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Abstract. We consider a secure image processing workflow where the data owner keeps their raw
imagery encrypted at all times to reduce the risk of sensitive information exposure in the event of a
data breach. However, the owner also makes unencrypted, convolution-filtered versions of the im-
ages available to consumers (upon request) who specify a convolution kernel. To acheive this work-
flow, we utilize homomorphic encryption through the Paillier cryptosystem. We start by considering
a simple approach where each pixel is encrypted separately. To reduce overall computation, we next
develop a more complex approach where vectors of pixels are batched before encryption (an idea
applied by others to different image processing algorithms). Through simulation experiments, we
observe the approach involving batching to require one to two orders of magnitude less computation
time.

Keywords. Homomorphic Encryption, Image Convolution

1 Introduction

In 1978 Rivest and colleagues noted that public key cryptosystems, such as RSA, did not al-
low interesting functions to be computed on encrypted data, but doing so would be worth-
while and possible [22]. In the last ten years, homomorphic encryption research has blos-
somed motivated, in part, by the following scenario.
Data theft is a serious problem facing both private and public organizations. For exam-

ple: in 2015, the U.S. Office of Personnel Management announced that tens of millions of
private personnel records were stolen by hackers [25]. Two years later, Equifax announced
that it had been the victim of a data breach that resulted in the potential theft of personal
information of 147 million individuals [5]. One strategy to mitigate the damage in cases
like these is for the raw data to be kept in encrypted form and only the results of process-
ing on the data is unencrypted. Homomorphic encryption provides a way to address this
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Figure 1: Secure-at-rest image convolution

challenge by allowing computation to be meaningfully performed on encrypted data. This
scenario is discussed further in the context of database encryption by Ge and Zdonik [8].
We consider a version of this senario in the context of image procressing. The data owner

keeps their raw imagery encrypted at all times (at rest) while providing data consumers,
upon request, the unencrypted results of convolution-based filtering of the raw images. It
is assumed that the filtered versions of the images are less sensitive than the raw image
and therefore can be consumed in unencrypted form. In more detail the workflow, called
secure-at-rest image convolution, proceeds as follows and is illustrated in Figure 1.

1. The data owner receives raw images and encrypts them using the public key. While
the images are at rest in the data onwer’s database, they are kept only in encrypted
form.

2. A data consumer specifies a convolution kernel and image ID and requests from the
owner a filtered version of the raw image with that ID.

3. The owner convolves the encrypted image with the kernel (without decrypting) and
produces an encrypted version of filtered image.

4. The data owner decrypts the filtered image using the private key.

5. The data owner delivers the decrypted, filtered image to the consumer.

Provided that the data owner keeps the private key safe from data breach, encrypted
images can be exfiltrated from the data owner’s database with minimal risk of exposing
sensitive information. Questions remain regarding the degree to which the filtered images
can be used to reproduce the raw images and what kinds of kernels the data owner should
allow. But, to keep this paper tractable, those questions are out of scope.

1.1 Homomorphic Encryption: Overview

In the remainder of this paper, we limit our discussion to workflows with two parties, one
of whom owns the data, and one round of communication between them. Other workflows
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(beyond the scope of this paper) require more than two parties [15] or multiple rounds of
communication between the parties.

Many cryptosystems have been developed allowing operations to be performed homomor-
phically on encrypted data. A good survey was written by Acar et al. [1]. Prior to 2009,
homomorphic cryptosystems could be grouped into two categories: Partially Homomorphic
Encryption (PHE) and Leveled Fully Homomorphic Encryption (LFHE). Partially homomor-
phic encryption systems allow one operation, addition or multiplication, to be performed
homomorphically on pairs of ciphertexts an unlimited number of times (Homomorphic
operations between pairs of ciphertexts and plaintexts are also allowed). Details regard-
ing one such system, the Paillier cryptosystem [20], are provided in 3.2. Leveled fully
homomorphic encryption systems allow both addition and multiplication between pairs
of ciphertext to be performed homomorphically but each application produces noise. The
noise accumulates and eventually renders an accurate decryption unlikely. These systems
provide a noise budget wherein accurate decryption can be assured provided the accumu-
lation remains within budget.

Gentry achieved a breakthrough in 2009 by constructing the first Fully Homomorphic En-
cryption Scheme (FHE) [9] by modifying an earlier PHE scheme by Goldreich et al. [10] to
be leveled, fully homomorphic and devised an ingenious technique called bootstrapping
to reduce noise to zero. Accurate decryption can be guaranteed with an unlimited num-
ber of homomorphic computations provided that bootstrapping is periodically performed.
However, bootstrapping is extremely computationally costly rendering its use infeasible.
As such, FHE systems are still largely theoretical constructs.

Partially homomorphic encryption systems are less computationally costly than LFHE
systems. Moreover, PHE systems are simpler to use as algorithmic building blocks since
they do not require a noise budget to be maintained (PHE systems are noise-free). Several
papers have been published regarding the application of PHE and LFHE systems to the
development of secure image processing algorithms - a summary is provided in Section
2. In this paper, we focus on applying one common PHE system, Paillier, to secure image
processing, specifically, image convolution.

