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Abstract. In 1966 Bacharach published in Management Science a work on matrix rounding problems
in two-way tables of economic statistics, formulated as a network optimization problem. This is
likely the first application of optimization/operations research for statistical disclosure control (SDC)
in tabular data. Years later, in 1982, Cox and Ernst used the same approach in a work in INFOR for
a similar problem: controlled rounding. And thirty years ago, in 1992, a paper by Kelly, Golden and
Assad appeared in Networks about the solution of the cell suppression problem, also using network
optimization. Cell suppression was used for years as the main SDC technique for tabular data, and
it was an active field of research which resulted in several lines of work and many publications. The
above are some of the seminal works on the use of optimization methods for SDC when releasing
tabular data. This paper discusses some of the research done this field since then, with a focus on
the approaches that were of practical use. It also discusses their pros and cons compared to recent
techniques that are not based on optimization methods.

Keywords. Linear optimization, mixed integer linear optimization, network optimization, statistical
disclosure control, cell suppression, controlled adjustment, controlled perturbation

1 Introduction

Statistical Disclosure Control (SDC) comprises the set of methods for preserving individ-
ual and confidential information when releasing data. It is a main concern of institutions
in charge of publishing statistical data (mainly, national statistical agencies). Data are re-
leased in the form of either microdata or tabular data. A microdata set is a matrix of p
individuals and d variables, where entry (i, j) provides the value of variable j for individ-
ual i. Variables can be categorical or numerical. Tabular data is obtained by crossing one or
more categorical variables. Cell values can show either the number of individuals (named
respondents in SDC), or sum of values for another numerical variable; these two groups of
tables are named, respectively, frequency (or contingency), and magnitude tables.

Any table can be modeled as a vector of n values (also named cell values) ai, i = 1, . . . , n
that satisfy a set of m linear relations Aa = b, A ∈ Rm×n, b ∈ Rm. In practice cell values
are usually between lower and upper bounds li, ui, i = 1, . . . , n. If the table is positive then
li ≥ 0, i = 1, . . . , n. Each row of matrix A = (aij), i = 1, . . . ,m, j = 1, . . . , n is related to
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a table linear relation, with coefficients aij ∈ {1, 0,−1}. Each equation contains at most a
coefficient −1, which corresponds to the marginal or total cell of the equation. The linear
relations Aa = b admit alternative (usually more efficient) representations for some classes
of tables:

• The linear equations of two-dimensional (or two-way tables) can be formulated as
a bipartite graph, allowing the application of fast network optimization algorithms,
such as minimum cost network flows, or shortest paths [1]. This property, first ob-
served in [2], has been applied in several works [6, 10, 20, 31, 34, 43].

• The linear equations of three-dimensional tables correspond to a cube (tensor) of data.
They can be modeled as a multicommodity network, where each slice of the cube
for one of the dimensions provide a bipartite graph associated to a two-dimensional
table. Exploiting this fact, initially noticed in [7], significant computational savings
can be obtained [8, 14]. A previous attempt to deal with three-dimensional tables
appears in [25].

• Two dimensional tables where one of the two categorical variables has a hierarchical
structure (i.e., country→region→city→zip code) is a particular case of hierarchical table
named 1H2D (that is, two-dimensional table with one hierarchical variable). These
tables also admit a network representation, which was exploited in [10].

A more detailed description on modelling tables can be found in [11].
For a given microdata or tabular data set, let it D, any SDC method can be seen as a map
F such that F (D) = D′, that is, the original values D are transformed into another dataset
D′ which is safe and, ideally, with minimum information loss (i.e., D′ provides (almost)
the same information as D). Moreover, the inverse map D = F−1(D′) should be difficult
(ideally impossible) to compute in order to guarantee a low disclosure risk.

