combinations are not structural zeros (i.e.,
impossible combinations). We proceed to describe two synthesizers in general settings,
with illustrations of synthesizing the country label attribute in the CE data sample.

2.1 Dirichlet Process mixtures of product of multinomials (DPMPM)

The DPMPM is a Bayesian version of latent class models for unordered categorical data.
The Dirichlet Process prior specifies infinite number of mixtures, allows the data to learn
the effective number of mixture components, and provides support to all distributions of
multivariate categorical variables (Dunson and Xing, 2009). Si and Reiter (2013) used the
DPMPM as a missing data imputation engine, and Hu et al. (2014) first used it as a synthe-
sizer for a sample of American Community Survey (ACS). Drechsler and Hu (2021) also
used the DPMPM synthesizer for simulating geolocations of a large scale administrative
data in Germany.

The description of the DPMPM synthesizer follows that in Hu and Hoshino (2018). Con-
sider a sample X, that consists of n records, and each record has p categorical variables.
For the CE data, p = 4, including non-geographic variables (gender, income, and age),
and geographic variable, the county label. The basic assumption of the DPMPM is that
every record, Xi = (Xi1, · · · , Xip), i ∈ (1, . . . , n), belongs to one of K underlying latent
classes, which is unobserved, thus latent. Given the latent class assignment zi ∈ (1, . . . ,K)
of record i, as in Equation (2), the value for record i and attribute, j ∈ (1, . . . , p), Xij , inde-
pendently follows its own multinomial distribution, as in Equation (1), where dj denotes
the number of categories of variable j.

Xij | zi, θ
ind∼ Multinomial(1; θ

(j)
zi1
, . . . , θ

(j)
zidj

) for all i, j, (1)

zi | π ∼ Multinomial(1;π1, . . . , πK) for all i. (2)

The DPMPM clusters records with similar characteristics based on all p attributes. Re-
lationships among these p categorical attributes are induced by integrating out the latent
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class assignment zi. To empower the DPMPM to pick the effective number of occupied
latent classes, the truncated stick-breaking representation (Sethuraman, 1994) is used as in
Equation (3) through Equation (6),

πk = βk
∏
l<k

(1− βl) for k = 1, . . . ,K, (3)

βk
iid∼ Beta(1, α) for k = 1, . . . ,K − 1, βK = 1, (4)

α ∼ Gamma(aα, bα), (5)

θ
(j)
k = (θ

(j)
k1 , . . . , θ

(j)
kdj

) ∼ Dirichlet(a(j)1 , . . . , a
(j)
dj

), (6)

and a blocked Gibbs sampler is implemented for the Markov chain Monte Carlo sampling
procedure (Ishwaran and James, 2001; Si and Reiter, 2013; Hu et al., 2014; Drechsler and
Hu, 2021).

To generate synthetic county label of each record using the DPMPM synthesizer, we first
generate sample values of (π(`), α(`), θ(c)(`)) from the posterior distribution , where θ(c)(`)

contains the sample values of the county label variable at MCMC iteration `. We can
generate the vector of latent class assignments {z(`)i , i = 1, · · · , n} through a multinomial
draw with the samples of π(`), as in Equation (2). We next generate synthetic county label,
{X(`)

ic , i = 1, · · · , n}, through a multinomial draw with samples of θ(c)(`), as in Equation (1).
Let Z(`) denote a partially synthetic dataset at MCMC iteration `. Then we repeat the pro-
cess for m times, creating m independent partially synthetic datasets Z = (Z(1), · · · ,Z(m)).

One can generate multiple synthetic variables using the DPMPM synthesizer by gener-
ating each synthetic variable independently at iteration `. Suppose there are s (s ≤ p)
variables to be synthesized. We first generate sample values of (π(`), α(`), {θ(r)(`)}(r =
1, · · · , s)), where θ(r)(`) contains the sample values of the r-th variable to be synthesized
at MCMC iteration `. After generating the vector of latent class assignments {z(`)i , i =

1, · · · , n} as before, we next generate synthetic r-th variable, {X(`)
ir , i = 1, · · · , n}, through

a multinomial draw with samples of θ(r)(`), as in Equation (1). One repeats the last step
for each of the s variables to be synthesized, and creates a partially synthetic dataset Z(`) at
MCMC iteration `.

2.2 Areal models with Dirichlet Process prior on random effect (DP-
areal)

The DP-areal synthesizer is built upon areal level spatial models, also known as disease
mapping models (Clayton and Kaldor, 1987; Besag et al., 1991; Clayton and Bernardinelli,
1992). Paiva et al. (2014) developed extensions of the areal level spatial models as engines to
generate simulated locations. Specifically, they i) created pre-defined areal units based on
non-geographic variables, ii) aggregated counts of geographic locations to the pre-defined
areal, iii) estimated areal level spatial models that predict observed, areal-level counts with
spatial random effects using a Conditional Autoregressive (CAR) prior, and iv) simulated
new locations for each individual from the estimated models. Crucial to the setup in Paiva
et al. (2014) are the pre-defined patterns formed by the intersection of non-arial attributes.
Recall that a pattern for the CE sample is determined by the composition of {Gender, In-
come, Age}, and there are 40 patterns in the CE data.

However, as discussed before, due to the little geographic information carried in county
labels in the CE data as a result of the geographic sparsity of county labels, the use of spatial
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random effects and CAR priors on them in Paiva et al. (2014) is not appropriate. Instead, we
include non-spatial random effects from other sources and specify Dirichlet Process priors
for them in our application. We now turn to the description of our DP-areal synthesizer.

Let b denote a unique pattern of non-geographic variables, and b = 1, . . . , B, where B
is the total number of unique patterns (B = 40 in the CE data). Let c(b)i be the count
of observations in county i within pattern b. When there is no observation of a particular
county i for pattern b, zeros are inserted so that c(b)i = 0. For clarity, we reserve the word
“combination” for non-geographic variables and the geographic attribute county label, and
the word “pattern” for only the non-geographic variables. Specifically our model assumes,

c
(b)
i ∼ Poisson(λ

(b)
i ), (7)

log λ
(b)
i ∼ Normal(µ+ θ∗

z
(b)
i

+

R∑
r=1

φ∗
z
(b)
i r

X
(b)
i,r ,

1

τλ
), (8)

z
(b)
i | ρ ∼ Multinomial(1; ρ1, · · · , ρK). (9)

In the regression log λ
(b)
i ∼ Normal(µ + θ∗

z
(b)
i

+
∑R
r=1 φ

∗
z
(b)
i r

X
(b)
i,r ,

1
τλ

) in Equation (8), µ is

the overall intercept for log(λ
(b)
i ), the logarithm of Poisson rate for county i and pattern b.

