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Abstract. Pharmaceutical industry can better leverage its data assets to virtualize drug discovery
through a collaborative machine learning platform. On the other hand, there are non-negligible risks
stemming from the unintended leakage of participants’ training data, hence, it is essential for such a
platform to be secure and privacy-preserving. This paper describes a privacy risk assessment for col-
laborative modeling in the preclinical phase of drug discovery to accelerate the selection of promising
drug candidates. After a short taxonomy of state-of-the-art inference attacks we adopt and customize
several to the underlying scenario. Finally we describe and experiments with a handful of relevant
privacy protection techniques to mitigate such attacks.
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1 Introduction

Drug discovery and development is currently a time-consuming and expensive process.
Many small molecules fail in the later stages of development due to toxicity or a lack of suf-
ficient efficacy. More complex mechanisms of action and stricter regulation have resulted
in a drastic drop in pharmaceutical R&D productivity over the past 60 years. Indeed, only
11% of the drug candidates that enter clinical phases make it to approval, i.e. are demon-
strated to be productive and safe. As a result, it takes on average 1.9 billion euros and often
more than ten years to bring one successful drug to the market.

Machine Learning (ML) is a promising approach to reducing the time and cost of this de-
velopment process, where a carefully trained model can predict the biological activities of
small molecules. The available volume of training data mainly determines the quality of
these models. Consequently, the industry is making the first steps towards federated ML
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approaches that leverage more data than a single partner (e.g., a pharmaceutical company).
Federated learning (FL) enables several partners to train a common model without directly
sharing their training data, still obtaining a model that can predict biological activities al-
most as accurately as a model trained centrally on the union of their training data. Such
collaborations between pharmaceutical companies can save them millions of dollars today
and save lives tomorrow. Hence, there is a great interest in such collaborations both within
and outside the pharmaceutical industry. Indeed, a similar scenario is currently being stud-
ied by several pharmaceutical companies within the MELLODDY project (EU/EFPIA IMI
831472).

However, FL is not a panacea. Several prior works have demonstrated that FL per se does
not provide sufficient protection against the unintended leakage of training data. Even
if participants only exchange gradients during training and can only access the common
model at the end, both the gradients and the model itself leak information about the train-
ing data. For example, as we show, exchanged model parameters can reveal that a specific
participant has a particular compound in its training data, which could indicate what drugs
the participant is experimenting with. Such inference attacks can seriously undermine the
ultimate goal of FL and cause substantial financial loss to a company investing millions of
euros into curating high-quality training data.

In this paper, we perform a data protection risk analysis of a FL on an real use case, where
several pharmaceutical companies collaboratively train a multi-task federated machine
learning model to predict activities between chemical compounds (i.e., drug candidates)
and different targets (e.g., proteins). Such federated structure-activity modeling in Drug
Discovery during pre-competitive collaboration is a well-suited problem for our analysis
as it captures and illustrates well the core trade-off that the privacy-aware participants face.
In this context, data protection refers to protecting the confidentiality of intellectual proper-
ties (IPs) such as a participant’s training data or some model (hyper)-parameters1. Attacks
aim to infer confidential attributes of these assets (such as the membership of specific train-
ing samples) and are therefore called inference attacks. The pharma partners specify the
exact attributes, and their successful inference is represented as a risk in our methodology.
We design inference attacks (threats) to estimate the likelihood of these risks. In particular,
the feasibility and the success probability of these attacks measure the likelihood of the risk,
which then, combined with the risk’s severity (negative impact), allows for identifying the
most dangerous risks to be mitigated. We are only concerned with passive inference at-
tacks in this analysis. Indeed, perturbing the data results in a more considerable accuracy
drop for a malicious party than for the others [30]. Hence, there is no incentive for active
attacks (e.g., poisoning, back-doors, etc. [14]) as long as the adversary also needs good
model quality. The specific contributions of this study are three-fold.

• We demonstrate the process of data protection risk analysis on a real machine learn-
ing application. We propose a risk analysis methodology that helps systematically
map different threats and hence identify risks that should be mitigated. Although
we focus on risks stemming from the leakage of intellectual properties in FL, our
methodology equally applies to the case when ML models process personal data and
therefore are subject to data protection regulations (e.g., GDPR). Our approach is in
line with the risk-based approach proposed by several regulations on AI (such as the
upcoming European AI Regulation2) and hence can be useful to audit ML models in

1Data protection and privacy are often used interchangeably in the literature, though “privacy” usually refers
to personal data which is not the case in our application.

2https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
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practice.

• We design and implement two novel and scalable (membership) inference attacks.
They detect information leakage through gradients of any training sample and the
trained model. Even if secure aggregation is in place [5], which prevents the attribu-
tion of membership information to a specific partner, we show that differential attacks
can still be used to assign membership information. We develop a novel differential
attack that exploits that some change in the composition of the training participants
also changes the membership attack’s output distribution, which statistical tests can
detect. These attacks show that — just as in other applications of FL — gradients and
the activation values of the commonly trained model can leak sensitive information
about the participants’ training data.