SDC techniques are classified depending on whetherD are microdata or tabular data. Pro-
tection techniques for microdata, such as microaggregation [28, 38] or data shuffling [46],
are out of the scope of this work. A general description of SDC methods for microdata can
be found in the monographs [41, 52]. In general, the number of records in a microdata file
p can be much larger than the number of cells n in a table (p� n� 0). On the other hand,
SDC techniques for microdata may not need to deal with the linear constraints of tabular
data, thus avoiding the solution of linear optimization, mixed integer linear optimization,
and even mixed integer quadratic optimization models, which are usually difficult. There
are, however, a few exceptions where microdata protection has been combined with con-
straints. One is the work [51], which presents variants of microaggregation that meet some
predefined set of constraints. The second is the recent work [16], where optimal multivari-
ate microaggregation is formulated as a nonlinear combinatorial optimization problem,
and a column-generation approach is derived to obtain good feasible solutions with small
duality gaps, outperforming current practical heuristics for microaggregation in terms of
quality of the solution.

SDC techniques for tabular data can be classified according to different criteria. Depend-
ing on whether cell values are modified or not, methods can be classified as non-perturbative
or perturbative. Non-perturbative methods either change the table structure (such as in re-
coding) or hide some cells (cell suppression [3, 10, 20, 31, 32, 43]). Perturbative methods mod-
ify the cell values; the two representative techniques are controlled tabular adjustment (or
controlled perturbation) [4, 9, 14, 15, 17, 23, 24, 36, 37, 39] and controlled rounding [21, 22, 49].
Cell suppression, controlled tabular adjustment, and controlled rounding are based on op-
timization techniques; the first two focused most of the research on tabular data protection
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in previous years, and they will be the two techniques mainly discussed in Sections 2.1 and
2.2

An alternative classification criterion is whether the table is first computed and afterwards
protected (post-tabular methods), or the microdata file is first modified and then the ta-
ble is built (pre-tabular method). Most methods relying on optimization techniques are
post-tabular, with just a few exceptions such as the pre-tabular method of [40]. Similarly,
some post-tabular approaches do not use optimization methods. Among them, the cell-
key method [44] is recently being adopted by several national statistical institutes [30]. A
discussion comparing cell-key vs optimization-based methods is presented in Section 3.

2 Optimization-based methods for tabular data

SDC techniques for tabular data relying on optimization methods share a common set of
parameters, which are needed for the definition of the optimization model. Those parame-
ters are:

• A general table, consisting of a set of n cells and a set of m linear relations Aa = b,
where A ∈ Rm×n is the matrix defining the table structure, a = (a1, . . . , an)

T ∈ Rn
is the vector of cell values, and the right-hand side b ∈ Rm is usually 0 if the table is
additive.

• Upper and lower bounds u ∈ Rn and l ∈ Rn for the cell values, which are assumed
to be known by any attacker: l ≤ a ≤ u (e.g., l = 0, u = +∞ for a positive table).

• Vector of nonnegative weights w ∈ Rn, associated to either the cell suppressions, or
the cell perturbations. That is, wi, i = 1, . . . , n is a measure of the cost (or data utility
loss) associated to hiding the true value of cell i. If wi = 1 for all i = 1, . . . , n, the
same cost is given to any cell; if wi = 1/ai a relative cost is considered depending on
the cell values; other options are possible, such as, for instance, wi = 1/

√
ai. Several

cost options were analyzed in [17].

• Set S ⊆ {1, . . . , n} of sensitive cells, decided in advance by applying some sensitivity
rules. More details about sensitivity rules, which are out of the scope of this paper,
can be found in [29, 41, 48]

• Lower and upper protection levels for each sensitive cell lpls and upls s ∈ S (usually
either a fraction of as or directly obtained from the sensitivity rules). Sliding protec-
tion levels can also be considered, as in [32].

Next two subsections define the cell suppression and controlled tabular adjustment op-
timization models, discussing some of the solution approaches developed during the last
thirty years.