This set-up specifies a Poisson-lognormal model where precision parameter, τλ, allows for
over-dispersion. Note that we let r = 1, · · · , R, where R =

∑p
j=1 dj , represents the total

sum of the number of categories of all non-geographic categorical variables. Subsequently,
X

(b)
i is an R × 1 vector comprising ones at positions X(b)

i,r (the attribute values at positions
for all non-geographic attributes in pattern b) and zeros elsewhere.

Two types of random effects are considered: i) combination-specific random effect, de-
noted by θ∗, and ii) county-specific and variable-specific random effect, denoted by φ∗. To
adequately model these random effects, the truncated DP priors are specified on θ∗’s and
φ∗’s to allow flexible clustering counties of similar characteristics. Here, z(b)i ∈ (1, . . . ,K),
denotes the cluster indicator for each combination, (i, b). Then, θ∗

z
(b)
i

represents the combination-

specific random effect, where all combinations in the same mixture component (i.e., when
z
(b)
i = z

(b′)
j = k) share the same unique random effect value or “location”, θ∗k. Similarly,

φ∗
z
(b)
i r

is a county-specific and value-specific random effect, where all counties in the same

mixture component (i.e., when z(b)i = z
(b′)
j = k) share the same random effect, φ∗kr. The clus-

ter assignment, z(b)i , for each combination is generated from a multinomial draw with clus-
ter probabilities, ρ1, · · · , ρK in Equation (9) with cluster-indexed coefficients or locations,
given by (θ∗k, (φ

∗
kr)r=1,...,R)k=1,...,K . Moreover, the total number of mixture components or

clusters is truncated at K. The current truncated mixture model becomes arbitrarily close
to a Dirichlet Process mixture as K →∞ in Equation (9).

We use the truncated stick-breaking representation for the prior distribution of ρ (Sethu-
raman, 1994). We specify i.i.d. normal priors for θ∗’s and multivariate normal priors for
locations, φ∗’s, and a univariate normal prior for the overall mean µ.

θ∗k
iid∼ Normal(0, 1/τθ), (10)

(φ∗k1, · · · , φ∗kR) ∼ MultivariateNormalR(µφ,Σφ), (11)
µ ∼ Normal(0, 1/τµ). (12)

To generate the synthetic county label of each record, we follow the general approach of
Paiva et al. (2014). At MCMC iteration `, we, firstly, gather all records with the same pattern.
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Secondly, we collect all the λ(b)i,` ’s from the unique combination of pattern b and the county
i. Thirdly, we compute

p
(b)
i,` = λ

(b)
i,` /

G∑
i=1

λ
(b)
i,` , (13)

where G is the number of all county labels within pattern b (e.g., G = 133 in the CE data).
Finally, we take a multinomial draw from

Sh,` ∼Multinomial(1; p
(b)
1,`, · · · , p

(b)
G,`), (14)

where Sh,` is the random variable representing the county label of record h, h ∈ (1, . . . , c
(b)
i ).

We repeat this process for all records in the sample, creating a partially synthetic dataset
Z(`). Then the entire process is repeated for m times, creating m independent partially
synthetic datasets, Z = (Z(1), · · · ,Z(m)).

Unlike the flexibility of the DPMPM synthesizer to create synthetic values for multiple
categorical variables, s ≤ p (when s = p it becomes fully synthetic data; see examples in Hu
et al. (2014) for fully synthetic data applications using DPMPM), the DP-areal synthesizer
needs to create a combined variable of the s variables to then create counts for modeling.
It could face computing and estimation challenges when s is relatively large and each has
many categories.

2.3 Computation

Computation of the DPMPM synthesizer is done by the NPBayesImputeCat R package
(Wang et al., 2021). We run the DPMPM synthesizer on the CE sample for 10,000 iterations
with 5000 burn-in. We follow the recommendations of Dunson and Xing (2009); Si and
Reiter (2013); Hu et al. (2014); Drechsler and Hu (2021) and set aα = bα = 0.25, and set
uninformative priors for θ by a

(j)
1 = · · · = a

(j)
dj = 1 for j = 1, · · · , p. We set K = 40

and track the number of occupied latent classes with 95% interval (28, 36), indicating K =
40 is sufficiently large. We generate m = 20 synthetic datasets by using parameters in
iterations that are far away from each other to guarantee independence. We label the m =
20 synthetic datasets generated by the DPMPM synthesizer as ZDPMPM . Hu et al. (2021)
describe details of using the NPBayesImputeCat R package for synthetic data generation.

Computation of the DP-areal synthesizer is done using Stan programming language (Stan
Development Team, 2016). We ran the DP-areal synthesizer on the CE sample for 4000 iter-
ations with 2000 burn-in. Since Stan employs a Hamiltonian Monte Carlo (HMC) sampler
that suppresses the usual random walk behavior of the Metropolis-Hastings sampler, pos-
terior sampling iterations are far less correlated than under a Gibbs sampler, which permits
use of far fewer iterations. We set aα = bα = 1, and specify Gamma(1, 1) prior distributions
for τθ, τφ, τµ, and τλ. For the multivariate covariance matrix Σφ in the prior distribution for
φ∗’s, we decompose Σφ = (Iσφ)Ωφ(Iσφ), into the R × 1 vector of variances, σφ that are
diagonalized into an R × R matrix in Iσφ), and an R × R correlation matrix, Ωφ. We select
a truncated t(3, 0, 1) prior distribution for the components of σφ. We choose the LKJ(ν = 2)
prior distribution for Ωφ, which has a single hyperparameter, ν, that controls how tightly
the prior distribution is centered on the identity matrix (meaning independence). We select
ν = 2, which denotes a uniform distribution over the space of correlation matrices, the
most weakly informative prior possible, such that we let the data learn the values. We set
K = 50, and generate m = 20 synthetic datasets. They are labeled as ZDP−areal.