2 Related Work: Secure Image Processing

2.1 Leveled Fully Homomorphic Encryption Systems

As discussed earlier, LFHE systems retain the computational power of FHE systems but
suffer from noise accumulation. As a result, the implementation of image processing al-
gorithms using LFHE systems are complicated by the need to avoid noise accumulation
exceeding a fixed budget. Despite this, researchers have utilized LFHE systems to imple-
ment a range of image processing algorithms that can operate on encrypted data. Several
efforts have been made at implementing encrypted image classification via convolutional
neural networks (CNNs): [2], [4], [11], [14]. A primary challenge faced by these efforts
involves non-linear functions, e.g. sigmoid, that are used within neural networks. Other
efforts have focused on implementing encrypted image feature extraction, e.g. SIFT, HOG,
Hahn Moments: [12], [29], [31]. Finally, other efforts have focused on implementing a
variety of low-level image processing algorithms, e.g. image scaling, image JPEG compres-
sion/decompression: [7], [13], [30].
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2.2 Partially Homomorphic Encryption Schemes

Compared to LFHE systems, PHE systems are simpler to use due to their lack of noise accu-
mulation. The Paillier cryptosystem, a prominent PHE system, has been used to implement
several lower-level image processing algorithms on encrypted data: image scaling [17], the
discrete cosine transformation [3], discrete wavelet transformations [32], and convolution
[33].

In an effort keep the computational power of LFHE systems without the difficulty of noise,
some researchers have attempted to develop methods for implementing numeric compar-
ison using a noise-free PHE system. Doing so would extend the class of algorithms that
can be implemented using PHE systems. Hsu et al. [12] claimed to have an implementa-
tion of numeric comparison and SIFT feature extraction on encrypted data utilizing Paillier.
However, Schneider [23] argued that Hsu’s approach is not secure. Separately, Li et al. [16]
claimed to have an implementation of comparison which was utilized in [26] for secure
medical image analysis and in [28] for secure face matching. However, Wang et al. [27]
argued that Li’s approach is insecure.

2.2.1 Most Relevant

Ziad et al. [33] considered convolution (as well as a few other image processing methods)
over encrypted data using the Paillier system. However, in their approach, each pixel was
encrypted separately and a straight-forward algorithm was developed. Their approach is
essentially the same as the non-batched approach discussed in Section 4. Bianchi et al. [3]
used the Paillier system and developed a pixel-batching approach to improve the efficiency
of the Discrete Cosine Transformation (DCT) on encrypted data. Later, Mohanty et al. [17]
used Paillier and applied pixel-batching to improve the efficiency of bilinear scaling on
encrypted data. In both cases, the core pixel-batching idea was to represent integer vectors
as base B integers (with B suitably chosen). We utilize the same idea, but, owing to the
differences in application, our overall approach differs from theirs. Specifically, expressing
convolution on top of batching is different than expressing the DCT or bilinear scaling. Ge
and Zdonik used Paillier for computing aggregate queries on an encrypted database [8].
They developed a batching approach for speeding up computation of encrypted column
sums. As before, our overall approach is different owing to differences in application.

Batching approaches have also been developed for LFHE systems and they can be used for
secure at rest image convolution. We chose Paillier instead because of its relative simplicity.
We discuss this choice further in 6.1.1.

3 Preliminaries

Let Z>0 denote the positive integers. Given N ∈ Z>0, let ZN denote the set {z ∈ Z : 0 ≤
z < N} and let Z∗

N denote the set {z ∈ Z>0 : z < N and gcd(z,N) = 1}. Given z ∈ Z
∗
N let

z−1 denote the multiplicative inverse of z modulo N . Z∗
N2 is defined similarly.

We use Python-style indexing notation to denote sub-matrices. Let M denote an n × m
matrix and consider indices a1 < a2 and b1 < b2. We use M [a1 : a2, b1 : b2] to denote
the (a2 − a1) × (b2 − b1) sub-matrix from corner entry M [a1, b1] to opposite corner entry
M [a2 − 1, b2 − 1]. We use M [a1, b1 : b2] (M [a1 : a2, b1]) to denote the one-row (one-column)
sub-matrix with entries M [a1, b1] to M [a1, b2 − 1] (M [a1, b1] to M [a2 − 1, b1]).
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3.1 Image Convolution

Convolution is a commonly employed linear filtering operation [21] §13.1.3. Let Υ denote
an n×m image (a matrix) where each pixel assumes a greyscale value in {0, 1, 2, · · · , 255}.
Let Γ denote a k×k kernel matrix (k < n,m and k odd) whose entries are rational numbers.
Let Υ ∗ Γ denote matrix convolution. For simplicity, we define convolution ignoring edge
effects, namely, as the (n− k + 1)× (m− k + 1) matrix whose (i, j) entry is

(Υ ∗ Γ)[i, j]
def
==

k−1∑

a=0

k−1∑

b=0

Υ[i+ a, j + b]Γ[a, b]. (1)

We compute convolution using a shift-add algorithm (Algorithm 1) with an optimization
to exploit the fact that kernel entries may not be unique. The shift-add algorithm without
the optimization would start by multiplying Υ by each kernel entry regardless of the fact
that some of the entries may have the same value.1 We use the dictionary KerMap to avoid
this redundancy by recording for each unique kernel entry value, the multiplication of Υ by
that value.

Data: Υ,Γ
Result: C, the convolution of Υ and Γ
KerMap← {};
C ← (n− k + 1)× (m− k + 1) zero matrix.
for a = 0 · · · k − 1 do

for b = 0 · · · k − 1 do
if Γ[a, b] /∈ KerMap.keys() then

KerMap[Γ[a, b]]← Γ[a, b]Υ
end

end

end
for a = 0 · · · k − 1 do

for b = 0 · · · k − 1 do
C ← C + KerMap[Γ[a, b]][a : a+ n− k + 1, b : b+m− k + 1]

end

end

Algorithm 1: Shift-add convolution with an optimization.