• We propose technical countermeasures to mitigate these threats. We show that secure
aggregation [5] does prevent trivial attribution of the inferred attribute to a specific
partner. Still, it is not sufficient to avoid attribution if the composition of the partners
changes during training. Although Differential Privacy (DP) [7] defeats such attri-
bution, we show that DP implies intolerable accuracy drop-in practice. Hence, we
explore ad-hoc mitigation approaches and test data protection empirically with our
attacks. Although these techniques provide no formal privacy guarantee, they still
mitigate the attacks with acceptable utility loss. For example, we find that threshold-
ing model parameters effectively mitigate information leakage without degrading
model quality too much. This also shows that model parameters are highly redun-
dant, which allows a model to memorize complete training samples that our attacks
can detect.

2 Related work

We review the literature concerning inference attacks. There are many privacy-related at-
tacks concerning machine learning; here, we give a non-comprehensive list of categories
based on the attacker’s goal. For more comprehensive surveys, we refer the reader to
[24, 33]. Model inversion attacks aim to reconstruct a representative value of a class [10],
e.g., a record that is similar to all records belonging to a class. Membership inference at-
tacks are aimed at inferring if a certain record was part of the target model’s training dataset
[16]. The most common techniques to achieve this utilize shadow models [28, 37, 39, 42]
or rely on overfitting [20, 27, 31, 35]. Reconstruction attacks take membership inference at-
tacks another step forward by identifying the whole training dataset (instead of one record)
[15, 22, 36, 44, 47]. Property inference attacks aim to infer properties of training data that are
independent of the features that characterize the classes of the joint model [11, 26, 29, 43].
And finally, model extraction attacks arise when an adversary obtains black-box access
to some target model and attempts to learn a model that closely approximates or even
matches the original model [41].

Despite the wide range of attacks that exists, in this paper, we focus on membership inference
attacks. These are the most elemental attacks, highlighting one bit of information leakage. If
membership inference succeeds, that flags (one-bit) information leakage, a requirement for
other attacks, which potentially leak more bits. On the other hand, if it does not succeed,
that can be a solid empirical argument that other attacks (that leak more information) will
probably fail as well.
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Several mitigation techniques have been proposed against the risks of membership in-
ference attacks, such as regularization or hyperparameter tuning (including model adap-
tation), which reduce overfitting [45]. DP [7] can also be applied to ML models provid-
ing provable privacy guarantees albeit with significant accuracy degradation in general.
Two dedicated defenses, adversarial regularization [28], and MemGuard [17] have also
been proposed to combat membership inference attacks. As MemGuard requires post-
processing the output of the ML model, while adversarial regularization is scalable only to
a minimal number of attacks, we focus on hyperparameter tuning, regularization, and DP
in this work.

3 Context: Collaborative Drug Discovery

Quantitative Structure-Activity Relationship (QSAR) models are commonly used to pre-
dict bioactivity3 of chemical compounds on different targets [8]. The input to such mod-
els is a representation of a chemical compound (e.g., an extended-connectivity fingerprint
(ECFP) [34]) which encodes different properties of the molecule. The output is the pre-
dicted bioactivity of the input molecule on specific targets (e.g., proteins). As building
such models requires substantial data, collaborative learning is a compelling approach for
multiple pharma companies to benefit from each other’s confidential data collectively.

Chemical fingerprints like the ECFP encodes a chemical structure in the form of a vector
of binary values or counts. A typical implementation is that substructures of the molecules
are hashed to an integer address pointing to a position in a high dimensional vector, and the
given position is either set to one or incremented. This high-dimensional vector is usually
folded to smaller sizes to decrease the model size and improve generalization.

This paper employs feed-forward neural networks as QSAR models and trains in a multi-
partner, multi-task setting. Neural networks are highly modular and scalable, making
them, especially appealing in this context. Our neural network is separated into a trunk
network and different head networks, as illustrated in Figure 1. The trunk is common for
all tasks and participants and trained collaboratively, while the head architecture depends
on the task and can be different among participants. The trunk extracts those features from
a compound that can be used to maximize the overall prediction accuracy concerning all
tasks.

In a collaborative learning setting, each participant trains its model (head and trunk to-
gether) on its training data locally. Only the parameter updates of the trunk are sent to the
server for aggregation in every federated round. The weights and the whole architecture of
the head networks are confidential and therefore not shared. The single role of the server
(aggregator) is to sum up, the trunk updates sent by every participant and re-distribute the
result. Each participant updates its trunk model with the common aggregate and obtains a
new trunk model that is identical for all participants.

Therefore, the training data of participant j consists of pairs of (x,yj), where x ∈ {0, 1}n
denotes the fingerprint of the input compound (n is the folded fingerprint size and is iden-
tical for all participants), and yj ∈ Rkj denotes the bioactivity values of this compound
(kj is the number of targets in participant j’s data), that is, yj

i denotes the bioactivity value
between compound x and target i for participant j, and kj is the output size of participant
j’s head model.

3A beneficial or adverse effect of a (small molecular) drug on a living organism. In this context, the result of
a measurement carried out on some preclinical model systems (enzyme assay, cellular assay, etc.) can indicate a
potential beneficial or adverse effect of the given drug candidate. Therefore a valuable asset for the company.
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A typical trunk architecture consists of a single linear layer. For instance, if the trunk
has 6000 units and a folded input size is 32000, each participant will send and receive
a total of 192 million parameter values (as model update/aggregate) to/from the server
in every federated round. In each round, every participant performs a single gradient
descent iteration: first, it selects a batch of training samples uniformly at random, then
computes the gradients (i.e., model update), and finally sends the update to the server for
aggregation. This is also illustrated in the middle (white area) of Figure 2.