TRANSACTIONS ON DATA PRIVACY 16 (2023)



92 Jingchen Hu, Terrance D. Savitsky

Convergence for both model runs is assessed used the Gelman-Rubin test statistic that
measures between MCMC chain variance (using 4 chains) versus within chain variance.
A value close to 1 indicates convergence of the MCMC chains. We confirm convergence
and robust mixing by computing the effective sample size (to account for within-chain
correlations) and achieve approximately the same effective sample size of 1500 for both the
DPMPM synthesizer under Gibbs sampling and the DP-areal synthesizer under HMC.

3 Utility measure

Measures of the level of the closeness between the inference results from the original data
and from the synthetic data, commonly referred to as utility measures, are needed to eval-
uate the usefulness of the synthetic data. We focus on measuring the preservation of distri-
butional characteristics of the synthetic data in the synthetic datasets.

The CE survey program informed us the most common use of the geography information
is the table counts by county. Since only the county labels are synthesized in the synthetic
CE data, we examine the preservation of the distributional characteristics of the county
label, and its relationships with other un-synthesized variables. We do so by conducting the
same analysis on the original dataset, and on ZDPMPM and ZDP−areal and compare results
to the original data, for context. Since we have defined patterns in the CE data, we will
consider three categories of utility measures: i) a globally utility measure, which focuses on
the distributional characteristics of county label and its relationships with other variables
at the file level; ii) an analysis-specific utility measure, which focuses on inferences the
data analysts are likely to make using the released county labels; and iii) a within pattern
utility measure, which focuses on the distributional characteristics of county label at the
pre-defined pattern level.

3.1 Global utility measure

We proceed to formulate measures of utility for our two synthesizers based on a typical
manner in which data analysts use the CE data. In the CE data, three non-geographic
variables (gender, income, and age) and one geographic variable (county label) are all con-
structed to be categorical. Furthermore, only the county label is synthesized. It is therefore
useful to calculate one-way, two-way, and three-way tables of counts of observations for
the entire file, and compare these computed counts from the original data, to those from
the synthetic datasets. Comparing the accuracy of the synthetic data in reproducing ta-
ble counts provides a deviance measure of the synthetic datasets from the original dataset.
Since these tables are constructed for the entire files consisting all records, this utility mea-
sure is regarded as global utility measure. Such measures of utility are generalizable and
apply to any categorical data (Drechsler and Hu, 2021).

Without loss of generality, let Z denote the m synthetic datasets generated from a synthe-
sizer and X be the original CE data.

For one-way tables, we compute the counts of observations of the 133 categories of county
label in X, as well as the counts of observations of the 133 categories of county label in
Z(`), ` = 1, . . . ,m. We next calculate the differences in the counts between the original and
synthetic datasets, and report the sum of the absolute differences to avoid cancellation of
positive and negative differences. This process is repeated for every Z(`), ` = 1, · · · ,m.
For the two-way tables, we compute the counts of observations in the contingency tables
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Table 2: Sum of deviations for each of one-way, two-way, and three-way tables of the syn-
thetic datasets ZDPMPM and ZDP−areal from those of the original dataset X. Results are
averages of m = 20 partially synthetic datasets, divided by 100 for readability.

Table DPMPM DP-areal
one-way 9.087 17.105
two-way 47.908 64.165

three-way 80.826 88.843
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Figure 1: Distribution of actual deviations of one-way, two-way and three-way table counts
produced by each synthesizer, DPMPM vs DP-areal, as compared to the original data over
the m = 20 synthetic datasets.

formed by county label and another non-geographic variable and follow the same proce-
dure as for the one-way tables. Similarly for the three-way tables, counts of observations in
the contingency tables formed by county label and two other non-geographic variables are
computed in X and Z(`). Table 2 gives summary of absolute deviance of the synthetic data
from the original data. Results are averages of m = 20 partially synthetic datasets, with
results on ZDPMPM in column DPMPM, and results on ZDP−areal in column DP-areal.
These summaries show that the DPMPM synthesizer produces smaller absolute deviance
than the DP-areal synthesizer, especially in the one-way and two-way tables.

Figure 1a, Figure 1b, and Figure 1c visualize the one-way, two-way, and three-way devia-
tions in all m = 20 synthetic datasets through density plots. The actual deviations, not the
absolute deviations, are plotted. If we focus on the x-axis of these plots, we can see that
the range of actual count deviation of the synthetic data (from either synthesizer) from the
original data is from -0.5 to 1 in one-way tables, -0.25 to 0.5 in two-way tables, and -0.2 to
0.2 in three-way tables. Since we are plotting the actual deviations over 133 counties and
m = 20 synthetic datasets, such small ranges of deviations indicate high level of global
utility preservation by both synthesizers: they have done a good job mixing CUs between
counties while well-maintaining the distribution of counts among the counties.

To compare the global utility preservation performance between our two synthesizers, we
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note that especially evident in Figure 1a, the one-way deviation in ZDPMPM is more con-
centrated around 0 than that in ZDP−areal, indicating less overall deviation of the synthetic
datasets generated by the DPMPM synthesizer from the original dataset. The findings are
in accordance with Table 2, showing higher level of preservation of distributional character-
istics of county label (i.e., the utility of the synthetic data) by the DPMPM synthesizer than
that by the DP-areal synthesizer. The DP-areal synthesizer, nevertheless, produces good
utility. The density plots of actual deviations in two-way and three-way tables in Figure
1b and Figure 1c show better utility performance of the DPMPM synthesizer, overall, al-
though the differences in performance is smaller compared to one-way tables. Overall, the
global utility evaluation shows higher utility for synthetic data generated by the DPMPM
synthesizer than that by the DP-areal synthesizer, though the utility of both synthesizers is
good.

3.2 Analysis-specific utility measure

We further assess the utility of the synthetic datasets by devising an inferential question
that may be typical of the general type of analyses expected to be performed by the data
analyst that go beyond table count queries. Our application focuses on the prediction of
income categories with an ordered logistic regression that regresses the CU’s income cate-
gory on the synthesized county label, age, and gender. We use the polr function in MASS
R package to fit the ordered logistic regression models. We randomly select 5000 out of
6208 CU’s to train the model and, subsequently, predict the expected income category of
the remaining 1208 CU’s. This approach provides an out-of-sample assessment of the in-
come prediction properties of the model using the county label variable. We construct the
predicted income for each data hold-out record by computing the expected value over the
income categories using the predicted ordered category probabilities (that utilize regression
coefficients estimated on the training data). We compare how well predictions performed
on the original, confidential data, on the one hand, accord with those performed on the
m = 20 ZDPMPM and ZDP−areal synthetic datasets, on the other hand.