2.1 Cell suppression problem

The cell suppression problem (CSP) aims at finding a set C ∈ {1, . . . , n} of cells (named com-
plementary cells) to be removed—in addition to the set of sensitive cells S—such that for all
s ∈ S

as ≤ as − lpls and as ≥ as + upls, (1)
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where as and as are computed (once the pattern of suppressed cells S∪C has been obtained)
by the solution of the two following linear optimization problems:

as = min
x

xs

s. to Ax = b
li ≤ xi ≤ ui i ∈ S ∪ C
xi = ai i 6∈ S ∪ C

and

as = max
x

xs

s. to Ax = b
li ≤ xi ≤ ui i ∈ S ∪ C
xi = ai i 6∈ S ∪ C.

(2)

Values as and as are considered the minimum and maximum values that an attacker can
estimate for sensitive cell s ∈ S once the (suppressed) table is released. The recent work
[45] shows that, in practice, the interval protection is narrower that the one given by [as, as]
if the attacker knows the algorithm that has been used to protect the table.

The classical model for CSP, originally formulated in [43], considers two sets of variables:
(i) yi ∈ {0, 1}, i = 1, . . . , n, is 1 if cell i has to be suppressed, and 0 otherwise; (ii)) two
auxiliary vectors xl,s ∈ Rn and xu,s ∈ Rn, for all s ∈ S. The resulting model is:

min
y,xl,s,xu,s

n∑
i=1

wiyi

s. to
Axl,s = 0

(li − ai)yi ≤ xl,si ≤ (ui − ai)yi i = 1, . . . , n
xl,ss ≤ −lpls

Axu,s = 0
(li − ai)yi ≤ xu,si ≤ (ui − ai)yi i = 1, . . . , n

xu,ss ≥ upls


∀ s ∈ S

yi ∈ {0, 1} i = 1, . . . , n.

(3)

When yi = 1, the inequality constraints of (3) with both right- and left-hand sides impose
bounds on the deviations xl,pi and xu,pi for cell i, such that the solution to problems (2)
would satisfy (1) When yi = 0 (that is, cell i is not suppressed), the inequality constraints of
(3) impose that xl,si = 0 and xu,si = 0, that is, the cell is published and any attacker knows
its true value. Formulation (3) gives rise to a mixed integer linear optimization problem
(MILP) of n binary variables, 2n|S| continuous variables, and 2(m+ 2n+ 1)|S| constraints.
For instance, for a table of 4000 cells, 1000 sensitive cells, and 2500 linear relations, the
formulation has 8000000 continuous variables, 4000 binary variables, and 21000000 con-
straints.

Solution approaches developed for (3) can be broadly classified in three groups: (i) heuris-
tic methods based on network optimization; (ii) exact approaches based on optimization
decomposition methods (mainly Benders decomposition); and (iii) other heuristics (some
of them using the previous optimization-based approaches for subproblem solution):

• Heuristic approaches based on network optimization [1] find a (hopefully good) fea-
sible solution to (3) for tables that accept a network representation, that is, two-
dimensional and 1H2D tables. The seminal paper [43] formulated and found a fea-
sible solution for (3) in two-dimensional tables by solving a sequence of minimum
cost network flow problems. The work [25] attempted to extend this idea to three-
dimensional tables, but as mentioned above, three-dimensional tables are formulated
as multicommodity flows, so they cannot be solved with a generalization of [43]. An
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alternative efficient procedure based on shortest paths was suggested in [6], but it was
only valid for general tables (that is, cell values can take any value, either positive,
zero or negative). Other variants based on minimum cost network flow problems
were introduced in [20] and [7]. Some of the above ideas were sensibly combined in
the approach of [10], which is based on shortest paths and it is valid for tables with
positive cell values. Approaches based on shortest paths are in general much more
efficient than those based on minimum cost network flows. However, the main draw-
back of all the heuristics based on network optimization is that they are only valid for
tables accepting a network representation. Some of the above network optimization
heuristics were outlined in [11].