Notice that this is a typical cross-silo FL setting: collaborative drug discovery is usually
executed by pharmaceutical companies equipped with the necessary training data. Hence,
the number of participants is below a dozen, and each of them participates in every round
(as all of them have dedicated hardware with constant availability). By contrast, in cross-
device FL, only a subset of participants participate (out of possible thousands) with often
intermittent connection. Besides, each participant performs only a single local gradient
iteration on its training data in cross-silo FL. In contrast, participants perform multiple
iterations in cross-device to increase bandwidth efficiency (at the cost of model accuracy
and possibly convergence speed).

4 Methodology and Threat Model

As none of the available regulations on AI and data privacy mandate any specific risk
analysis methodology, we propose a sufficiently general and simple one to demonstrate
the risk-based approach promoted by most legal requirements.

The risk analysis is composed of the following main steps repeated until all Risks be-
come acceptable: 1) define the perimeter of the analysis, i.e., the actors (Risk Sources) and
the data involved (Assets), 2) define the controls already in place, 3) define for each Risk
Source the associated Risks, 4) define Threats for each Risk, and 5) apply controls to miti-
gate Risks. Within this paper, we do one iteration of these steps focusing on confidentiality.
We rigorously go through the assets we consider, the possible corresponding Risks and
their Sources, and detail the related feasibility and likelihoods. We mention a couple of
Threats that are realized with our proposed attacks. Finally, we suggest several mitigation
strategies with a trade-off parameter between model accuracy and defensive efficiency.

Figure 1: Head-trunk architectures with feed-forward neural networks.
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4.1 Data and Actors

Assets. Assets are the confidential or private data that the Risk Sources aim to learn
or manipulate, thereby causing Risk. We define the following assets: Chemical Fingerprint
(FP) (the input of the model, a compact representation of a chemical compound), Targets
(protein or others like toxicity for which the Bioactivity is being measured), Bioactivity (the
predictive task labels for the chemical fingerprint input), and the Trunk & Head model (the
collaboratively and privately trained neural network, respectively).

We assume that a fingerprint can be inverted, and the chemical compound represented by
the fingerprint can be unambiguously identified. Indeed, in a recent work, it was shown
that the chemical structures corresponding to an ECFP fingerprint could be recovered with
reasonable accuracy by learning a feed-forward network to project to the hidden space of a
recurrent autoencoder [19].

Risk Sources. A Risk Source is a person or non-human source that can cause a Risk,
accidentally or deliberately. We only focus on human sources (aka, attackers), which aim to
partially or entirely infer some confidential properties of the assets. We define two primary
Risk Sources: Pharma, who is represented as a participant in collaborative learning, and
Server, who coordinates and aggregates the training. This paper is NOT concerned with
Risks and Threats stemming from outsider attacks, including but not limited to a cloud
provider, external pharma companies, hackers, etc. Attackers are characterized by their
background knowledge and their access to assets.

Background knowledge. Based on the attacker’s role in the collaborative learning set-
ting, they can access different data. The attack may need information about the training
data, and depending on its extent, there are many categories. For example, the attacker
could access the training dataset with or without labels or know only about the statistical
properties (e.g., its distribution).

Access. The attacker can access all the details of the model (white-box) or only its pre-
diction (black-box). In the drug discovery use case, this can be further specified due to
the multi-task environment, e.g., in case of a white-box attack, does the attack access the
weights and architecture of the commonly shared trunk model or the private head? The
attacks could be separated based on the available meta-information, too: the attacker might
monitor and use the performance metrics or utilize communication traffic patterns during
collaboration, such as timing, size, or direction). Finally, the frequency of the exploitable
information could also play a significant role in the attack’s success.

4.2 Utilized Control: Secure Aggregation

Secure aggregation [2, 5] is a standard technique to prevent access to the model update of
an individual partner, and it allows the server (and the participants) to learn only the aggre-
gated model updates as illustrated in the middle (white area) of Figure 2. In other words,
nothing is leaked except the aggregated model in every training round. Hence, inference
(i.e., attribution) of any confidential information to any participant is not possible from the
aggregated update, if all participants are involved in the aggregation in every round.
This is similar to secure multi-party computation (SMC) [6], where the intuitive security

requirement is that nobody can learn information about the participants (e.g., dataset, gra-
dients, etc.) than what they could already know from the aggregated result and their own
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input. Rather than for the entire training process, secure aggregation implements an SMC
protocol in each round separately. Indeed, besides the final model, the intermediate (se-
cure) aggregates are also revealed in secure aggregation. This is a standard compromise
in the literature [5] as end-to-end SMC techniques are still quite challenging for complex
models with many parameters and large datasets [18] due to performance issues, which is
precisely the case with drug discovery.

Before sending the model update (gradients) of the Trunk to the servers, the participants
mask their update in such a way that the masks cancel out once aggregated (by the server).
Hence, the server only learns the sum of model updates and not those of the individual
members of this sum. Therefore, the server can only learn information about the set of
participants as a whole without being able to attribute the information to any specific par-
ticipant (e.g., it might be able to infer that a certain compound is used during the federated
run, but it cannot assign this compound to any specific participant).