Figure 2 presents the distribution (density) of the predicted expected income category of
the 1208 CU’s for each of the original data (grey curve), the DPMPM synthesizer (orange
curve), and the DP-areal synthesizer (blue curve). The orange and blue curves are based
on one of m = 20 synthetic datasets generated by the two synthesizers respectively for
readability and brevity. Plots based on remaining synthetic datasets show similar results.
Overall we see a high level of preservation for the density by the two synthesizers, with
the DPMPM synthesizer performing slightly better.

Next, we compare the uncertainty quantifications for a selection of county-indexed re-
gression coefficients from our ordered logistic regression model estimated on the origi-
nal, confidential data and on the m = 20 synthetic datasets for each of DPMPM and DP-
areal. In Table 3, we report 95% confidence intervals of several representative regression
coefficients from the model fits. Results in the Original Data column are obtained using
the confint.default command of the model fit. Results in the DPMPM and DP-areal
columns are obtained using simple combining rules over the m = 20 synthetic datasets for
each synthesizer that account for both the variation among the m synthetic datasets, as well
as the variation for the coefficients of interest within each dataset (Drechsler, 2011).

As evident in Table 3, the confidence intervals and assessments of statistical significance
are largely preserved in DPMPM and to a slightly lesser degree in DP-areal. The intervals
are bit wider for DPMPM than the original data and DP-areal. The wider intervals for
the synthetic data result from the greater uncertainty induced by the synthesizing process
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Figure 2: Predicted expected income category in the original data, the ZDPMPM synthetic
datasets, and the ZDP−areal synthetic datasets.

incorporated into combining rules (Drechsler, 2011).

3.3 Within pattern utility measure

Another approach for evaluating the synthetic data utility is to compare the induced dis-
tributions of the synthesized data records over the county labels within each pattern to the
distribution for the original data. Recall that we define a pattern as a unique composition
of non-geographic variables, as {Gender, Income, Age}, and there are 40 patterns in the
CE data sample. Our synthesizers are constructed as Bayesian hierarchical models where
the prior distributions over parameters will induce “smoothing” of the real data distribu-
tion in the resulting synthetic data by both smoothing over local features in the real data
distribution and inducing distortion through shrinking. The shrinking occurs under both
synthesizers through the co-clustering of data records, which are then generated from the
same distribution. Since the partially synthetic CE datasets have only the county label syn-
thesized, evaluating the preservation of distributional characteristics of county label within
each pattern is of particular interest. This utility measure is within pattern, or local.
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Table 3: Table of confidence intervals of representative regression coefficients, obtained
from the same ordered logistic regression model fitted on the original data, fitted on the
synthetic datasets ZDPMPM (m = 20) and ZDP−areal (m = 20), respectively. Results in the
DPMPM and DP-areal columns are obtained using combining rules for partially synthetic
datasets.

County Original Data DPMPM DP-areal
4 [-0.546, -0.027] [-0.682, -0.116] [-0.593, 0.031]
6 [-0.301, 0.202] [-0.426, 0.115] [-0.344, 0.244]

18 [-0.516, -0.004] [-0.661, -0.108] [-0.541, 0.059]
32 [-0.032, 0.476] [-0.242, 0.295] [-0.169, 0.413]
33 [-0.578, -0.065] [-0.587, -0.045] [-0.602, 0.004]

Each curve in each panel of Figure 3 presents a density approximation of a histogram
(using the bandwidth of Scott (1992)) of data records over the county labels for a chosen
pattern. The grey curve presents the original data distribution of over the observed county la-
bels, the orange curve overlays the distribution over synthetic county labels by the DPMPM
synthesizer, and the blue curve overlays the distribution over synthetic county labels by
the DP-areal synthesizer. The orange and blue curves are based on one of m = 20 synthetic
dataset generated by the two synthesizers respectively for readability and brevity. Plots
based on remaining synthetic datasets show similar results. For brevity, density plots in
Pattern 1 to Pattern 4 are included in the main text. The remaining 36 density plots are
presented in the Supplementary Material.

Overall, in most of the patterns, the distribution of county label in synthetic datasets gen-
erated by the DPMPM synthesizer (orange curve) is closer to that of the original data (grey
curve), than is the distribution generated by the DP-areal synthesizer (blue curve). The
DPMPM better reproduces peaked behavior in the original data distribution, while the DP-
areal model induces more smoothing. The DPMPM also better reproduces local features
in the county label distribution that are smoothed over by the DP-areal. Both synthesizers,
however, induce an equally high degree of smoothing or distortion in patterns with a small
number of observations/records.

In summary, our DPMPM synthesizer better preserves the utility compared to the DP-
areal synthesizer, for the various utility measures we have considered, although both syn-
thesizers maintain high utility level. The DPMPM synthesizer directly models the county
label as a categorical variable, while the DP-areal synthesizer indirectly models it through
modeling the counts within each pattern. Moreover, the synthetic data generation pro-
cess of the DPMPM synthesizer directly generates a synthesized value of county label from
the fitted model, while that of the DP-areal synthesizer utilizes the estimated county-and-
pattern specific probabilities to simulate a county label. It is the indirect modeling and
synthesis approaches of the DP-areal synthesizer that negatively affects its utility perfor-
mance.

4 Disclosure risks measure

As we have seen in Section 3, the DPMPM and the DP-areal synthesizers induce smooth-
ing in the distribution of the county label as compared to the original data, both glob-
ally and within each pattern. The induced smoothing attempts to maintain the utility of
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Figure 3: Counties in Pattern 1 to Pattern 4.

the synthetic data, making it useful to data analysts for their analysis interests. At the
same time, the induced smoothing provides privacy protection in the synthetic data. With
county labels synthesized in the CE data, an intruder can no longer know the true cate-
gory of the synthesized county label of any record. Moreover, she can no longer know
the identification of any record with 100% certainty, even though she could have access
to the un-synthesized pattern of {gender, age, income} of that record. Nevertheless, an in-
truder could still make guesses about the true category of the synthesized county label, and
make guesses about the identity of any record, using un-synthesized variables that might
be available to her. The first type of risk, where the intruder seeks the value of the county
label for a record, is commonly known as attribute disclosure. The second type of risk,
where the intruder seeks the identity of a record, is commonly referred to as identification
disclosure. We proceed to construct measures for attribute and identification disclosure
risks.