• The optimal solution of problem (3) using a general state-of-the-art MILP solver can
be impractical due to an excessive computation time. However, due to its structure,
(3) can be tackled by a Benders decomposition [5], a standard decomposition tech-
nique in optimization. Benders decomposition is a cut generation procedure that, in
its classical form, alternates between the solution of a master problem in the binary
variables yi ∈ {0, 1}, i = 1, . . . , n—which provides a suppression pattern—, and |S|
subproblems (one per sensitive cell) that check whether the sensitive cells are pro-
tected. If they are, then the procedure stops with an optimal solution; otherwise, the
protection of some sensitive cell is violated, obtaining a feasibility cut which is added
to the master problem for the next iteration.

Benders decomposition was first applied for two-dimensional tables in [31], and later
extended to general tables in [32]. In these two works, the classical version of Ben-
ders decomposition was not used, as the feasibility cuts were added within a generic
branch-and-cut algorithm. This allowed the optimal solution of nontrivial CSP prob-
lems for the first time. Recently, a stabilized version of Benders decomposition was
introduced in [3]. This stabilized version was competitive with that of [32]. In par-
ticular, as reported in [3], in a set of synthetic 1H2D tables the stabilized Benders
decomposition always obtained a solution with a small duality (i.e., optimality) gap,
whereas the approach of [32] either obtained solutions of similar gap requiring more
CPU time, or exhausted the time limit without a feasible solution.

• We mention two other practical heuristics developed by national statistical institutes
to efficiently deal with large tables: hypercube [35] and Hitas. [26]. The hypercube
heuristic computes simple protection patterns: in a k-dimensional table, it finds a
suppression pattern of 2k − 1 complementary cells for each sensitive cell. Linked
tables are decomposed in subtables, and the hypercube is repeatedly applied; this
variant is named the GHMITER heuristic. Hitas also decomposes a k-dimensional
hierarchical table (k ≤ 3) in a tree of (k − l)-dimensional non-hierarchical subtables,
l = 0, . . . , k − 1, and locally protects them by the approach of [31]. These two heuris-
tics are in general much faster than optimal methods based on Benders decomposi-
tion, and can deal with general linked tables (unlike the network optimization based
heuristics). However, since some linking constraints between subtables are removed,
the final solution can not be feasible. In addition, hypercube tends to over-suppress
cells. It is worth noting that, in spite of their infeasibility issues, both hypercube
and Hitas provide solutions that avoid the singleton issue [42, 47]: this happens, for
instance, when two cells with a single respondent (a singleton) appear in the same
table relation, such that any of them can compute the other’s contribution.

Some of the above approaches for CSP are implemented in the τ -Argus package for SDC
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Table 1: Results for 1H2D tables from τ -Argus distribution, obtained crossing variables
“IndustryCode”×”Size”, and reporting information for either “Var1” or “Var2” (table from [11]).

Benders shortest paths Hitas hypercube
Instance n |S| f∗ CPU f∗ CPU f∗ CPU f∗ CPU
Var1 6399 657 18.7e+6 604(1) 20.4e+6 1 25.7e+6 4 54.2e+6 4
Var2 6399 1018 6.85e+6 605(1) 8.26e+6 2 8.75e+6 6 14.3e+6 3
(1) stopped after default τ -Argus time limit of 10 minutes reached

in tabular data [27], namely, the optimal method based on Benders cuts of [32], the shortest-
path heuristic of [10], and the Hitas and hypercube heuristics of, respectively, [26] and [35].
Table 1 (from [11]) shows the computational results obtained with the four methods, for
two tables generated using the data files accompanying the τ -Argus distribution. For each
method the table provides: columns f∗ with the objective function of the optimization
problem solved, that is, the value of suppressed cells (thus, the lower, the better); and the
solution time (columns “CPU”). The number of cells n and number of sensitive cells |S| are
also given. It is observed that the optimal Benders decomposition provides better solutions
but exhausted the 10 minutes time limit. On the other hand, the shortest-path heuristic got
decent solutions in 1–2 seconds. The hypercube and Hitas are also very fast, but, mainly
for hypercube, f∗ was much larger.