Note that secure aggregation does not eliminate privacy breaches completely: it does not
hide the number of trunk parameters, and hence may leak information about the trunk’s
architecture to any Risk Source (e.g., the server) who can access the encrypted model up-
dates. Furthermore, the aggregated model could also be concealed from the server: we
assume each participant can add an extra mask which is known to every participant except
the aggregator. After aggregation this mask can be removed by any participant, i.e., the
mask persists and do NOT cancel out after aggregation.

4.3 Risks

A Risk represents the goal of the Risk Source which is to infer confidential information
about one of the asset. Its motivation is characterized by the incentives (e.g., financial
gains) of the Risk Source to perpetrate the Risk balanced with the potential disincentives
(loss of trust, damage to reputation, etc.). A Risk’s impact is measured by its associated
Severity. In this paper, we only consider inference Risks, consequently, neither poisoning
(intentional contamination of the training process) [4] nor free riding (participation in the
training process with intentionally limited contribution) [23] is enlisted as a Risk in Table 1.
We also do not consider all identified assets, our goal is not to provide a comprehensive list
of risks but to demonstrate the methodology on a real-world machine learning use-case.

ID Description of Risk Risk
Source Severity

R1
A fingerprint is inferred with

high probability to have been utilized by
A) a given participant B) any participant.

Pharma
Server 4

R2
Targets – which was not published before –

can be inferred with high probability to
have been utilized by

A) a given participant B) any participant.

Pharma
Server 4

R3 (A part of) the trunk model is
inferred/reconstructed.

Server 3

Table 1: Identified Risks. Severity: 1 – Negligible, 2 – Limited, 3 – Significant, 4 – Maximum.
Only R1 is considered in this paper.
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ID Description of Threat
Feas.

&
Like.

Corr.
Risk

Risk
Source

T1

Membership attack against the
compound: for a given set of

compounds, an attacker having access
to the trunk model can compute their
representation, and build a classifier

which tells if they are in the training set.

2 R1B Server

T2

Membership attack against the
compound: based on the model

updates, an attacker builds a classifier
which tells if a compound is in the

training set.

4 R1B Server

T3
Combination of T1 with traffic metadata

collection to assign identified
compounds to certain partners.

1 R1A Pharma
Server

Table 2: Identified Threats for Risk R1 from Table 1. Feasibility/Likelihood: 1 - Very Dif-
ficult/Negligible, 2 - Difficult/Low, 3 - Average/Moderate, 4 - Easy/Large, 5 - Immedi-
ate/Certain.

4.4 Threats

A Threat is a sequence of actions carried out by a Risk Source to realize one or more Risks. A
Threat is sometimes called an “attack” in the security literature. In general, several Threats
can lead to a Risk and the same Threat can lead to different Risks. A Threat has a single
property called feasibility, which characterizes the difficulty for a Risk Source to realize
the Threat. The likelihood of a Risk is computed from the feasibility of its corresponding
Threats and is influenced by the feasibility as well as the the motivation or risk source. To
ease demonstration, we assume in the sequel that 1) the likelihood of the Risk is computed
directly from the feasibility of its Threats using standard probability calculus (see Section
6), and 2) only a few threats corresponding to risk R1 and listed in Table 2 are considered.
We are not concerned with Threats that manipulate the learning algorithm in the design
phase by model architects or software designers (they are also excluded from the list of
potential risk sources).

5 Attacks

In this section, three different attacks are described. One can be performed after (or dur-
ing) training (Trunk Activation), while two (NGMA and N − 1) are applicable only during
training. The motivation and background of the attack, the attacker’s capabilities, and the
attack itself are described for each attack. A short summary is depicted in Table 3 and an
illustration is visualized in Figure 2.
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Attack Leaked Asset Corr.
Threat Adversarial Capabilities

Trunk
Activation

Attack
training data T1 Access to final trained trunk

model.

NGMA training data T2 Access to aggregated trunk
gradients in a single round.

N-1 Attack
assigning training

data to a single
partner

T3 Access to aggregated trunk
gradients in multiple rounds.

Table 3: Summary of presented attacks.

5.1 Attack settings

All evaluations are performed on the publicly available ChEMBL v.23 dataset [12], prepared
according to [40]. The input to this model is a folded ECFP fingerprint of a compound with
a size of n = 32000, and the output is the predicted bioactivity with 3547 classification
tasks (out of which 1308 were used for simulating the ten participants). The trunk has 40
units, all with ReLU activation and a 0.2 dropout. We used the SparseChem library4. The
implementation of the proposed attacks is open-sourced on GitHub5.

Cross-silo FL is simulated with a realistic separation of the training data into ten partitions,
each with different samples and tasks (i.e., output size). The metadata of the splitting is
shown in Table 4.

5.2 Membership Inference

The trunk is shared among all participants, who might be honest but curious. Therefore, it
is interesting to understand whether its output (i.e., trunk activation values) or its updates
(i.e., gradients) leak any information about the membership of an input sample. Moreover,
the commonly trained trunk model may be sold after the federated run to third parties,
posing additional risks. Next, we show two membership attacks: a Trunk Activation Attack
and a Gradient-based Membership Attack, where the former infers membership from the
output of the trunk model after (or during) training. At the same time, the latter does
the same from the model update during training. Recall that (as illustrated in Figure 2)
the attacker cannot access individual model updates due to secure aggregation; hence the
output of the attacks only indicates whether any participant used the tested sample for
training or not without attributing this information to any specific participant.