Typically, both types of disclosure risks are measured for the simulated synthetic datasets,
indicating level of protection (or the lack of) by the release of synthetic data. If multiple
synthesizers have been proposed, as in our current application for synthetic CE data, eval-
uations of disclosure risks measures and their comparisons could inform the CE program

TRANSACTIONS ON DATA PRIVACY 16 (2023)



98 Jingchen Hu, Terrance D. Savitsky

about which synthesizer provides higher privacy protection. In the final analysis, the data
disseminating agencies, such as the CE program, are able to make a decision among the
synthesizers through evaluating their relative usefulness (i.e., utility measures) and the
level of privacy protection that they encode (i.e., the disclosure risk measures). If disclo-
sure risk measures can be developed for the original data, agencies will have much more
information when deciding among synthesizers based on not only comparison of their dis-
closure risk measures to each other, but also on comparison to those in the original data.
We next describe our general approach to measure disclosure risks in the original data.

4.1 Inherent disclosure risks in the CE data

A synthesizer replaces the county label for every record in the original data with a syn-
thesized value. In the limit as a synthesizer becomes more accurate, the best synthesizer
may be imagined as one that generates the synthesized values of the county label for all
records by using the original data distribution. We label this type of synthesizer that uses
the original data distribution as “perfect”. Generating synthetic values under the original
data distribution is both independent of any synthesizing model and may produce synthe-
sized values that differ from the original data. A perfect synthesizer provides the highest
possible utility, because there is no deviation from the original data distribution; however,
it increases disclosure risks at the same time. Although the original data is not released
to the public, as data disseminators, we can use it to construct maximum disclosure risks
measures and create an upper bound of the acceptable disclosure risks.

To mimic the behavior of an intruder with the highest amount of information (i.e., the
exact distribution of county label), we can sample a new draw of the county label for every
record based on its original distribution within each pattern. We approximate the distribu-
tion of county labels in the original data with the empirical distribution, which we sample
under a weighted re-sampling scheme. Given this set of newly sampled county labels,
we can then calculate the identification disclosure risks and attribute disclosure risks. We
repeat this process for a large number of times, and obtain sampling distributions of two
types of disclosure risks, fully capturing the variability in the sampling processes. Disclo-
sure risks computed based on this repeated sampling procedure provide an upper bound
of the acceptable disclosure risks, because this procedure uses maximum amount of in-
formation that may be published - the original data distribution. Therefore, we label this
scenario as the maximum disclosure risks scenario.

By contrast, we may establish a lower bound on the risk that may be achieved by a syn-
thesizer. This requires us to go to the other extreme, where an intruder has the least amount
of information about the distribution of the county label in the original data. We employ
a uniform distribution over among all possible county labels within each pattern as the
minimally-informative scenario; i.e., we can sample a new draw of the county label of ev-
ery record from a uniform distribution over the 133 observed county labels within each
pattern in the CE data sample. Given this set of newly sampled county labels, identifi-
cation and attribute disclosure risks can be calculated, and this process is repeated for a
large number of times to obtain the sampling distributions of two types of disclosure risks.
Because this repeated sampling procedure uses the minimum amount of information, dis-
closure risks computed based on this procedure provide a lower bound of the acceptable
disclosure risks, and we label this scenario as the minimum disclosure risks scenario. Sim-
ilar to the maximum disclosure risks scenario, the minimum scenario is a type of risk that
is inherent in the original dataset and independent of the synthesizer.
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4.2 Identification disclosure risks

4.2.1 Three summaries of identification disclosure probabilities

Identification disclosure risks measure how likely it is for an intruder to correctly identify
a record by matching with available information from external files. In our current appli-
cation, the released synthetic datasets contain three un-synthesized variables (gender, age,
and income), and one synthesized variable (county label). Suppose an intruder has access
to an external file that includes gender, age, and county label of every record, as well as
their identities. The attribute values, but not the identity of the records, also appear in
the released synthetic datasets. With access to such external information, the intruder may
attempt to identify a record by performing matches within each pattern. The matching is
performed within pattern because the intruder knows the values of the pattern attribute
value are not synthesized.

Without loss of generality, assume that the intruder has external information about every
record’s gender, age, and county label. Let ci be the number of records with the highest
match probability for record, i (i.e., the number of records having the exact same values of
gender, age, and county label as record i in the original data); let Ti = 1 if the true match is
among the ci units and Ti = 0, otherwise. We recall that Ti will be set to 1 if the synthesized
value for the county label for record, i, is the same as that for the original data. Let Ki = 1
when ciTi = 1 and Ki = 0 otherwise (i.e., Ki = 1 indicates a true unique match exists), and
let n denote the total number of target records (i.e., every record in the CE data). Finally,
let Fi = 1 when ci(1 − Ti) = 1 and Fi = 0 otherwise (i.e., Fi = 1 indicates a false unique
match), and let s equal the number of records with ci = 1 (i.e., the number of records that
are uniquely matched among n target records). There are three widely used file-level sum-
maries of identification disclosure probabilities using the notations and definitions given
above (Reiter and Mitra, 2009; Drechsler and Reiter, 2010; Hu and Hoshino, 2018; Hu, 2019;
Drechsler and Hu, 2021).

(a) The expected match risk:

n∑
i=1

Ti
ci
. (15)

When Ti = 1 and ci > 1, the contribution of unit i to the expected match risk reflects
the intruder randomly guessing at the correct match from the ci candidates, where
the intruder probability of a correct guess is 1/ci. In general, the higher the expected
match risk, the higher the identification disclosure risks.

(b) The true match rate:

n∑
i=1

Ki

n
, (16)

which is the percentage of true unique matches among the target records. In general,
the higher the true match rate, the higher the identification disclosure risks.

