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Abstract. k-Anonymity is a well-known privacy model originally designed to protect the identities
of the individuals involved in the release of a data collection. It provides a privacy requirement and
a metric able to capture the protection degree enjoyed by respondents (i.e., the individuals to whom
released data refer). Since its proposal, k-anonymity has been heavily investigated, with works ad-
dressing extensions of its privacy requirement to capture specific privacy risks, approaches to effi-
ciently enforce k-anonymity, and adaptations to application scenarios that go beyond the publication
of a dataset. In this paper, we illustrate k-anonymity and its main extensions. We also discuss some
of the main approaches proposed for the enforcement of the corresponding privacy requirements,
and some advanced application scenarios.
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1 Introduction

k-Anonymity [62] is a well-known privacy model that provides a privacy requirement as well
as a privacy metric able to assess the degree by means of which a data collection to be re-
leased satisfies the requirement. k-Anonymity has been originally designed to protect the
identities of the individuals to whom the released data items refer (i.e., the data respon-
dents). The privacy requirement pursued by k-anonymity, which enjoys the undeniable
benefit of being intuitive and easy to understand, informally requires that each released
data item should be indistinguishably related to no less than a certain number of respon-
dents. Such number of respondents is expressed by the value assigned to parameter k,
which then can be seen as a metric useful for assessing “how much” the identities of the
respondents involved in a release are protected: intuitively, the higher the value of k, the
higher the protection enjoyed by respondents. k-Anonymity is typically enforced by pro-
ducing and releasing, instead of the original dataset, a sanitized (i.e., k-anonymous) version
of the dataset that satisfies the requirement for the chosen value of k. Sanitization is per-
formed by applying techniques that preserve the truthfulness of the information of each
data item. Such techniques include, for example, generalization (publishing more general
values for the data) and suppression (removing some data).
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While easy to express and understand, k-anonymity needs care in its enforcement to pre-
serve the utility of the released dataset. Intuitively, the more the applied generalization
and suppression, the higher the protection: in an extreme scenario, producing and releas-
ing a dataset generalized at the maximum possible level is likely not to pose risks to any
individual, but would certainly be of no use for its recipients. This observation highlights
the tension between data privacy and data utility: the less complete a data release is (higher
privacy), the less useful it can be for recipients wishing to analyze and use it (lower utility).
It is therefore crucial to find the right trade-off between privacy and utility, balancing the
need for privacy of data respondents and the need for useful data of data recipients. As it
will be illustrated in this paper, computing optimal k-anonymous datasets that respect the
k-anonymity requirement without over-protecting the dataset and maintaining utility of
the sanitized data is computationally hard, and several approaches have been proposed in
this regard.

Since its introduction, k-anonymity has been extensively studied for proposing and en-
forcing extended/revised privacy requirements suited, for example, to specific privacy
risks and/or release scenarios, also with practical impact on privacy regulations. k-
Anonymity offers a starting point for protecting data privacy and clearly by itself is not
sufficient to tackle the complex privacy problems. It has then be a subject of discussions
concerning the underlying idea, pursued also by its extensions, of protecting respondents
by producing sanitized versions of datasets. Differential privacy, for example, takes a dif-
ferent approach and perturbs the results of analyses over unprotected datasets [32]. In par-
ticular, the definition of differential privacy and its extensions demand that the output of an
analysis should not depend ‘too much’ on the involvement in the computation of the data
of any specific individual. Typically, algorithms that satisfy the differential privacy require-
ment add random noise to the result of their computations to guarantee that, for any given
pair of neighbor datasets D and D′ (i.e., datasets that differ in only one record), the prob-
ability of observing a result on D is close to that of observing the same result on D′. Such
closeness depends on a parameter ǫ called privacy budget. Recent research has showed
that both approaches based on k-anonymity and approaches based on differential privacy
have their pros and cons [6, 18, 19, 60], and could also be jointly adopted to ensure pro-
tection while producing useful results (e.g., [50, 66]). Also, k-anonymity has recently been
adopted, possibly enforcing slightly reformulated privacy requirements, in different appli-
cation scenarios that depart from the publication of datasets. Among these approaches, it is
worth noting a recent solution for checking compromised credentials that permits a user to
privately check whether her passwords had been compromised and are part of a database
of stolen passwords without releasing the precise passwords to be checked [47].