4https://github.com/melloddy/SparseChem
5https://github.com/minaremeli/pharma-attack-framework

Samples 256 432 4301 7076 5576 32954 35692 45796 64903 68359
Tasks 2 8 22 46 32 182 150 217 309 340

Table 4: The meta-data of the ChEMBL dataset split utilized in our experiments.
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Figure 2: Illustrating the proposed attacks and the process with secure aggregation (the
middle white area). The attacks are from Table 3, i.e., Trunk Activation Attack, Naive
Gradient-Based Membership Inference Attack, and the N − 1 Attack illustrated on the bot-
tom right light green, the bottom left light blue, and the top light khaki area respectively.
Each attack is detailed in the section they are introduced.

5.2.1 Trunk Activation Attack

The hypothesis is that the trunk will produce different outputs (activation values) for a
training sample compared to a yet unseen sample. An attacker model is built to detect
these subtle differences between training and non-training samples. We assume that the
attacker knows the target model architecture (white-box attack).

The attack has three phases (also illustrated on the bottom right (light green area) of Figure
2): the shadow model training phase, the attack model training phase, and the evaluation
phase, where the attacker model is evaluated on the targeted model. In the first phase, the
attacker builds a shadow model that can simulate the targeted model’s activation output.
(S)he trains it with his shadow dataset, which comes from the same distribution as the
participants’ data. In the second phase, (s)he trains the attack model on the activations
of the shadow model and learns to differentiate the activation patterns of members from
that of non-members, e.g., between the black compound and the pink one where only the
latter is part of the shadow dataset. The attack model is a RandomForest classifier with 100
estimators and no maximum depth. The output of the attacker model is binary, indicating
whether any of the participants used the sample to train the trunk. Finally, the last step
is to query the RandomForest classifier with the activations of samples; thus, the attacker
model can infer the membership of sample (compound) that the attacker has access to (and
not only of a particular sample), without attributing that to any specific client.

Evaluation. The attacker aims to build a classifier that distinguishes trunk activations of
samples that are part of the training dataset and samples which are not. For this, it needs
to obtain trunk activations of both training and non-training sample, which will constitute
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the training data of the attacker model. For this purpose, it builds its copy of the original
model. The attacker’s dataset is divided into two disjoint parts D and D′. D is used for
the federated training of the trunk model, and D′ contains samples that the trunk model
has never seen in the training process. The trunk’s activation values are used to train the
attacker model (i.e., a random forest classifier): samples from D are selected and labeled
as “seen”, while samples from D′ are labeled as “unseen”. D and D′ together are used to
train and validate the attacker model (a random 66% of the data is used for training and the
remaining for validation). In particular, for every (x, y) ∈ D′ (analogously to D) the trunk
activation values for compound x is computed. This results in a vector of 40 activation
values, which are fed to the attacker classifier to predict the label y ∈ {seen, unseen}.

Results and Feasibility. The mean accuracy of the attack is 61.98%, with a precision
of 60.78% and a recall of 67.59%. Consider the random guess as a baseline, where the
attacker has a chance of 50% to guess the correct membership without any prior knowledge.
Therefore, because this attack needs labeled data to train the attack model, the feasibility
of this attack is estimated to be “Difficult” for a Pharma partner and “Very difficult” for the
Server who cannot access the trunk model (see Section 4.2).

5.2.2 Naı̈ve Gradient-based Membership Attack (NGMA)

A simple membership attack, called Naı̈ve Gradient-based Membership Attack (NGMA)
exploits the uniqueness and sparsity of the ECFP fingerprint (as illustrated on the bottom
left (light blue area) of Figure 2): on average there are less than 70 values in the 32k long
folded fingerprint in the ChEMBL dataset. This uniqueness is also reflected in the updates
(gradients) of the trunk (noted with darker and lighter arrows).

In particular, if some coordinate values of the input fingerprint are zero, then all the gra-
dients corresponding to these zero coordinates will be zero as well. When the gradient is
computed on a batch with multiple samples, some parts of the aggregated gradients may
become zero as the gradients of different samples can potentially cancel each other out. Be-
cause this can happen quite often, we require that out of all the weight updates (gradients)
connected to a single non-zero input neuron, the majority of them must be non-zero. If
all non-zero input neurons of a compound ”pass” this test, the compound is likely to be
involved in the corresponding training batch, i.e., an unknown participant(s) used it.

In details, let S denote the non-zero positions in the fingerprint of the tested sample, and
let ∂L

∂wi,j
denote the gradient belonging to weight wi,j in the trunk (L is the loss function

and wi,j are the weights). If ∂L
∂wi,j

6= 0 for all i ∈ S and more than half of all j in the update,
then the fingerprint is deemed to be used in the current training batch.

NGMA is much more feasible and scalable than building a separate attacker model to
classify model updates, which is also pursued by prior works [28]. Indeed, it does not
require training any attacker model, and therefore the attacker does not need any training
data beyond the tested fingerprint. Moreover, NGMA does not require knowledge of the
label of the tested samples.