2.2 Controlled tabular perturbation/adjustment

Unlike CSP, controlled tabular adjustment (also known as minimum-distance controlled tabular
adjustment or simply CTA), is a perturbative method, the purpose of which is to find the
closest safe table to the original table. CTA was introduced in the manuscript [24] and,
independently in [9] (in the latter it was named minimum-distance controlled perturbation
method). In CTA closeness is measured as the norm (usually, `1 or `2 (Euclidean) norm)
of the perturbations added to the original cell values. As it was empirically shown in [12],
CTA has a low disclosure risk, that is, estimates of sensitive cells obtained by an attacker
are far enough from the original cell values.

Given a table a ∈ Rn, Aa = b, CTA computes an alternative safe and feasible table x ∈
Rn, Ax = b, which is closest to a according to some particular distance `(w) based on cell
weights w ∈ Rn. In CTA safe means that the new values of sensitive cells xs are outside the
protection interval [as− lpls, as+upls] for all s ∈ S. The optimization problem to be solved
is:

min
x

||x− a||`(w)

s. to Ax = b
l ≤ x ≤ u
xs ≤ as − lpls or xs ≥ as + upls s ∈ S.

(4)

Defining cell deviations z = x− a, lz = l − a and uz = u− a, (4) can be reformulated as:

min
z

||z||`(w)

s. to Az = 0
lz ≤ z ≤ uz
zs ≤ −lpls or zs ≥ upls s ∈ S.

(5)

The “or” constraints of (5) can be modeled using binary variables ys ∈ {0, 1}, s ∈ S, such
that ys = 1 if cell s is “upper protected” (i.e, zs ≥ upls), and ys = 0 if it is “lower protected”
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(zs ≤ −lpls). For distance `1, the resulting MILP formulation is

min
z+,z−,y

n∑
i=1

wi(z
+
i + z−i )

s. to A(z+ − z−) = 0
0 ≤ z+i ≤ uzi i 6∈ S
0 ≤ z−i ≤ −lzi i 6∈ S
upliyi ≤ z+i ≤ uziyi i ∈ S
lpli(1− yi) ≤ z−i ≤ −lzi(1− yi) i ∈ S
yi ∈ {0, 1} i ∈ S.

(6)

where zi, i = 1, . . . , n, is split as zi = z+i − z
−
i , such that |zi| = z+i + z−i . Problem (6) has |S|

binary variables, 2n continuous variables and m+ 4|S| constraints.
For distance `2 CTA results in a MIQP (mixed integer quadratic optimization problem),

whose formulation is

min
z,y

n∑
i=1

wiz
2
i

s. to Az = 0
lzi ≤ zi ≤ uzi i 6∈ S
lzi(1− yi) + upliyi ≤ zi ≤ uziyi − lpli(1− yi) i ∈ S
yi ∈ {0, 1} i ∈ S.

(7)

Problem (7) has n continuous variables, |S| binary variables, and m + 2|S| constraints.
Although it is smaller in size than (6), in general is a much more difficult problem because
of the quadratic objective function. Alternative, stronger, perspective reformulations for (7)
were presented in [15].

CTA optimization problems (either linear (6) or quadratic (7)) are much smaller than the
CSP formulation (3). This allows the solution of CTA using state-of-the-art solvers. An
implementation of (6) using the Xpress and CPLEX solvers [19] was added to the τ -Argus
package [27]. Results reported in [11] show that (real-world) instances of similar size as
those in Table 1 were optimally solved with this CTA implementation in less than one
minute. Much larger real-world tables, however, required a few hours for optimal solu-
tions.