In this paper, we illustrate the privacy models and requirements of k-anonymity and of
some of its extensions, the main approaches proposed for the enforcement of such require-
ments, and some advanced application scenarios. The remainder of this paper is organized
as follows. In Section 2, we discuss the theory and main privacy requirements pursued by
k-anonymity and some of its well-known extensions. In Section 3, we focus on the enforce-
ment of these privacy requirements, illustrating solutions based on data generalization,
data fragmentation, and microaggregation. In Section 4, we turn our attention to advanced
application scenarios that have seen the application of k-anonymity for protecting user pri-
vacy, including location-based services and the publication of movement data, analysis of
social network data, contact tracing applications, and big data analytics. In Section 5, we
provide our conclusions.
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SSN LastName FirstName DoB Sex ZIP Disease

123-45-6789 Alice Ant 1940/08/10 F 98512 Heart attack
234-56-7890 Bob Bell 1950/02/12 M 99413 COVID-19
345-67-8901 Carol Candle 1940/08/04 F 98578 Cardiomyopathy
456-78-9012 David Dart 1950/02/13 M 99356 COVID-19
567-89-0123 Eric Eel 1950/07/12 M 99423 Dermatitis
678-90-1234 Fred Frog 1940/08/11 F 98545 Pericarditis
789-01-2345 Greg Glace 1950/07/25 M 99334 Short breath
890-12-3456 Hal Heart 1950/07/30 M 99490 Cough
901-23-4567 Ian Instance 1950/02/20 M 99301 COVID-19
012-34-5678 Luke Lane 1945/12/01 M 98321 Astrocytoma

Figure 1: An example of a dataset including personal and medical information for a set of
patients

2 Theory and Privacy Requirements

In this section, we illustrate the anonymity problem originally addressed by k-anonymity
(Section 2.1) and some of the most well-known privacy requirements (Sections 2.2 and 2.3)
that may be enforced when a dataset needs to be released and/or shared.

2.1 The Anonymity Problem

k-Anonymity and its variations have been originally designed to operate in scenarios
where the datasets to be released or shared are represented as microdata tables defined over
a set of attributes of interest, with a record for each possible respondent. Based on their
characteristics, attributes composing a dataset can be classified in: i) identifying attributes
that can per se univocally identify the respondent of a record (e.g., SSN or name); ii) quasi-
identifying (QI) attributes that can be linked to external data sources to re-identify the respon-
dent of a record (e.g., date of birth, sex, address); iii) sensitive attributes that represent re-
spondents’ sensitive information (e.g., disease, income); and iv) non-sensitive attributes that
are unlikely to permit re-identification and are not sensitive. Figure 1 illustrates an exam-
ple of a fictitious medical dataset, defined over a set of attributes representing personal
information (SSN, LastName, FirstName, DoB, Sex, and ZIP) and medical (Disease)
information for 10 respondents.
The first step for protecting the privacy of the respondents involved in a data release

requires to de-identify respondents, hiding (e.g., by removing or encrypting) identifying
attributes. Figure 2(a) illustrates a de-identified version of the medical dataset in Fig-
ure 1, where identifiers SSN, LastName, and FirstName are removed. Unfortunately,
de-identification does not provide any guarantee of anonymity. This is due to the presence
of quasi-identifying attributes (in our example, attributes DoB, Sex, and ZIP), which may
be linked to external, non de-identified information to re-identify (some of) the respon-
dents. Figure 2(b) illustrates an excerpt of a (fictitious) voter list, which could be linked
to the medical dataset through QI attributes DoB, Sex, and ZIP. In particular, the medi-
cal dataset contains only a record for a male respondent, born on December 1st, 1945, and
living in the 98321 area. If this combination is unique in the external world as well, it per-
mits recipients to re-identify the last record as pertaining to Luke Lane (identity disclosure),
disclosing also the fact that his diagnosis is astrocytoma (attribute disclosure).
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SSN LastName FirstName DoB Sex ZIP Disease