3.2 The Paillier Cryptosystem

The security of the Paillier cryptosystem [20] is based on the conjectured computational
difficulty of solving the composite residuosity problem. The level of security is controlled
by a non-negative integer N which is the product of two large primes p and q chosen to
have certain properties, e.g. are close in size. Larger values of N offer greater security at
the expense of more computation required for all operations. The plaintext and ciphertext
spaces are ZN and Z

∗
N2 , respectively.

Key generation: Let λ denote the least common multiple of p− 1 and q − 1.

1The non-optimized version of shift-add is sketched in [19] §3.2.1.
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• The encryption key is (N, g) with g drawn uniformly from

{
ĝ ∈ Z

∗
N2 :

⌊
ĝλ (mod N2)− 1

N

⌋
∈ Z

∗
N

}
. (2)

• The decryption key is (λ, µ) with

µ
def
==

⌊
gλ (mod N2)− 1

N

⌋−1

. (3)

Encryption: Given plaintext z, select r uniformly from
{
r̂ ∈ Z

∗
N2 : r̂ < N

}
, then compute

Enc (z)
def
== gzrN (mod N2). (4)

Decryption: Given ciphertext ẑ, compute

Dec (ẑ)
def
==

⌊
ẑλ (mod N2)

N

⌋
µ (mod N). (5)

Homomorphic Computation: Given ciphertexts ẑ1, ẑ2, let ẑ1⊕ ẑ2 denote ẑ1ẑ2 (mod N2) which
is addition performed in ciphertext space. Given plaintext z let ẑ1 ⊗ z (or z ⊗ ẑ1) denote ẑz1
(mod N2) which is constant multiplication performed in ciphertext space. For any plain-
texts z1, z2:

Dec (Enc (z1)⊕ Enc (z2)) = (z1 + z2) (mod N) (6)

and

Dec (Enc (z1)⊗ z) = z1z (mod N). (7)

Unlike LFHE systems, there is no limit to the number of times ⊕ and ⊗ can be performed
and still decrypt to the correct result (modulo N ).

4 Homomorphic Encryption for Secure-at-Rest Image Con-

volution

Since the plaintext space consists of only non-negative integers, accommodations must be
made to handle rational numbers. First, we split the kernel into two parts Γ+ and Γ−, both
k × k matrices:

Γ+[i, j]
def
==

{
Γ[i, j] if Γ[i, j] > 0

0 otherwise
(8)

and

Γ−[i, j]
def
==

{
−Γ[i, j] if Γ[i, j] < 0

0 otherwise.
(9)

Second, we define a non-negative integer matrix Γ̂+ by choosing a scale factor, σ+ ∈ Z>0,
then scaling up each entry in Γ+ by σ+ and taking the ceiling. We use a similar process
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to define a non-negative integer matrix Γ̂− through a potentially different scale factor, σ−.

Convolution is performed separately for Γ̂+ and Γ̂− and each resulting pixel is divided by
σ+ and σ−, respectively. The resulting two matrices are added to produce an approxima-
tion to Υ ∗ Γ. Larger values of σ+ and σ− produce a better approximation at the expense

of increased computation due to the larger size of the entries in Γ̂+ and Γ̂−. To strike a
balance, we fix an error tolerance ǫ > 0 and choose the smallest values of σ+ and σ− to
ensure the approximation error is bounded by ǫ.

More precisely, given a predefined error tolerance ǫ > 0, we define Γ̂+ and σ+ as follows.

σ+
def
== argmin

σ∈Z>0

{
max

0≤a,b<k

{∣∣∣∣
⌈σΓ+[a, b]⌉

σ
− Γ+[a, b]

∣∣∣∣
}
≤

ǫ

255k2

}
. (10)

Given a, b ∈ {0, . . . , k − 1},

Γ̂+[a, b]
def
== ⌈σ+Γ+[a, b]⌉ (11)

We define Γ̂− and σ− in similar fashion and approximate Υ ∗ Γ by

Υ ∗ Γ
def
==

Γ̂+ ∗Υ

σ+
−

Γ̂− ∗Υ

σ−

. (12)

The following result shows that the approximation error, defined as the maximum absolute
difference between matrix entries, is bounded by ǫ.

Theorem 1. Given 0 ≤ i ≤ n−k and 0 ≤ j ≤ m−k, let Ei,j
def
==

∣∣(Υ ∗ Γ
)
[i, j]− (Υ ∗ Γ) [i, j]

∣∣ .
Then, Ei,j ≤ ǫ.