Evaluation. Using NGMA, the attacker (i.e., the server or any participant) aims to in-
fer whether a particular (target) compound is used as a training sample. For one experi-
ment, 50 positive and 50 negative batches are collected and evaluated; a positive/negative
batch includes/excludes the target (one batch is composed of the union of all participants’
batches). Model updates on the 50 positive and 50 negative batches were computed, and
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the attack was then executed on each of them. This evaluation process was repeated 200
times, each with a random target.

Results and Feasibility. NGMA can determine with an average accuracy of 82.41%
whether a specific compound was in the current batch. The precision and recall are 74.17%
and 100%, respectively. NGMA is more accurate than the Trunk Activation attack. There-
fore its feasibility is “Large“ to a Pharma partner who can access the gradients, but almost
negligible for the server who cannot access them (neither of their sum) due to the employed
secure aggregation protocol. Recall that, unlike Trunk Activation Attack, the attacker does
not need to train attacker models for NGMA and hence does not need labeled training data,
which increases its feasibility.

5.3 N-1 (differentiation) attack

In cross-silo FL, parties may join or leave during training as illustrated on the top (light
khaki area) of Figure 2. Therefore, using a successful membership test, the attacker can
attribute a training sample to the leaving/joining party. For example, if the membership
test starts to succeed upon the arrival of a new party (e.g., client X), then the party is
likely to have the tested sample in its training data. Similarly, when the membership test
starts to fail upon a party’s leaving, the party is likely to have the tested sample in its
training data. Such an attribution attack is a differentiation attack, as it takes advantage
of the change in the coalition. The N − 1 attack is a particular case of the differentiation
attacks when the difference is a single partner. However, other differentiation attacks are
also possible: for instance, in the cross-silo FL scenario, where only a (random) subset of
participants participate in each round, attribution can become possible by accumulating
the information of a membership attack from each round [29].

The following evaluation aims to measure how successful an “N − 1” attack can be on
ChEMBL. A simulated scenario is where participants train together for some time; then,
one randomly selected participant leaves. The target sample (on which the membership
inference attack is performed) is part of the dataset of the leaving party. The attacker per-
forms a membership inference attack (MI) against the target sample in each training round
and records the result of the attack; for each round r and each target sample T , MI(r, T )
output whether or not the target is present in that training round. These are called positive
and negative rounds, respectively. In general, when the target sample is present in only
one of the datasets, the attack signals that the target is present once every epoch (an epoch
in the training process consists of multiple rounds). According to the attack, epochs that
do (not) contain the target sample are called positive (negative) epochs. The aim is to in-
fer whether the statistics before are significantly different from those after the party leaves
using Fisher’s exact test.

Evaluation. We assume that the number of positive epochs is much higher than after
leaving before the party leaves. The attacker runs the membership inference in every round
and, using the attack outputs, determines whether the epoch was positive or negative.
First, the attacker does this when everyone trains together (for 30 epochs). Then, after the
party leaves, he observes another 30 epochs. The null hypothesis is that the number of
positive epochs should be the same in the first 30 epochs as in the second 30 epochs.
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Results and Feasibility. In the case of 30 epochs, 26 were flagged as positive when the
particular participant participated in the training, and 0 epochs were flagged as positive
after they left. With the Fisher-test, we calculate the probability of this data, given our null
hypothesis. The probability of observing 26 positive epochs, then 0 is precisely 3.92 · 10−13.
This is also equal to the significance level of a one-tailed test, which tells us the probability
of precisely getting this (or more extreme) data (with the same marginals). Therefore, the
attacker can confidently conclude that the target sample was part of the leaving party’s
dataset since the number of positive epochs decreased significantly. This means that the
attribution of a tested compound to a specific party is not less feasible than the membership
attack itself, no matter whether secure aggregation is employed. That is, secure aggregation
does not mitigate the risk of attribution (R1A and R2A) as long as the composition of the parties
changes during training.

5.4 Discussion

To compute the likelihood of the Risk R1 in Table 1, consider the feasibility of the two at-
tacks; NGMA with feasibility “Easy“ (i.e., an attack accuracy of 0.82), and TrunkActivation
with feasibility “Difficult“ (i.e., an attack accuracy of 0.6) for a Pharma partner as a Risk
Source. Risk 1B (membership inference without attribution) occurs if at least NGMA or
TrunkActivation succeeds, which has a probability of 1 − (1 − 0.82)(1 − 0.6) ≈ 0.936 This
amounts to a substantial likelihood with maximum severity; hence, this risk must be miti-
gated. The same holds for Risk 1A since attribution is very feasible with our “N −1 attack”
described in Section 5.3.

6 Mitigation

In this section, several techniques (controls) are described to mitigate the threats in Table 3
and eventually Risk 1 in Table 1. An overview of these techniques and the mitigated attacks
(i.e., Threats) are summarized in Table 5. In general, there are legal, organizational, and
technical controls. Legal controls include any contractual agreements or legal obligations
that the parties must obey. Organizational controls include training employees, establish-
ing working policies, and re-structuring the organization to support effective data protec-
tion. Technical controls employ technical measures such as access control, cryptographic
techniques, sanitization algorithms, detection algorithms, etc. This document focuses only
on technical controls, excluding IT security countermeasures.

6We assume they are independent events.