To avoid such costly executions with CTA for large tables, alternative solution approaches
have been developed. For instance, a Benders decomposition for CTA was introduced in
[13]; it was shown to be effective for two-dimensional tables, while for more complex ta-
bles still required large CPU times. Heuristic block coordinate descent and fix-and-relax
heuristics were successfully attempted, respectively, in [37] and [4]. For most tables, they
provided a good solution in a fraction of the time required by state-of-the-art solvers based
on branch-and-cut algorithms. Another heuristic method was suggested in [36], but it was
only tested in very small tables. The difficult CTA problem with Euclidean distances in
the objective function was considered in [15]; the perspective reformulations used were
more efficient than state-of-the-art MIQP solvers. Alternative CTA-like procedures were
presented in [39] and [18]. In particular, the approach of [18] considers a linear (instead
of MILP) formulation of CTA, where binary variables (i.e., the direction of protection for
sensitive cells) are a priori fixed, and possible infeasibility issues are dealt with by modi-
fying bounds of variables and right-hand-sides of constraints by means of a multiobjective
formulation. This continuous CTA approach is much more efficient than the MILP-CTA
formulation.
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3 Optimization vs noise-addition based approaches

Recently, some SDC approaches for tabular data not relying on optimization methods have
been developed. The most relevant of these techniques is the cell-key method, suggested
in [33, 44, 50]. Although both cell-key and optimization-based approaches are post-tabular
methods, there is a significant difference between them: cell-key allows computing the
changes to cell values while the table is being built, while optimization-based techniques
require the complete table to start the optimization procedure. In this sense, cell-key can be
considered a “partial” post-tabular method, whereas optimization-based approaches are
“complete” post-tabular techniques.

Cell-key involves that a random number, named the key, is attached to each record of
the microdata file. For consistency, this key is unique for all the tables derived from this
microfile. When a (for instance, frequency) table is built crossing categorical variables of the
microdata file, for each cell of the table we compute the sum of keys (modulo some number)
of the records comprised in the cell. This value is the cell-key. The released cell value will
be the original cell value plus a perturbation. This perturbation is obtained from a double-
entry precomputed table of perturbations, which for certain classes of original cell values
and cell-key provides the particular perturbation to be used. This method is consistent,
in the sense that if the same cell appears in more than one table, the perturbation—and
thus the released cell value—will always be the same. Cell-key has been recently added to
τ -Argus package.

Compared to optimization-based approaches, such as CSP or CTA, cell-key is obviously
much faster because it completely ignores the table linear relations Ax = b (it just can ex-
actly satisfy the cell bounds, e.g., x ≥ 0 for frequency tables). Satisfying linear relations
Ax = b is indeed what makes difficult the application of optimization-based approaches
such as CTA or CSP; if the linear relations are removed, then it is possible to imagine new
(much simpler and faster) approaches. Perturbations added by the cell-key method guar-
antee consistency if the same cell appears in different tables, but may not preserve the
additivity of the table, thus Ax 6= b. In addition, ignoring table relations increases the dis-
closure risk. For those reasons, some approaches based on cell-key, such as [30], apply a
linear optimization (CTA-like) postprocess to recover table additivity.

In addition to table additivity, there is a second related important feature which is not tack-
led by cell-key: inconsistencies can appear if users compute the same aggregated values by
means of linear combinations of different sets of noisy cell values. Those inconsistencies
are even obtained if linear additivity is restored using the approach of [30] in linked tables.
To avoid those inconsistencies noise-addition techniques such as cell-key should rely on
some algorithm for linear systems of equations Ax = b. But in this case, cell-key would
probably not be too different from CSP or CTA in terms of efficiency.

4 Conclusions

We have reviewed some of the most significant optimization-based approaches for SDC
in tabular data of the last 30 years, with a focus on CSP and CTA. Those methods, which
have been extensively used in past years, have the downside of large computational times
for complex and large tables (in many cases, impractical times if an optimal solution is re-
quired). To overcome such a drawback, alternative methods not based on optimization,
such as cell-key, have recently been proposed, and are being extensively used. These ap-
proaches are very fast, basically because they remove the linear relations inherent to ta-
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bles. If data releasers consider that table relations Ax = b can be neglected, this, of course,
opens the door to new and faster techniques, likely not based on optimization: one of the
strengths of optimization-based techniques is their ability to deal with linear relations.
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