Proof. Let G≥ and G< denote the sets of index pairs {(a, b) : 0 ≤ a, b ≤ k− 1 and Γ[a, b] ≥ 0}
and {(a, b) : 0 ≤ a, b ≤ k − 1 and Γ[a, b] < 0}, respectively. Plugging in definitions and
algebraic manipulations yields that:

Ei,j =

∣∣∣∣∣
k−1∑

a=0

k−1∑

b=0

Υ[i+a, j+b]

(
Γ̂+[a, b]

σ+
+
Γ̂−[a, b]

σ−

−Γ[a, b]

)∣∣∣∣∣ (13)

=

∣∣∣∣∣∣
∑

(a,b)∈G≥

Υ[i+a, j+b]

(
Γ̂+[a, b]

σ+
−Γ[a, b]

)
+
∑

(a,b)∈G<

Υ[i+a, j+b]

(
Γ̂−[a, b]

σ−

−Γ[a, b]

)∣∣∣∣∣∣
. (14)

The triangle inequality and the definitions of σ+ and σ− imply

(14) ≤
∑

(a,b)∈G≥

Υ[i+a, j+b]

∣∣∣∣∣
Γ̂+[a, b]

σ+
− Γ[a, b]

∣∣∣∣∣+
∑

(a,b)∈G<

Υ[i+a, j+b]

∣∣∣∣∣
Γ̂−[a, b]

σ−

− Γ[a, b]

∣∣∣∣∣ (15)

≤
∑

(a,b)∈G≥

Υ[i+a, j+b]
ǫ

255k2
+
∑

(a,b)∈G<

Υ[i+a, j+b]
ǫ

255k2
(16)

=
( ǫ

255k2

) k−1∑

a=0

k−1∑

b=0

Υ[i+a, j+b]. (17)

Finally, the fact that all entries of Υ are no greater than 255 implies that Ei,j is bounded
above by ǫ, as needed.
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4.1 Data Owner and Consumer’s Workflow

The consumer selects ǫ and computes Γ̂+, σ+, Γ̂−, σ− as described earlier and sends these
matrices to the data owner.
The data owner sets N to a value of their choosing and computes Enc (Υ), the n×n matrix

of ciphertexts. Next, the owner computes M+ and M− by applying Algorithm 2 to Enc (Υ),

Γ̂+ and Enc (Υ), Γ̂−, respectively. Finally, the data owner computes and sends the following
back to the consumer

Dec (M+)

σ+
−

Dec (M−)

σ−

= Υ ∗ Γ. (18)

Data: Enc (Υ) , Γ̂± a k × k non-negative integer matrix.
Result: M± a (n− k + 1)× (m− k + 1) matrix of ciphertexts.
KerMap← {};
for each (i, j), compute Enc (0) and assign to M±[i, j].
for a = 0 · · · k − 1 do

for b = 0 · · · k − 1 do

if Γ̂±[a, b] /∈ KerMap.keys() then

KerMap[Γ̂±[a, b]]← Γ̂±[a, b]⊗ Enc (Υ)
end

end

end
for a = 0 · · · k − 1 do

for b = 0 · · · k − 1 do

M± ←M± ⊕ KerMap[Γ̂±[a, b]][a : a+ n− k + 1, b : b+m− k + 1]
end

end

Algorithm 2: Shift-add convolution over encrypted data.

5 Pixel-Batching for Improved Efficiency

The efficiency of Algorithm 2 can be improved by recognizing that element-wise encryption
of Υ is wasteful, namely, each pixel is encoded as a much larger ciphertext. Batching the
encryption of pixels can overcome this problem. The idea is to represent a vector of pixels
(p0, · · · , pr−1) using a single plaintext. We define a base B (sufficiently large as discussed
later) number, BatB(p0, · · · , pr−1), whose digits are p0, · · · , pr−1.

BatB (p0, · · · , pr−1)
def
==

r−1∑

j=0

pjB
j . (19)

To recover the vector, we perform a series of modulos and divisions by B to extract the dig-
its from BatB (p0, · · · , pr−1) and denote this unbatching operation UBatB (.). Next we show
how convolution can be performed on top of batching, starting first with an illustration in
a simple case.
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5.1 Convolution on Batched Vectors, an Illustration: k = 3, n = m = 4

A key idea is the definition of a length two column vector BConv+ which depends on Γ̂+

and Υ, but the dependence on Υ is only through its batched rows. We will show how the

unbatching operation applied to the ith entry of BConv+ recovers the ith row of Γ̂+ ∗ Υ.
Before defining BConv+, some preliminary definition are in order. We define length four
column vector:

BatB (Υ)
def
==




BatB (Υ[0, 0 : 4])
BatB (Υ[1, 0 : 4])
BatB (Υ[2, 0 : 4])
BatB (Υ[3, 0 : 4])


 . (20)

Given 0 ≤ a, b ≤ k − 1, we define four-by-three matrix:

KMB

(
Γ̂+[a, b]

)
def
== Γ̂+[a, b]




B2BatB (Υ) [0] B1BatB (Υ) [0] B0BatB (Υ) [0]
B2BatB (Υ) [1] B1BatB (Υ) [1] B0BatB (Υ) [1]
B2BatB (Υ) [2] B1BatB (Υ) [2] B0BatB (Υ) [2]
B2BatB (Υ) [3] B1BatB (Υ) [3] B0BatB (Υ) [3]


 . (21)

Finally, we define length two column vector:

BConv+
def
==

2∑

a=0


 KMB

(
Γ̂+[a, 0]

)
[a, 0] + KMB

(
Γ̂+[a, 1]

)
[a, 1] + KMB

(
Γ̂+[a, 2]

)
[a, 2]

KMB

(
Γ̂+[a, 0]

)
[a+1, 0] + KMB

(
Γ̂+[a, 1]

)
[a+1, 1] + KMB

(
Γ̂+[a, 2]

)
[a+1, 2]


 .