1940/08/10 F 98512 Heart attack
1950/02/12 M 99413 COVID-19
1940/08/04 F 98578 Cardiomyopathy
1950/02/13 M 99356 COVID-19
1950/07/12 M 99423 Dermatitis
1940/08/11 F 98545 Pericarditis
1950/07/25 M 99334 Short breath
1950/07/30 M 99490 Cough
1950/02/20 M 99301 COVID-19
1945/12/01 M 98321 Astrocytoma

(a)

Name Address City ZIP DoB Sex

. . . . . . . . . . . . . . . . . .
Luke Lane 10 Cedar St. Buckley, WA 98321 45/12/01 male

. . . . . . . . . . . . . . . . . .
(b)

Figure 2: A de-identified version of the dataset in Figure 1 (a) and an example of a publicly
available non de-identified dataset (b)

Removing –besides identifiers– also quasi-identifying attributes to prevent the improper
disclosure illustrated above is clearly not a feasible approach, since such attributes typically
represent a large portion of the informative content of a dataset and their complete removal
could make the dataset useless for recipients. In the remainder of this section, we discuss
some of the most well-known privacy requirements that may be adopted to effectively
protect the privacy of the respondents involved in a data release.

2.2 k-Anonymity

The privacy requirement enforced by k-anonymity [62] demands that any released informa-
tion should be indistinguishably related to no less than a certain number (k) of respondents. In the
context of the re-identification illustrated above, this privacy requirement has been trans-
lated by Samarati [62] into the k-anonymity requirement, which requires each release of
data to be such that every combination of quasi-identifying values can be indistinctly matched to
at least k respondents. Following the typical assumption that each respondent is represented
by a single record in the dataset to be released, the requirement of k-anonymity is satisfied
by a dataset if each record in the dataset cannot be related to less than k individuals in the
population and, conversely, each individual in the population cannot be related to less than
k records in the dataset.
The verification of the k-anonymity requirement would require knowledge of the exter-

nal data sources that may be used for linking through quasi-identifying attributes. This
assumption is unfeasible in practice, and hence a safe approach is to consider a dataset k-
anonymous if each combination of quasi-identifying values appearing in the dataset has at
least k occurrences. In this way, each respondent in a k-anonymous dataset is indistinguish-
able (w.r.t. QI attributes) from at least k−1 other respondents in the same dataset [26]. For
example, the dataset in Figure 2(a) is 1-anonymous considering QI={DoB, Sex, ZIP}, as it in-
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SSN LastName FirstName DoB Sex ZIP Disease

1940/08/** F 98*** Heart attack
1940/08/** F 98*** Cardiomyopathy
1940/08/** F 98*** Pericarditis
1950/02/** M 99*** COVID-19
1950/02/** M 99*** COVID-19
1950/02/** M 99*** COVID-19
1950/07/** M 99*** Dermatitis
1950/07/** M 99*** Short breath
1950/07/** M 99*** Cough

Figure 3: An example of a 3-anonymous version of the dataset in Figure 2(a)

cludes unique combinations of quasi-identifying values (e.g., 〈1940/08/10,F,98512〉). The
definition above of k-anonymous datasets represents a sufficient condition to satisfy the
k-anonymity requirement: since each quasi-identifying value appears in a k-anonymous
dataset with at least k occurrences, it is immediate to see that each respondent can be
matched to no less than k records in the dataset.