(c) The false match rate:

n∑
i=1

Fi
s
, (17)
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Table 4: Expected risk, true match rate, and false match rate of identification disclosure risks
of the synthetic datasets. Results are averages of m = 20 partially synthetic datasets for the
columns DPMPM and DP-areal, and averages of S = 100 repeated sampling iterations for
the Min column. (*computed based on non s = 0 cases)

Known Summary DPMPM DP-areal Max
gender, and expected match risk 2.497 0.952 4.708
county label true match rate 0.000 0 0.000

false match rate 0.997 1* 0.989
gender,age, expected match risk 10.474 0.851 20.073
and county label true match rate 0.000 0.000 0.001

false match rate 0.991 1.000 0.978

which is the percentage of false matches among unique matches. In general, the lower
the false match rate, the higher the identification disclosure risks.

4.2.2 Results of identification disclosure risks

When performing matching with external files, there are different assumptions about the
intruder’s knowledge of the un-synthesized variables. We consider two cases of assump-
tion of intruder’s knowledge, encoded in column Known in Table 4: i) only gender and
county label; ii) gender, age, and county label. We collapse across combinations of un-
synthesized variables in case ii) to achieve case i). We would expect identification risks
to be generally lower as we collapse across combinations since ci would be expected to
increase. Such is not always the case, however, as we observe for the DP-areal results,
presented below.

For each of the two cases, we report summaries of expected risk, true match rate, and
false match rate of identification disclosure risks. The column DPMPM reports average
summaries of m = 20 synthetic datasets, ZDPMPM generated by the DPMPM synthesizer.
The column DP-areal reports average summaries of m = 20 synthetic datasets, ZDP−areal
generated by the DP-areal synthesizer. The column Max reports average summaries of
S = 100 repeated sampling under the maximum identification disclosure risks scenario.
We exclude the column Min for brevity, and it has 0 for expected risk and true match rate
for all cases, and NaN for false match rate for all cases (due to s = 0, i.e., no unique matches,
in the denominator).

A subtle point about the Max for the false match rate is that because of the definition of the
false match rate (the percentage of false matches among unique matches; and higher false
match rate means higher privacy protection), the computed identification risk measures in
the Max column is actually the lower bound of the acceptable range of false match rate;
however, the Max for the expected risk and the true match rate serve as upper bounds, as
discussed before.

As evident in Table 4, for every case of assumption of intruder’s knowledge, summaries
of identification disclosure risks indicate significantly lower expected risk in synthetic data
generated by the DP-areal synthesizer. As the intruder’s knowledge increases, the expected
risk in the DPMPM synthetic data increases and approaches to the Max, while the expected
risk in the DP-areal synthetic data slightly decreases. On average, expected risk in the
DPMPM synthetic data and the DP-areal synthetic data is bounded below by Min and
bounded above by Max. The results of the true match rate and the false match rate show
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much smaller difference between the two synthesizers and between each synthesizer with
the Max. Overall the DPMPM synthesizer and the DP-areal synthesizer has 0 or close to
0 true match rate, and 1 or close to 1 false match rate, suggesting high level of privacy
protection.

To take a closer look at the expected risk, consider case ii) where exact matching is done
assuming intruder’s knowledge of gender, age, and county label. Recall that there are
n = 6208 observations in the CE sample. For the DPMPM synthetic datasets, an average
10.474 expected risk indicates a record-level average 0.00169 expected risk when dividing
by n. The corresponding record-level average expected risk from the DP-areal synthetic
datasets is 0.00014, and that from the S = 100 repeated sampling under the maximum risk
scenario is 0.00323. Overall, the expected risk is very low with both synthesizers, and it
is low even under the maximum risk scenario, which suggests low inherent identification
disclosure risks in the original CE data.

To visualize the variability among the summaries of m = 20 synthetic datasets for each of
ZDPMPM and ZDP−areal, Figure 4a presents a histogram of S = 100 repeated samples of
the expected risk under the maximum disclosure risks scenario is plotted. In addition, the
minimum, mean, and maximum expected risk among m = 20 DPMPM synthetic datasets
(dashed and orange) and those among m = 20 DP-areal synthetic datasets (dotted and
blue) are also co-plotted. Hidden in the average summaries of expected risk in Table 4
is that although the average expected risk among m = 20 synthetic datasets ZDPMPM is
as small as half of the average upper bound formed by the average expected risk among
S = 100 repeated samples under the maximum disclosure risks scenario, the expected risk
computed for the DPMPM synthetic dataset (dashed and orange) shows close distance to
the expected risk computed for repeatedly sampled “synthetic” datasets under the max-
imum disclosure risks scenario (filled histogram). The maximum expected risk among
m = 20 DPMPM synthetic datasets appears almost as large as the smallest expected risk
among the repeated samples of “synthetic” datasets under the maximum disclosure risks
scenario, which may be cause for concern about DPMPM synthetic datasets. By contrast,
the variability in expected risk amongm = 20 DP-areal synthetic datasets (dotted and blue)
is much smaller, and the expected risk for the DP-areal synthetic dataset is overall much
smaller than those computed under the maximum disclosure risks scenario, as shown in
Table 4, suggesting acceptable identification disclosure risks in DP-areal synthetic datasets.
A similar plot for case i) gender and county label of intruder’s knowledge assumptions
suggest overall acceptable identification disclosure risks for both the DPMPM and the DP-
areal synthesizers, which agree with the average summaries in Table 4. The plot is included
in the Supplementary Material for brevity.

4.3 Attribute disclosure risks

4.3.1 The summary of exact attribute disclosure risks

Attribute disclosure risks measure how likely it is for an intruder to correctly infer the true
value of a synthesized variable or attribute in the original data from the synthetic datasets.
Such attacks usually make use of all un-synthesized attributes, therefore we only consider
the case where the intruder uses the available pattern of each record (i.e., gender, age, and
income), to infer the true county label in the original dataset. That is, we assume gender,
age, and income are available when mimicking the intruder’s behavior to conduct attribute
attacks. Let Ai = 1 if the synthesized county label category is the same as the original
county label for record i, and Ai = 0, otherwise (i.e., Ai = 1 indicates an exact attribute
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Figure 4: Histograms of disclosure risks under the maximum risk scenario and/or the
minimum risk scenario. Vertical lines include the min, mean, and max among the m = 20
synthetic datasets.

disclosure). The number of exact attribute disclosures is

n∑
i=1

Ai. (18)