(22)

Now we show how the unbatching operation applied to BConv+[0] recovers
(
Γ̂+ ∗Υ

)
[0, 0 :

2]. The reasoning for the other entries of BConv+ is similar. By plugging in definitions, we
have that

BConv+[0] (23)

= KMB

(
Γ̂+[0, 0]

)
[0, 0] + KMB

(
Γ̂+[0, 1]

)
[0, 1] + KMB

(
Γ̂+[0, 2]

)
[0, 2] (24)

+KMB

(
Γ̂+[1, 0]

)
[1, 0] + KMB

(
Γ̂+[1, 1]

)
[1, 1] + KMB

(
Γ̂+[1, 2]

)
[1, 2] (25)

+KMB

(
Γ̂+[2, 0]

)
[2, 0] + KMB

(
Γ̂+[2, 1]

)
[2, 1] + KMB

(
Γ̂+[2, 2]

)
[2, 2] (26)

= Γ̂+[0, 0]B
2BatB (Υ[0, 0:4]) + Γ̂+[0, 1]B

1BatB (Υ[0, 0:4]) + Γ̂+[0, 2]B
0BatB (Υ[0, 0:4]) (27)

+ Γ̂+[1, 0]B
2BatB (Υ[1, 0:4]) + Γ̂+[1, 1]B

1BatB (Υ[1, 0:4]) + Γ̂+[1, 2]B
0BatB (Υ[1, 0:4]) (28)

+ Γ̂+[2, 0]B
2BatB (Υ[2, 0:4]) + Γ̂+[2, 1]B

1BatB (Υ[2, 0:4]) + Γ̂+[2, 2]B
0BatB (Υ[2, 0:4]) (29)

= Γ̂+[0, 0]
3∑

j=0

Υ[0, j]Bj+2 + Γ̂+[0, 1]
3∑

j=0

Υ[0, j]Bj+1 + Γ̂+[0, 2]
3∑

j=0

Υ[0, j]Bj (30)

+ Γ̂+[1, 0]

3∑

j=0

Υ[1, j]Bj+2 + Γ̂+[1, 1]

3∑

j=0

Υ[1, j]Bj+1 + Γ̂+[1, 2]

3∑

j=0

Υ[1, j]Bj (31)

+ Γ̂+[2, 0]

3∑

j=0

Υ[2, j]Bj+2 + Γ̂+[2, 1]

3∑

j=0

Υ[2, j]Bj+1 + Γ̂+[2, 2]

3∑

j=0

Υ[1, j]Bj. (32)
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Collecting the coefficients on the B′s yields

BConv+[0] = (· · · )B0 + (· · · )B1 (33)

+




Γ̂+[0, 0]Υ[0, 0] + Γ̂+[0, 1]Υ[0, 1] + Γ̂+[0, 2]Υ[0, 2]

+Γ̂+[1, 0]Υ[1, 0] + Γ̂+[1, 1]Υ[1, 1] + Γ̂+[1, 2]Υ[1, 2]

+Γ̂+[2, 0]Υ[2, 0] + Γ̂+[2, 1]Υ[2, 1] + Γ̂+[2, 2]Υ[2, 2]


B2 (34)

+




Γ̂+[0, 0]Υ[0, 1] + Γ̂+[0, 1]Υ[0, 2] + Γ̂+[0, 2]Υ[0, 3]

+Γ̂+[1, 0]Υ[1, 1] + Γ̂+[1, 1]Υ[1, 2] + Γ̂+[1, 2]Υ[1, 3]

+Γ̂+[2, 0]Υ[2, 1] + Γ̂+[2, 1]Υ[2, 2] + Γ̂+[2, 2]Υ[2, 3]


B3 (35)

+ (· · · )B4 + (· · · )B5 (36)

= (· · · )B0 + (· · · )B1 (37)

+
(
(Γ̂+ ∗Υ)[0, 0]

)
B2 (38)

+
(
(Γ̂+ ∗Υ)[0, 1]

)
B3 (39)

+ (· · · )B4 + (· · · )B5. (40)

Therefore, provided that B is large enough, (Γ̂+ ∗ Υ)[0, 0 : 2] can be extracted from the

coefficients of B2 and B3 in BConv+[0], i.e. (Γ̂+ ∗Υ)[0, 0:2] = (UBatB (BConv+[0]))[2:4].
Next, we lift the restrictions that k = 3 and n = m = 4, expand the reasoning to apply in

the general case, and make precise the requirements on the size of B.

5.2 Convolution on Batched Vectors, Full Details in the General Case

Let BatB (Υ) be the length n column vector with ith entry BatB (Υ[i, 0 : m]).

Given 0 ≤ a, b ≤ k − 1, let KMB

(
Γ̂+[a, b]

)
denote the n × k matrix whose cth column has

ith entry Γ̂+[a, b]B
k−1−cBatB (Υ) [i].

Finally, define length n− k + 1 column vector

BConv+
def
==

k−1∑

a=0




∑k−1
b=0 KMB

(
Γ̂+[a, b]

)
[a, b]

...∑k−1
b=0 KMB

(
Γ̂+[a, b]

)
[a+ n− k, b]


 (41)

where the outer summation is performed element-wise.

The following result shows, provided that B is large enough: how Γ̂+∗Υ can be recovered
from BConv+, and that each entry of BConv+ is bounded by Bm+k−1 − 1.