Different k-anonymous versions of a dataset may be obtained in different ways (Section 3).
The first and most studied approach in this line of research modifies the quasi-identifying
attributes only, replacing their values with more general values so that each value appears
with at least k occurrences. Replacing values with more general ones is a data protection
technique called generalization [33]. Generalization is typically applied together with sup-
pression, another data protection technique that consists in selectively removing data items
from a dataset (typically, in the context of k-anonymity, suppression is adopted to remove
few outliers that would force a large amount of generalization for k-anonymity satisfac-
tion). Figure 3 represents a 3-anonymous version of the de-identified medical dataset in
Figure 2(a), where quasi-identifying attributes DoB and ZIP have been generalized, and
the record of Luke Lane (last record in Figure 2(a)) has been suppressed. In particular,
DoB has been generalized by releasing only the year and month of birth (hiding the day
of the month), and ZIP has been generalized by releasing only the first two digits. Note
that maintaining Luke Lane’s record would have required more generalization to achieve
3-anonymity, since the same generalization would not have made his quasi-identifying
values equal to those of at least 2 other records (e.g., its generalized DoB value would be
1945/12/**, appearing with one occurrence only in the dataset).

Generalization and suppression enjoy the undeniable benefits of producing k-anonymous
truthful datasets, as no data item is perturbed in its values (which are simply made more
general or suppressed). However, protection through generalization and suppression
comes at the price of reducing details from the dataset to be released. To the aim of minimiz-
ing such information loss, it is necessary to compute k-anonymous datasets while minimiz-
ing the adoption of generalization and suppression. To this end, both exact and heuristic
algorithms have been proposed [16]. Note that, as we will illustrate in Section 3, there are
proposals that achieve k-anonymity without resorting to generalization and suppression,
adopting other data protection techniques (and possibly producing non-truthful informa-
tion).
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SSN LastName FirstName DoB Sex ZIP Disease

1940/**/** F 985** Heart attack
1940/**/** F 985** Cardiomyopathy
1940/**/** F 985** Pericarditis
1950/**/** M 994** COVID-19
1950/**/** M 994** Dermatitis
1950/**/** M 994** Cough
1950/**/** M 993** Short breath
1950/**/** M 993** COVID-19
1950/**/** M 993** COVID-19

Figure 4: An example of a 3-anonymous and 2-diverse version of the dataset in Figure 2(a)

2.3 ℓ-Diversity, t-Closeness and Extensions

The privacy requirement of k-anonymity is explicitly formulated to protect respondents’
identities, is only a starting point for protecting privacy and further steps are needed to
prevent attribute disclosure, which can be otherwise possible due to value homogeneity and
external knowledge attacks, as follows.

• The problem of homogeneity occurs when all records in an equivalence class (i.e., the set
of at least k records with the same value for QI attributes) in a k-anonymous dataset
assume the same value for the sensitive attribute.

• The external knowledge attack occurs when a data recipient can successfully leverage
external knowledge she possesses on a respondent to reduce the uncertainty about
the sensitive attribute value of that respondent.

To illustrate these problems, consider the 3-anonymous dataset in Figure 3. A recipient
who knows that a male individual, born on 1950/02/12 and living in the 99413 area, is in-
cluded in the dataset can immediately learn that he is represented in the second equivalence
class. Even without pinpointing his specific record, by accessing the 3-anonymous dataset
the recipient can discover that he suffers from COVID-19, which is the only value assumed
by all records in the class (homogeneity attack). Assume now that a recipient knows that a
male friend of hers, born on 1950/07/12 and living in 99423 area, is included in the dataset
and is also practicing for a marathon. By accessing the 3-anonymous dataset, the recip-
ient can learn that his friend is represented in the last equivalence class. Due to the fact
that short breath and cough would not be possible for a runner practicing for a marathon,
the recipient can discover that her friend suffers from dermatitis (external knowledge).
To counteract these attacks and limit the risk of attribute disclosure, Machanavajjhala et
al. [53] propose the ℓ-diversity requirement, which extends the k-anonymity requirement
by demanding that each equivalence class contains at least ℓ well-represented values for the
sensitive attribute. Several definitions for ‘well-represented’ values have been proposed,
and an intuitive interpretation considers ℓ values well-represented if they are different.
Figure 4 illustrates an example of a 3-anonymous and 2-diverse version of the dataset in
Figure 2(a) (again after the removal of the last outlier record pertaining to Luke Lane) where
each equivalence class contains at least 2 values for sensitive attribute Disease.
Like for k-anonymity, the problem of computing ℓ-diverse datasets minimizing informa-