We note that some attribute disclosure risks for variables containing geographic informa-
tion proposed in previous works focus on distance between the synthesized location and
the true location. For every record, Wang and Reiter (2012) reported a Euclidean distance
R1 between the intruder’s guess of the longitude and latitude and the actual longitude and
latitude, and then reported the count R2 recording the number of actual cases in circle cen-
tered at the actual longitude and latitude with radius R1. Paiva et al. (2014) reported a Eu-
clidean distance measure between the true location yi and the guess y∗ with the maximum
posterior probability of record i. Because the county label in the CE data sample is treated
as categorical, and moreover because of little geographic information this variable carries,
as discussed in Section 1.1, measuring a Euclidean distance between the true county label
and the synthesized county label for record i is not feasible. Therefore, we only consider
the number of exact attribute disclosures in Equation (18). Our measure for attribute risk
is composed as the sum of exact attribute disclosures for all records, and an exact attribute
disclosure for record i is declared when the synthesized county label category is the same
as the county label category in the original data. We construct our definition for attribute
risks to be consistent with that for identification risks, where both produce file-level mea-
sures of risk designed to help reporting agencies assess the overall risk associated with the
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Table 5: The average numbers and percentages of exact attribute disclosures. Results are
averages ofm = 20 partially synthetic datasets for the columns DPMPM and DP-areal, and
averages of S = 100 repeated sampling iterations for the Min and Max columns.

Summary Min DPMPM DP-areal Max
Number of exact attribute disclosures 47.25 115.25 88.15 175.33

Percentage of exact attribute disclosures 0.76% 1.86% 1.42% 2.82%

potential release of the synthetic data.

4.3.2 Results of attribute disclosure risks

The first row of Table 5 presents the average numbers of exact attribute disclosures among
m = 20 DPMPM synthetic datasets ZDPMPM , and the same for ZDP−areal, in the DPMPM
and DP-areal columns, respectively. It also reports the average numbers of exact attribute
disclosures among S = 100 repeated sampling iterations under the minimum disclosure
risks scenario, and among S = 100 repeated sampling iterations under the maximum dis-
closure risks scenario, in the Min and Max columns respectively. The second row presents
corresponding percentages of exact attribute disclosures, by dividing the values in the first
row with n = 6208. These results show that, on average, the numbers of exact attribute
disclosures in both the DPMPM synthetic data and in the DP-areal synthetic data are gener-
ally far away from the maximum scenario, with the latter lower than the former, consistent
with results for identification disclosures risk. The inherent risks in the original data are
not high when given the maximum amount of information, while it is not zero when given
the minimum amount of information.

Figure 4b plots a histogram of exact attribute disclosures based on S = 100 iterations
of repeated sampling under the minimum disclosure risks scenario (purple), and another
histogram under the maximum disclosure risks scenario (green). Additionally, vertical
lines of the results from the DPMPM synthetic datasets (dashed and orange) and from the
DP-areal synthetic datasets (dotted and blue) are plotted for comparison. Each set of three
vertical lines correspond to the minimum, the mean, and the maximum of the number of
exact attribute disclosures among the m = 20 synthetic datasets. Figure 4b agrees with the
results in Table 5, showing that when considering the variability in sampling, the DP-areal
synthetic datasets have generally lower attribute disclosure risks compared to the DPMPM
synthetic datasets, and both are well below the maximum disclosure risk scenarios.

In summary, while our DPMPM synthesizer better preserves the utility, it also carries
higher disclosure risks, both identification disclosure risks and attribute disclosure risks,
compared to the DP-areal synthesizer. As discussed at the end of Section 4.2, the indirect
modeling and synthesis approaches of the DP-areal synthesizer decrease its utility with
higher level of smoothing, compared to the DPMPM synthesizer. It is this higher level of
smoothing that provides higher level of privacy protection, resulting in lower disclosure
risks carried by the DP-areal synthesizer.

5 Conclusion

We devised an end-to-end process for data synthesis, including formulating data synthe-
sizers and measuring and comparing their utilities and disclosure risks in a fashion, that
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promotes ease-of-interpretation to facilitate decision making by statistical agencies who
may consider the release of respondent-level synthetic data. Our data synthesizers are
constructed for the challenging case of generating geographic location labels. Our formu-
lations replace spatial priors with more general nonparametric prior formulations due to
geographic sparsity, with the result that they may broadly apply to the synthesis of any
polytomous variable characterized by multiple levels. We leveraged the patterns formed
from the intersection of known categorical variables to define a new local utility measure
based on the distribution of the synthesized county label that makes intuitive the compar-
isons of usefulness among the synthesizers. We designed new minimum and maximum
risk measures that characterize the data and are independent of the choice of synthesizer.
These minimum and maximum risk bounds set context for evaluating the relative improve-
ments in privacy protection provided by the synthesizers in a way that aids the agency
decision-maker to evaluate whether synthetic data is sufficiently privacy protected for re-
lease.

For our applications of the CE data sample, the results have shown that the DPMPM syn-
thesizer, compared to the DP-areal synthesizer, produces synthetic datasets with higher
utility, although such higher utility performance comes at the price of higher disclosure
risks. Such utility-risk trade-offs are important evaluation criteria for statistical agency to
make decisions about synthetic data dissemination. We advocate for the evaluation of in-
herent risks of the original, confidential data, as we have done in our applications and eval-
uations, for future synthetic data applications. The minimum and maximum risk bounds
of the original data can greatly facilitate agencies’ decision making process.

Plans of releasing the synthetic CE county label are under way. With our synthetic CE
datasets providing high utility and low disclosure risks, the CE survey program is making
plans to produce synthetic CE datasets as a part of their experimental research products.
Examples of their current experimental research products include state weight files.

An opportunity for future work is to construct a simple mechanism that regulates the
amount of smoothing produced by a synthesizer to allow exploration of the utility-risk
trade-offs. Future directions of applications include whether a negative binomial regression
is better suited than a Poisson as in the DP-areal model, assessing utility-risk trade-offs
when more variables are synthesized.
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Supplementary Material

This supplement contains: 1. The list of 40 patterns in the CE sample; 2. The
full set of within pattern distribution plots of the county label synthesized
from the DPMPM, DP-areal synthesizers and the original data distribution;
3. A histogram of identification disclosure risks for the DPMPM, DP-areal
and Maximum (from the original data) for the case where only gender and
county label are known by the intruder; 4. The Stan script to implement the
DP-areal synthesizer.
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Table 6: List of 40 patterns: the index and the number of observations in each pattern.