Theorem 2. If B ≥ (255
∑k−1

a=0

∑k−1
b=0 Γ̂+[a, b]) + 1, then for any 0 ≤ i ≤ n− k:

(Γ̂+ ∗Υ)[i, 0 : (m− k)] = (UBatB (BConv+[i]))[(k − 1) : m] (42)

and

BConv+[i] ≤ Bm+k−1 − 1. (43)
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Proof. Let P denote the set of index pairs {(b, j) : 0 ≤ b ≤ k − 1 and 0 ≤ j ≤ m − 1}.
Plugging in definitions and reordering sums yields:

BConv+[i] =

k−1∑

a=0

k−1∑

b=0

Γ̂+[a, b]B
k−1−bBatB (Υ[a+ i, 0 : m]) (44)

=

k−1∑

a=0

k−1∑

b=0

m−1∑

j=0

Γ̂+[a, b]Υ[a+ i, j]Bk−1+j−b (45)

=

k−1∑

a=0

∑

(b,j)∈P

Γ̂+[a, b]Υ[a+ i, j]Bk−1+j−b. (46)

Given an integer ℓ, let P(ℓ) denote the subset {(b, j) : 0 ≤ b ≤ k − 1 and 0 ≤ j ≤ m −
1 and j − b = ℓ}. The following facts are easy to show.

P =

m−1⋃

ℓ=−(k−1)

P(ℓ). (47)

P(ℓ1) ∩ P(ℓ2) = ∅ for all − (k − 1) ≤ ℓ1 6= ℓ2 ≤ m− 1. (48)

If − (k − 1) ≤ ℓ ≤ −1, then P(ℓ) = {(b, b+ ℓ) : −ℓ ≤ b ≤ k − 1}. (49)

If 0 ≤ ℓ ≤ m− k, then P(ℓ) = {(b, b+ ℓ) : 0 ≤ b ≤ k − 1}. (50)

If m− k + 1 ≤ ℓ ≤ m− 1, then P(ℓ) = {(b, b+ ℓ) : 0 ≤ b ≤ m− 1− ℓ}. (51)

The derivation continues:

(46) =

k−1∑

a=0

m−1∑

ℓ=−(k−1)

∑

(b,j)∈P(ℓ)

Γ̂+[a, b]Υ[a+ i, j]Bk−1+j−b (52)

=
m−1∑

ℓ=−(k−1)

k−1∑

a=0

∑

(b,j)∈P(ℓ)

Γ̂+[a, b]Υ[a+ i, j]Bk−1+j−b (53)

=

−1∑

ℓ=−(k−1)

k−1∑

a=0

k−1∑

b=−ℓ

Γ̂+[a, b]Υ[a+ i, b+ ℓ]Bk−1+ℓ (54)

+
m−k∑

ℓ=0

k−1∑

a=0

k−1∑

b=0

Γ̂+[a, b]Υ[a+ i, b+ ℓ]Bk−1+ℓ (55)

+
m−1∑

ℓ=m−k+1

k−1∑

a=0

n−1−ℓ∑

b=0

Γ̂+[a, b]Υ[a+ i, b+ ℓ]Bk−1+ℓ. (56)

Facts (47) and (48) imply (52). Splitting the outer sum in (53) and facts (49), (50), and (51)
imply (54), (55), and (56). By definition of convolution, the summation (55) can be rewritten
to produce:
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BConv+[i] =
−1∑

ℓ=−(k−1)

k−1∑

a=0

k−1∑

b=−ℓ

Γ̂+[a, b]Υ[a+ i, b+ ℓ]Bk−1+ℓ (57)

+

m−k∑

ℓ=0

(Γ̂+ ∗Υ)[i, ℓ]Bk−1+ℓ (58)

+

m−1∑

ℓ=m−k+1

k−1∑

a=0

m−1−ℓ∑

b=0

Γ̂+[a, b]Υ[a+ i, b+ ℓ]Bk−1+ℓ. (59)

By assumption, B is larger than any of the coefficients on B0, B1, . . ., Bm+k−2 in (57), (58),

and (59). Hence (Γ̂+ ∗Υ)[i, 0 : (m− k)] can be recovered from BConv+[i] by extracting the
coefficients on Bk−1, Bk, . . ., Bm−1, namely, (42) holds. Furthermore, (43) holds since:

BConv+[i] ≤ (B − 1)

−1∑

ℓ=−(k−1)

Bk−1+ℓ (60)

+ (B − 1)

m−k∑

ℓ=0

Bk−1+ℓ (61)

+ (B − 1)

m−1∑

ℓ=m−k+1

Bk−1+ℓ (62)

= (B − 1)

m+k−2∑

c=0

Bc (63)

= Bm+k−1 − 1. (64)

5.3 Convolution on Encrypted, Batched Vectors

Motivated by earlier definitions, let Enc (BatB (Υ)) denote the length n vector whose ith

entry is Enc (BatB (Υ) [i]).

Given 0 ≤ a, b ≤ k − 1, let EKMB

(
Γ̂+[a, b]

)
denote the n× k matrix whose cth column has

ith entry
(
Γ̂+[a, b]B

k−1−c
)
⊗ Enc (BatB (Υ) [i]).

Finally, define length n− k + 1 column vector

EBConv+
def
==

k − 1

⊕
a = 0




⊕k−1
b=0 EKMB

(
Γ̂+[a, b]

)
[a, b]

...