tion loss due to generalization and suppression is computationally hard. It is interesting
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to note that the original algorithms proposed to compute a k-anonymous dataset can be
adapted to guarantee also ℓ-diversity by simply considering the diversity of the sensitive
values in the equivalence classes.

Li et al. [49] identify two further attacks that may cause improper leakage of sensitive
values from a k-anonymous and ℓ-diverse dataset, as follows.

• The skewness attack occurs when the value distribution for the sensitive attribute ob-
servable in an ℓ-diverse equivalence class differs from that observable in the overall
population (or in the overall ℓ-diverse dataset).

• The similarity attack occurs when the sensitive values in an ℓ-diverse equivalence class,
despite different, are semantically similar.

To illustrate these attacks, consider the 2-diverse dataset in Figure 4. Two records out of
three in the last equivalence class assume value COVID-19, meaning that respondents in
this equivalence class have over 0.6 probability to suffer from COVID-19. If the probability
of suffering from COVID-19 in the population is significantly lower than that, the identifi-
cation of this equivalence class as the one that includes a respondent signals an increase in
the probability that such respondent suffers from COVID-19 (skewness attack). A recipient
who knows that a female individual is included in the dataset can immediately learn that
she is represented in the first equivalence class, and therefore learn that she suffers from
a cardiovascular disease because all values for attribute Disease are cardiovascular dis-
eases (similarity attack). To counteract these attacks, Li et al. [49] propose the t-closeness
requirement, which extends the k-anonymity requirement by demanding that the value
distribution for the sensitive attribute in each equivalence class is similar (i.e., with distance
smaller than a threshold t) to that observable in the overall released dataset. It is easy to see
that the satisfaction of such a requirement limits the effectiveness of both the similarity and
the skewness attack: the presence of semantically similar values in an equivalence class is
due to the presence of the same values in the overall dataset with comparable frequencies
(reducing the effectiveness of the similarity attack); and no major differences among value
distributions can be leveraged to infer sensitive information (reducing the effectiveness of
the skewness attack).

ℓ-Diversity and t-closeness represent two well-known extensions of k-anonymity, coun-
teracting specific attacks through imposing more complex privacy requirements to be en-
forced. Further extensions have been proposed over the years, suited to more complex
data release scenarios including the sanitized release of, for example, datasets with multi-
ple records per respondents (e.g., [69, 76]), multiple datasets at the same time or different
versions of the same dataset over the time (e.g., [29, 58, 61, 63, 76, 82]), streams of data
(e.g., [29, 46, 77, 86]), datasets where the quasi-identifier may be represented by information
other than a set of attributes (e.g., [69]), non-relational datasets such as RDF graphs or doc-
uments (e.g., [20, 70]). Other extensions have investigated, among other aspects, the possi-
bility of supporting different privacy requirements for different respondents (e.g., [34, 81])
and limiting the leakage of specific values for sensitive attributes (e.g., [79]). Other ex-
tensions have considered enforcing k-anonymity in scenarios where any attribute can be
considered as a quasi-identifier or as a sensitive attribute (e.g., for anonymizing set-valued
data [69]).
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3 k-Anonymity Enforcement

In this section, we illustrate how k-anonymity can be efficiently enforced in practice. We
discuss some of the most studied families of approaches, based on data generalization (Sec-
tion 3.1) and on data fragmentation and microaggregation (Section 3.2).