Mitigation Addressed Threats Effect on Acc.
Differential Privacy T1, T2, T3 Severe

Regularization T1, T2, T3 Mild
Parameter Tuning T1, T2, T3 Mild

Compression T1, T2, T3 Mild

Table 5: Mitigation techniques with the corresponding threats and accuracy distortion ef-
fect.
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6.1 Differential Privacy

Privacy (or confidentiality) could be measured with Differential Privacy (DP) [7], and in
particular with parameters ε and δ. DP provides a strong guarantee that the membership
(i.e., the presence or the absence) of a single data point will not change the final output of
the algorithm significantly. DP is usually achieved by perturbation, e.g., the participants
add Gaussian noise to their model updates before transferring them to the aggregator. Be-
sides providing privacy protection, this could have a regularization effect and hence could
boost generalization [9]; however, excessive noise can also degrade model performance
(i.e., slower convergence and lower model accuracy). DP has two flavours in the context of
collaborative learning; Record-level [1] and Client-level DP [13, 25]. Client-level DP guar-
antees that no participant-specific information about the training data of any participant
is shared (up to ε and δ). At the same time, Record-level DP prevents information disclo-
sure specific to any single record (up to ε and δ). Although the Client-level DP guarantee
is stronger, it also needs larger perturbation and provides weaker utility. To the best of
our knowledge, Client-level DP is the only solution that provides a proven defense against
N − 1 attacks.

Evaluation. Since DP does provide a theoretical privacy guarantee against membership
inference, we do not evaluate the protection efficiency against the presented membership
inference attacks. Instead, we focus on their utility loss and evaluate model quality with
centralized learning while guaranteeing Record-level DP. We show that model performance
is unacceptable even in this simplified setting and, therefore, would be even worse in col-
laborative learning with Client-level DP. Indeed, Client-level DP requires larger perturba-
tion than Record-level DP, and collaborative learning cannot have better performance than
centralized learning on the same training data (i.e., the union of the participant’s training
data).

Privacy protection is measured via the privacy parameter ε and δ, which can be directly
mapped to the variance σ of the Gaussian noise added to the gradients of the model pa-
rameters in every SGD iteration of the training. Contrary to the multi-partner setting de-
scribed in Section 5.1, we simulate a centralized learning scheme by using the preprocessed
ChEMBL dataset from [40] without splitting. This contains 295750 samples and 2808 tar-
gets, so δ is set to 1/295750 (reciprocal of the number of original training samples). The
gradients are clipped to have an L2-norm less than 2.5, and ε is computed using the mo-
ments accountant method [1].

Results are shown in Figure 3. It is visible that adding a small noise level (i.e., σ = 0.1) has

Figure 3: Experimental results using Differential Privacy
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some regularization effect (i.e., decreases the difference between the training and validation
AUC values). Hence, it does not only improve privacy guarantees but also helps general-
ization. On the other hand, the corresponding privacy guarantee is weak (ε = 184365). To
have a meaningful privacy guarantee, one must apply noise with greater magnitude (i.e.,
σ = 1.0, which corresponds to ε = 7.3). However, in such a case, the utility of the training
is completely eradicated.

6.2 Other Privacy-Preserving Methods

The above experiments show that adding DP noise to the gradients without client-level
protection leads to significant accuracy loss. Fortunately, some techniques provide “ad-
hoc” privacy protection with tolerable accuracy loss at the same time. Although these
techniques do not offer rigorous privacy guarantees, they will be shown to mitigate the
inference attacks described in Section 5 reasonably well.

Regularization. As a regularization technique, dropout is already valuable for the neural
network: it improves generalization and prevents overfitting. The effectiveness of mem-
bership inference attacks is partially due to the overfitting nature of ML models. Therefore,
any techniques that increase the generalizability of the model help fight against member-
ship attacks.

Concerning NGMA (in Section 5.2.2) we experimented with various dropouts. We ob-
served that while a dropout of 0.2 does not significantly impact the attack accuracy, a value
of 0.6 and above does. The left part of Figure 4 shows that, with increasing dropout, there
is a near-linear drop in the accuracy of NGMA. In contrast, model accuracy slightly deteri-
orates even for larger dropout values.

Hyper-parameter tuning. Most prior works on membership attacks, and likewise our
attack in Section 5, considered collaborative learning when each participant performs a
single local SGD iteration with a single mini-batch to compute its update. Increasing the
size of the mini-batch deteriorates the attack accuracy, as shown in the middle of Figure 4.
As the gradients of every sample in a batch are averaged in SGD, a single compound has a
smaller influence on the model update if the batch is large, thus making their detection in
a membership test more difficult. Therefore, increasing the batch size and the number of
local SGD iterations can mitigate inference attacks at the cost of minor utility degradation.

Compression. As detailed in Section 3, there could be a high communication cost in our
application due to the vast number of trunk parameters. As these parameters are highly
redundant, their lossy compression can significantly improve bandwidth efficiency at the
cost of small performance degradation. Prior works also suggest that these techniques pro-
vide some privacy guarantees [3, 21, 46]. As we show next, compression indeed mitigates
the inference attacks described in Section 5. Moreover, some sparsification techniques have
a regularization effect on training, improving standard model accuracy.

Compression techniques often rely on sparsifying the gradients (i.e., not transferring gra-
dients with small magnitude), which can potentially mitigate inference attacks. Indeed,
gradients modified by only a single training sample (revealing its membership) tend to
have a smaller magnitude and are more likely to be eliminated by sparsification.