⊕k−1
b=0 EKMB

(
Γ̂+[a, b]

)
[a+ n− k, b]


 . (65)

where the outer ⊕ operation is performed element-wise. Building on Theorem 2, the final

result shows, provided that some constraints on B, N , m, and k are satisfied: how Γ̂+ ∗ Υ
can be recovered from EBConv+.
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Theorem 3. If B ≥ (255
∑k−1

a=0

∑k−1
b=0 Γ̂+[a, b]) + 1 and N ≥ Bm+k−1, then for any 0 ≤ i ≤

n− k:

(Γ̂+ ∗Υ)[i, 0 : (m− k)] = (UBatB (Dec (EBConv+[i])))[(k − 1) : m]. (66)

Proof. Plugging in definitions, utilizing the homomorphic properties of ⊕ and ⊗, and ap-
plying (44), we have:

EBConv+[i] = ⊕k − 1
a = 0 ⊕

k−1
b=0

(
Γ̂+[a, b]B

k−1−b
)
⊗ Enc (BatB (Υ) [a+ i]) (67)

= ⊕k − 1
a = 0 ⊕

k−1
b=0 Enc

(
Γ̂+[a, b]B

k−1−bBatB (Υ) [a+ i] (mod N)
)

(68)

= Enc

((
k−1∑

a=0

k−1∑

b=0

Γ̂+[a, b]B
k−1−bBatB (Υ) [a+ i]

)
(mod N)

)
(69)

= Enc

((
k−1∑

a=0

k−1∑

b=0

Γ̂+[a, b]B
k−1−bBatB (Υ[a+ i, :])

)
(mod N)

)
(70)

= Enc (BConv+[i] (mod N)) . (71)

Therefore,

Dec (EBConv+[i]) = BConv+[i] (mod N) (72)

= BConv+[i] (73)

where (73) follows from (43) and the assumption N ≥ Bm+k−1. From Theorem 2, the

assumption that B ≥ (255
∑k−1

a=0

∑k−1
b=0 Γ̂+[a, b])+1, and (73), the desired result follows.

5.4 Owner and Consumer’s Workflow

The consumer selects ǫ and computes Γ̂+, σ+, Γ̂−, σ− as described earlier and sends these
matrices to the data owner.
The owner sets N to a value of their choosing and sets

B
def
== max

{
255

k−1∑

a=0

k−1∑

b=0

Γ̂+[a, b], 255

k−1∑

a=0

k−1∑

b=0

Γ̂−[a, b]

}
+ 1. (74)

The number of image columns, m, must satisfy N ≥ Bm+k−1. Since B, N , and k are fixed,
the data owner must ensure that the number of columns is no larger than

m̂
def
==

⌊ logN
logB

− k + 1
⌋

(75)

or else must split the columns of Υ into small enough strips. We will assume that m > m̂
since no splitting is required in the case m ≤ m̂. The data owner creates separate image
strips 0Υ, · · · , rΥ where 0Υ contains the first m̂ columns; 1Υ contains columns m̂ − k−1

2 ,

m̂− k−1
2 +1, · · · , 2m̂− k−1

2 ; etc.. Consecutive entries in 0Υ, · · · , rΥ overlap to accommodate
edges being ignored in convolution. Note that each strip, ℓΥ, has dimensions n× m̂.
For each 0 ≤ ℓ ≤ r: the data owner computes Enc (BatB (ℓΥ)), a length m̂ vector of cipher-

texts. The owner computes ℓEBC+ and ℓEBC− by applying Algorithm 3 to Enc (BatB (ℓΥ)),
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Γ̂+ and Enc (BatB (ℓΥ)), Γ̂−, respectively. The owner computes (n − k + 1) × (m̂ − k + 1)
matrix, ℓΛ, whose ith row is

UBatB (Dec (ℓEBC+[i])) [k − 1 : m̂]

σ+
−

UBatB (Dec (ℓEBC−[i])) [k − 1 : m̂]

σ−

.

Below we will show that ℓΛ equals ℓΥ ∗ Γ.

Finally, the data owner concatenates ℓΛ over all ℓ to produce Υ ∗ Γ and sends this final
result to the consumer.

Data: Enc (BatB (ℓΥ)) , Γ̂±

Result: ℓEBC± a length n− k + 1 vector of ciphertexts.
KerMap← {}.
for i = 0 · · ·n− k, ℓEBC±[i]← Enc (0) .
for a = 0 · · · k − 1 do

for b = 0 · · · k − 1 do

if Γ̂±[a, b] /∈ KerMap.keys() then

KerMap[Γ̂±[a, b]]← ℓEKMB

(
Γ̂±[a, b]

)

end

end

end
for a = 0 · · · k − 1 do

ℓEBC± ← ℓEBC± ⊕




k−1⊕

b=0

KerMap
[
Γ̂±[a, b]

]
[a, b]

...
k−1⊕

b=0

KerMap
[
Γ̂±[a, b]

]
[a+ n− k, b]




end

Algorithm 3: Shift-add convolution in batched space.