3.1 Generalization-Based Enforcement

As illustrated in Section 2, the first strategy investigated for enforcing k-anonymity lever-
ages generalization, possibly coupled with suppression of outlier data. In principle, both
generalization and suppression can be applied at different granularity levels: generaliza-
tion can be applied at the cell level (substituting a cell value with a more general value)
or at the attribute level (generalizing all the cells in the column), while suppression can
be applied at the cell, attribute, or record level (removing a single cell, a column, or a row,
respectively) [16]. Regardless of the granularity level at which generalization (and sup-
pression) operates, two main families of approaches have been investigated, which differ
in how generalization is defined and operates.

• Hierarchy-based generalization leverages the definition of a pre-defined generalization
hierarchy for each of the quasi-identifying attributes, where the maximal element is the
most general value that can be defined for the attribute, and the minimal elements are
the most specific values (i.e., those appearing in the original dataset).

• Recoding-based generalization generalizes the values of the quasi-identifying at-
tributes into intervals (recoding), typically at runtime and hence does not require
the definition of pre-defined hierarchies.

Several approaches have been proposed for enforcing k-anonymity adopting both
hierarchy-based and recoding-based generalization [17]. In the reminder of this section,
we illustrate some of the most well-known enforcement approaches according to this cate-
gorization.

Hierarchy-based generalization (e.g., [44, 62]). Approaches based on hierarchy-based gen-
eralization need a formal representation of how generalization operates on attribute values.
To formally reason about generalizations, the notion of attribute domain (i.e., the set of val-
ues that can be assumed by an attribute of a dataset) is extended to the notion of generalized
domain: a generalized domain for attribute a contains generalized values that can be used
when generalizing a. Different generalized domains can be defined for an attribute, which
include the generalized values obtained through the application of different (less or more)
generalization steps. For example, attribute ZIP could be generalized removing the last
digit (one generalization step), the last two digits (two generalization steps), and so on.
Given the set of (original and generalized) domains, a generalization relationship ≤D can be
defined such that Di ≤D Dj , with Di and Dj two domains, iff the values in Dj are general-
izations of the values in Di. In particular, a generalization relationship ≤D must guarantee
that: i) the set of domain generalizations for Di is totally ordered to guarantee determin-
ism in the generalization process; and ii) all values in a domain can be generalized to a
single value. The definition of the generalization relationship ≤D implies the existence of
a totally ordered hierarchy DGHD for each domain D, called domain generalization hierarchy,
which can be graphically represented as a chain of vertices in which the top element is
the singleton most generalized domain, and the bottom element is D. Figure 5 illustrates
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DoB0 = {year,month,day}

DoB1 = {year,month}

DoB2 = {year}

DoB3 = {decade}

Sex0 = {M,F}

Sex1 = {not released}

Sex1 = {not released}

ZIP0 = {5 digits}

ZIP1 = {first 4 digits}

ZIP2 = {first 3 digits}

ZIP3 = {first 2 digits}

ZIP4 = {first 1 digit}

(a) (b) (c)

Figure 5: An example of domain generalization hierarchies for domains DoB0 (a), Sex0 (b),
and ZIP0 (c)

three examples of domain generalization hierarchies for the quasi-identifying attributes
DoB, Sex, and ZIP of the dataset in Figure 2(a). For example, attribute DoB, whose orig-
inal domain DoB0 assumes values of the form 〈year,month,day〉 (e.g., 1940/08/10 for the
first record in Figure 2(a)), can be generalized hiding the day of birth (generalized domain
DoB1), the day and month (generalized domain DoB2), and by clustering years in decades
(generalized domain DoB3, at which point all records in Figure 2(a) would be generalized
to the same value). Similarly, attribute Sex, whose original domain Sex0 only includes val-
ues M and F, can be generalized to value not released (Sex1). Attribute ZIP, whose original
domain ZIP0 contains 5-digit codes, can be generalized by removing at each step the less
significative digit left at the previous generalization step.