Index Observations Index Observations
1 27 21 33
2 170 22 229
3 168 23 222
4 194 24 333
5 48 25 128
6 3 26 9
7 193 27 250
8 183 28 254
9 242 29 308

10 61 30 53
11 3 31 8
12 291 32 244
13 275 33 312
14 199 34 184
15 19 35 18
16 4 36 3
17 239 37 198
18 454 38 344
19 169 39 122
20 4 40 10

1. List of 40 Patterns

Table 6 lists the 40 patterns in the CE sample.
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2. Within Pattern Density Plots of County Labels among the
Synthesizers

Figure 5 to Figure 13 are within pattern distribution plots of the county label
synthesized from the DPMPM, DP-areal synthesizers and the original data
distribution, from Pattern 5 to Pattern 40.
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Figure 5: Counties in Pattern 5 to Pattern 8.
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Figure 6: Counties in Pattern 9 to Pattern 12.
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Figure 7: Counties in Pattern 13 to Pattern 16.
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Figure 8: Counties in Pattern 17 to Pattern 20.
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Figure 9: Counties in Pattern 21 to Pattern 24.
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Figure 10: Counties in Pattern 25 to Pattern 28.

TRANSACTIONS ON DATA PRIVACY 16 (2023)



116 Jingchen Hu, Terrance D. Savitsky

0.000

0.005

0.010

0.015

0 50 100

County Label

de
ns

ity

variable
original

DPMPM

DP−areal

Pattern 29, count 308

0.000

0.005

0.010

0.015

0 50 100

County Label

de
ns

ity

variable
original

DPMPM

DP−areal

Pattern 30, count 53

0.00

0.02

0.04

0 50 100

County Label

de
ns

ity

variable
original

DPMPM

DP−areal

Pattern 31, count 8

0.000

0.005

0.010

0.015

0 50 100

County Label

de
ns

ity

variable
original

DPMPM

DP−areal

Pattern 32, count 244

Figure 11: Counties in Pattern 29 to Pattern 32.
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Figure 12: Counties in Pattern 33 to Pattern 36.
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Figure 13: Counties in Pattern 37 to Pattern 40.
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3. Identification Disclosure Risk Comparisons under Partially
Observed Patterns

Figure 14 is the set of of identification disclosure risks for the DPMPM, DP-
areal and Maximum (from the original data) for the case where only gender
and county label are known by the intruder.
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Figure 14: Histogram of expected risks under the maximum risk scenario. Vertical lines
include the min, mean, and max among the m = 20 synthetic datasets; dashed and orange
for DPMPM, and dotted and blue for DP-areal. Known variables: gender and county label.
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4. Stan Script to Implement the DP-areal Synthesizer

The following Stan script implements the DP-areal synthesizer:
functions{

real normalmix_lpdf(vector log_lambda, vector pi_prob, real mu, vector theta,
matrix phi, matrix X, real tau_lambda, int N, int K){
real log_post;
log_post = 0;
for( i in 1:N ) /* by row of N x (R+1) */
{

vector[K] ps;
for( k in 1:K )
{

ps[k] = log(pi_prob[k]) + normal_lpdf(log_lambda[i]| mu + theta[k] +
dot_product(phi[k],X[i]),
inv(sqrt(tau_lambda)));

} /* end loop k over clusters / mixture components */
log_post += log_sum_exp(ps);

} /* end loop i over N observations */

return log_post;
} /* end function normalmix_lpdf() */

} /* end function{} block */

data{
int<lower=1> N; // number of unique combinations of all attributes
int<lower=1> K; // number of clusters
int<lower=1> p; // number of non-geographic attributes
row_vector[p] dj; // vector storing the number of levels of p non-geographic attributes
int<lower=1> R; // number of total attribute levels: sum(dk)
matrix[N,R] X; // each row is an R-by-1 vector comprising a one at position x_{ir}ˆ{(b)}
int c[N]; // set of N observations: the counts

} /* end data block */

transformed data{
vector<lower=0>[K] ones_K;
ones_K = rep_vector(1,K); /* dirichlet prior on alpha has equal shapes */

} /* end transformed parameters block */

parameters{
vector[N] log_lambda; /* poisson rates */
real mu; /* global intercept */
real alpha; /* DP concentration parameter on mixture model for point estimate */
matrix[K,R] phi;
vector[K] theta;
simplex[K] pi_prob; /* mixture probabilities */
vector[R] mu_phi;
real<lower=0> tau_theta;
real<lower=0> tau_phi;
vector<lower=0>[R] sigma_phi;
cholesky_factor_corr[R] L_phi;
real<lower=0> tau_mu; /* precision in prior for mu */
real<lower=0> tau_lambda; /* precision in prior for log_lambda[i] */
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} /* end parameters block */

transformed parameters{
vector[N] lambda; /* fitted values */

for( i in 1:N )
{

lambda[i] = exp(log_lambda[i]);
} /* end loop i over domains */

} /* end transformed parameters block */

model{

// priors for cluster locations
alpha ˜ gamma( 1.0, 1.0 ); /* DP concentration parameter */
pi_prob ˜ dirichlet( alpha/K * ones_K ); /* instantiate a truncated DP prior */

// normal prior for K x 1, theta
theta ˜ normal(0,inv(sqrt(tau_theta))); /* vectorized */
tau_theta ˜ gamma( 1.0, 1.0 );

// multivariate Gaussian prior for R x 1, phi[k,]
mu_phi ˜ normal(0,inv(sqrt(tau_phi))); /* vectorized */
tau_phi ˜ gamma( 1.0, 1.0 );
L_phi ˜ lkj_corr_cholesky(4);
sigma_phi ˜ student_t(3,0,1); /* vectorized */

for(k in 1:K )
{

/* phi[k] is the kth row of K x R, phi */
to_vector(phi[k]) ˜ multi_normal_cholesky(mu_phi,

diag_pre_multiply(sigma_phi,L_phi));
}

mu ˜ normal(0,inv(sqrt(tau_mu)));
tau_mu ˜ gamma( 1.0, 1.0 );

// latent response (mean) likelihood on the log scale - mixture of normals prior
// note that the normal prior allows for over-dispersion
log_lambda ˜ normalmix(pi_prob, mu, theta, phi, X, tau_lambda, N, K);
tau_lambda ˜ gamma( 1.0, 1.0 );

// observed response likelihood
c ˜ poisson_log(log_lambda);

} /* end model{} block */
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