5.4.1 Correctness Proof

It can be seen that ℓEBC+ equals ℓEBConv+ and ℓEBC− equals ℓEBConv−. By definition,

B ≥ (255
k−1∑

a=0

k−1∑

b=0

Γ̂+[a, b]) + 1 (76)

and N ≥ Bm̂+k−1. Therefore, (66) implies that ℓΛ equals

ℓΥ ∗ Γ̂+

σ+
−

ℓΥ ∗ Γ̂−

σ−

= ℓΥ ∗ Γ (77)

as needed.
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6 Empirical Evaluation

The Paillier Homomorphic Encryption Library (PHE) was originally released as an open
source project by the Python Software Foundation in December 2014. We used version
1.4.0, released in April 2018 [18]. This library provides a clean interface to carry out en-
crypted computations based on the Paillier cryptosystem. We conducted experiments com-
paring the run-times of plaintext convolution with those of Paillier convolution (batched
and not). In all experiments, we used a 512 × 512 greyscale image and six kernels: box
blur kernels (all entries of the kernel are the same and sum to one) of sizes 3, 5, and 7 and
approximate Gaussian blur kernels of the same sizes - see Table 1. We used only one im-
age since the run times do not depend upon the contents of the image. The image used in
all experiments is displayed in Figure 2 (left). In addition, the figure displays the images
produced by applying box blur convolutions.

1
16



1 2 1
2 4 2
1 2 1


 1

256




1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1




1
27777




1 10 40 64 40 10 1
10 102 407 645 407 102 10
40 407 1625 2574 1625 407 40
64 645 2574 4077 2574 645 64
40 407 1625 2574 1625 407 40
10 102 407 645 407 102 10
1 10 40 64 40 10 1




Table 1: Approximate Gaussian blur kernels of sizes 3, 5, and 7.

Figure 2: Image used in all experiments (left, ©Massachusetts Institute of Technology, avail-
able under creativecommons.org/licenses/by-nc-sa/3.0) and those produced
by box blur.

For each experiment, we carried out six trials during each of which we computed2 the
run-times of plaintext, non-batched Paillier, and batched Paillier convolution for a fixed
kernel, fixed number of bits for N . For experiments with kernels of size three, ǫ was fixed
at 0.023; with kernels of size five and seven, ǫ was fixed at 0.125 and 0.637, respectively. We
computed the average run-time for each convolution method and its 0.95 confidence inter-
vals under the assumption that run-times were i.i.d. Gaussian. We varied the experiments
across all combinations of the six kernels and number of bits for N in {512, 1024, 2048}.

2On a Dell Precision 7530 laptop with 16GB of RAM, a 2.6GHz processor running Windows 10 Enterprise (64
bits).
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6.1 Results

Figure 3: Experiments with varying kernel sizes and the bit length of N fixed at 1024.

Figure 3 shows the results of varying the kernel sizes with the number of bits in N fixed.
Batching achieved between one and two orders of magnitude of run-time savings yet still
required nearly two orders of magnitude of run-time beyond plaintext convolution. The
difference between batching and non-batching run-times was less pronounced for the ap-
proximate Gaussian blur kernel than the box blur kernel. This is because the latter requires
a smaller scaling factor σ+.

Figure 4: Experiments with varying bit length of N and kernel sizes fixed at five.

Figure 4 shows the results of varying the number of bits in N with the kernel sizes fixed.
As expected, the run-time gap between batched and non-batched widened with increasing
number of bits in N . This is because the extra bits allowed for greater sized vectors to be
batched. Less expected, the run-times for batched convolution increased overall with in-
creasing number of bits. While increasing number of bits allowed larger batching sizes, it
also required greater encryption, decryption, and homomorphic computation times. Ap-
parently, the latter effect was more pronounced.

TRANSACTIONS ON DATA PRIVACY 15 (2022)



Pixel-Batched Homomorphic Encryption for Secure-at-Rest Image Convolution 209

6.1.1 Pixel Batching with LFHE

The Microsoft Simple Encrypted Arithmetic Library (SEAL) [24] provides an implementa-
tion of the BFV homomorphic cryptosystem [6] which is based on the Ring Learning with
Errors problem. SEAL provides encrypted batch vector encoding and element-wise sums
and products (using an approach unrelated to batching as we describe earlier) which can
be used to compute image convolution. Because BFV is more complex than Paillier, se-
cure convolution using SEAL is significantly less efficient than our approach using Paillier
[24]. However, BFV is more powerful than Paillier (in terms of homomorphic computations
supported) and, therefore, supports a broader range of secure image processing.

7 Summary and Future Work

We addressed the problem of secure-at-rest image convolution. We developed a straight-
forward approach utilizing the Paillier cryptosystem where each pixel is encrypted sepa-
rately. We improved upon this approach by batching vectors of pixels before encryption.
This idea has been applied by others to different image processing algorithms: DCT [3] and
bilinear scaling [17]. Our experiments showed that batched convolution required between
one and two orders of magnitude less run-time than non-batched convolution. Our experi-
ments also addressed a computation trade-off related to increasing the number of bits in N .
On the one hand, increasing the number of bits allows batching to be more effective since
the length of the batched vectors is increased. On the other hand, increasing the number
of bits requires greater encryption, decryption, and homomorphic computation times. Our
experiments showed the latter effect to be more pronounced as the run times of batched
convolution grew with increasing number of bits in N .
Zheng et al. [32] developed an interesting idea allowing, in some circumstances, factors to

be removed from Paillier encrypted values. In our case, if we assume that σ+Γ+[a, b] is an
integer for all a and b and we assume that σ+ is co-prime with N , then σ−1

+ exists and

Dec
(
σ−1
+ ⊗ Enc

((
Υ ∗ Γ̂+

)
[i, j]

))
= (Υ ∗ Γ+) [i, j] . (78)

It seems plausible that this idea could be developed on top of batching and therefore allow
a factor of σ+ to be eliminated thereby allowing a larger m̂ as defined in (75).
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