Since typically the quasi-identifier of a dataset is composed of a set of attributes that
should be generalized, the domain generalization hierarchy definition can be extended to
tuples of domains: a domain tuple DT = 〈D1, . . . , Dn〉 is an ordered set of domains, composed
through the Cartesian product. Since the domain generalization hierarchy DGHDi

of each
domain Di in DT is totally ordered, the domain generalization hierarchyDGHDT of domain
tuple DT = 〈Di, . . . , Dn〉, defined as DGHDT = DGHDi

× . . .×DGHDn
, is a lattice where the

minimal element is DT and the maximal element is the tuple composed of all top elements
in DGHDi

, i = 1, . . . , n. Figure 6 illustrates a domain generalization hierarchy for domain
tuple 〈DoB0,Sex0〉 (i.e., considering the pair of attributes 〈DoB, Sex〉) obtained combining
the domain generalization hierarchies in Figures 5(a)–(b). Intuitively, each element in the
hierarchy corresponds to a generalized dataset where the quasi-identifying attributes are
generalized according to the tuple represented by the element. For example, consider the
dataset in Figure 2(a), and suppose that DoB and Sex are the quasi-identifying attributes.
The 3-anonymous dataset in Figure 3 corresponds to element 〈DoB1,ZIP3〉 of the lattice for
domain tuple 〈DoB0,ZIP0〉, while the 2-diverse dataset in Figure 4 corresponds to element
〈DoB2,ZIP2〉. Each path in DGHDT from DT to the maximal element of DGHDT defines a
generalization strategy that can be adopted when generalizing a quasi-identifier composed
of attributes a1, . . . , an defined over domains D1, . . . , Dn.

The problem of computing a k-anonymous dataset minimizing generalization (and sup-
pression) and using generalization hierarchies has been proved to be NP-hard [17] and, for
this reason, both exact and heuristic approaches have been defined. Two of the most well-
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〈DoB0, Sex0〉

〈DoB3, Sex1〉

〈DoB1, Sex0〉

〈DoB2, Sex0〉

〈DoB3, Sex0〉

〈DoB0, Sex1〉

〈DoB1, Sex1〉

〈DoB2, Sex1〉

Figure 6: An example of domain generalization hierarchy for domain tuple 〈DoB0,Sex0〉

known (exact) approaches in this context are the one proposed in the original k-anonymity
proposal by Samarati [62] and the one by LeFevre et al. [44]. In particular, Samarati [62]
proposes a solution that leverages binary search on the domain generalization hierarchy to
avoid searching in the whole generalization space. The approach is based on the specifica-
tion of a suppression threshold MaxSup representing the maximum number of suppressed
records that is considered acceptable, and on the observation that going up in the hierarchy
the number of records that should be suppressed to satisfy k-anonymity decreases: if at a
level l of the hierarchy there is no element that corresponds to a k-anonymous dataset sup-
pressing MaxSup or less than MaxSup records, then there cannot be at level l′ lower than l
in the hierarchy. A binary search is adopted to determine the lowest level at which there is
an element that corresponds to a k-anonymous dataset respecting the MaxSup constraint.
While permitting to avoid a complete search in the generalization hierarchy, this approach
would still require to compute the datasets to check for the k-anonymity requirement. To
avoid this, the approach in [62] builds on the notion of (lattice of) distance vectors represent-
ing distances among the generalized domains, by means of which it is possible to check the
satisfaction of k-anonymity without computing the actual corresponding datasets.