Three sparsification techniques are considered: thresholding, Top-K and random subset.
Thresholding requires all participants to zero out all coordinate values of the update vec-
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tor whose absolute value falls below a certain threshold and transfer only the remaining
non-zero coordinates for aggregation. In contrast, via Top-K, participants retain and trans-
fer only the top K largest coordinates in the update vector to the server. Random subset,
as its name suggests, transfers only a random subset of the gradients for aggregation. In
particular, each participant sends the same random subset of all coordinates to the server,
and they choose a new random subset in every round. This is implemented by sharing a
common seed among all participants (since every participant has the same seed, they select
the same coordinates in every round). Our results are presented in Table 6. Recall that an
attack accuracy of 50% indicates no information leakage concerning the considered attacks.

We found that a threshold of 0.01 keeps the number of non-zero gradients below 10%
in each training round and has excellent regularization properties. Indeed, thresholding
increases model accuracy by 3% compared to the baseline, uncompressed training. The
right side of Figure 4 shows that, with Top-K, the less information we release about the
gradients (i.e., the smaller K is), the less effective the attack becomes.

Summary. We showed that simple hyper-parameter tuning, regularization, and com-
pressing model updates could effectively reduce the feasibility of both membership attacks

(a) Effect of dropout in input
layer on NGMA attack.

(b) The effect of batch size on
NGMA. With increasing batch
size the attack accuracy drops.

(c) The effect of Top-K
compression on NGMA and

Trunk Activation Attack.

Figure 4: Various mitigation techniques without formal privacy guarantees. The blue line
denotes the attacker model’s accuracy after 1000 rounds of training while the red dashed
line is the attacked model’s accuracy.

Technique Parameter Accuracy Trunk Act. Acc. NGMA Acc.
No Compression 70.84% 61.98% 82.41%

Thresholding 0.001 73.42% 54.02% 50.00%

Top-K

0.2
0.4
0.6
0.8

55.14%
55.84%
55.27%
55.1%

58.62%
57.13%
56.28%
55.33%

50.57%
51.76%
57.98%
66.28%

Random Subset

0.2
0.4
0.6
0.8

54.31%
53.54%
55.29%
55.54%

60.42%
57.44%
61.04%
59.52%

50%
50%

50.02%
59.54%

Table 6: The effect of various sparsification techniques on the main task and the attack
accuracies.
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without degrading model accuracy. In particular, dropout, increasing the batch size, and
applying thresholding on the model updates diminishes the feasibility of both attacks to
“Very difficult”, the likelihood of R1B to negligible without a significant drop in model ac-
curacy. Moreover, besides eliminating both attacks, thresholding improves generalization
and model accuracy. Differentiation attacks can be mitigated by mitigating membership
attacks in the first place, by DP (at the cost of severe utility degradation), and by requiring
fixed composition of clients during training. Moreover, as all clients participate in every
federated round, the communication is synchronous, and all messages have the same size
and format due to secure aggregation; hence T3 in Table 2 is also automatically mitigated
since meta-data cannot be used to single-out any client during training.

7 Conclusions

The pharmaceutical industry can better leverage its data through collaboration. Yet, there
are non-negligible risks stemming from the unintended information leakage, so such a plat-
form needs to be secure and privacy-preserving. This paper described a privacy risk as-
sessment of collaborative machine learning modeling in drug discovery. Several potential
risks, threats, and attacks are discussed depending on the attacker’s capability and goals.
The main benefit of systematic risk assessment is prioritizing risks, which facilitates effi-
cient mitigation of the most severe risks first.

Our novel attacks show that there is information leakage through the model updates. Although
there is limited leakage through the output of the commonly trained model, its feasibility
is not always significant due to the strong assumption that the adversary needs access to
labeled training data. We also emphasize that our attacks are evaluated on public data, and
it may exhibit different performances on actual private pharma data. Moreover, we stress
that membership attacks alone are insufficient to attribute a training sample to a specific
participant. However, given a successful membership attack, such an attribution becomes
feasible if the attacker can also launch a successful N − 1 attack. This can happen when
not all clients participate in every federated round, which can have many reasons such as
client failure, DoS attack, the addition of new partners, etc.

Besides analyzing the risks and threats, we described several mitigation techniques
against them. Secure aggregation is an effective countermeasure as long as the composi-
tion of clients is fixed. Aside from threat mitigation, the proposed compression techniques
also reduce the computational overhead of secure aggregation and communication costs
in general. Differential privacy was also studied as it provides a provable defense against
any attribution attack such as the N − 1 attack. However, our experimental results suggest
an intolerable accuracy drop, and thus we turned towards ad-hoc mitigation techniques,
including regularization, hyper-parameter tuning, and compression of model updates.

We believe that our methodology can be generalized to other applications of federated
multi-task learning. In particular, many models have sparse inputs with fully connected
layers or are trained by a limited number of partners. For example, different health institu-
tions can indirectly benefit from each other’s patient databases through federated learning
for different disease prognoses and predictions, especially if such diseases are rare. There-
fore none of the partners alone has sufficient training data [32]. Similarly, anomaly de-
tection can also be significantly improved through federated learning due to the scarcity
of anomalous patterns at a single organization or even in a smart building equipped with
several IoT devices [38].
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