LeFevre et at. [44] leverage the observation that if a dataset is k-anonymous considering
a set QI of quasi-identifying attributes, then it is also k-anonymous considering any subset
of QI as the quasi-identifying attributes. In other words, k-anonymity w.r.t. a set QI′⊂QI

of quasi-identifying attributes is a necessary (but not sufficient) condition for satisfying
k-anonymity w.r.t. QI. The solution in [44] leverages this observation and proposes an ap-
proach, known as Incognito, which efficiently computes k-anonymous datasets minimizing
the adoption of generalization and suppression. Incognito adopts an iterative process, con-
sidering at the ith iteration a number i of quasi-identifying attributes, and terminates at
iteration |QI|. To illustrate, consider a dataset with QI={a1, . . . , an}. At the first iteration
(i=1) Incognito checks k-anonymity considering each attribute a1, . . . , an in QI in isolation:
the generalizations that do not satisfy k-anonymity are discarded. At the second iteration
(i=2), Incognito combines in pairs the generalizations that survived at the first iteration,
and checks the satisfaction of the k-anonymity w.r.t. pairs of quasi-identifying attributes
(note that all combinations of two quasi-identifying attributes are evaluated). The process
continues until all attributes in QI are evaluated (i.e., i=|QI|). Note that at each step, for each
combination of quasi-identifying attributes, when a generalization satisfies k-anonymity,
also its direct generalizations do so and are no more evaluated.
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Recoding-based generalization (e.g., [9, 45]). A different family of enforcement ap-
proaches, which do not require the availability of pre-defined generalization hierarchies,
computes –typically at runtime– the intervals (or, more generally, sets) for recoding. These
approaches require an ordering among the values of the quasi-identifying attributes. A
well-known heuristic approach along this line of research for enforcing k-anonymity, gen-
eralizing at the granularity level of single cells, is Mondrian [45]. Mondrian leverages a
spatial representation of the data, with QI attributes as dimensions, and (multiset) combi-
nations of QI values appearing in the original dataset as (multisets of) points in this space.
Mondrian operates a recursive process to partition the space in regions containing a certain
number of points (which corresponds to splitting the original dataset in fragments that
contain a certain number of records). In particular, at each iteration, a quasi-identifying
attribute a is selected and the regions (corresponding to fragments) obtained at the previ-
ous iteration (the entire space, at the first iteration) are split based on the values of a. For
example, if a is numerical, regions are split in two sub-regions, one including points whose
value for a is lower than or equal to the median, and the other including points with a
value for a higher than the median (if a is not numerical, a possibility is to use the value in
the median position in the ordering defined over a’s values). Such recursive partitioning
terminates when any further partitioning would generate a region with less than k points
(fragments with less than k records). The values of the quasi-identifying attributes in the
resulting regions (fragments) are substituted with a recoding-based generalization. To il-
lustrate, consider the dataset in Figure 7(a), where attributes Age and ZIP are considered
quasi-identifying (note that we consider only two attributes for the QI to ensure clarity
of the graphical representation of Mondrian), and suppose that we have to compute a 2-
anonymous version of the dataset. Figure 7(b) illustrates the graphical representation of the
dataset in Figure 7(a): the space has two dimensions, one for each QI attribute, and points in
the space represent the combinations of QI values in the records of the dataset. The space
is then recursively partitioned by Mondrian. Figure 7(c) illustrates the first partitioning
performed on the dimension representing attribute ZIP: the ZIP value in median position
is 99334, and the partitioning places all points (records) with a ZIP value lower than or
equal to 99334 in a region (fragment) RZIP≤99334, and the remaining ones in another region
RZIP>99334. Figure 7(d) illustrates the subsequent partitioning performed on the dimension
representing attribute Age. The two regions obtained in the first partitioning are further
split into two regions each. In particular, in RZIP≤99334 the median value for Age is 40,
and the partitioning places all points (records) in RZIP≤99334 that have an Age value lower
than or equal to 40 in a region (fragment) R(ZIP≤99334)∧(Age≤40), and the remaining ones in
another region R(ZIP≤99334)∧(Age>40). A similar partitioning is done for RZIP>99334, where
the median value for Age is 55 and hence the partitioning places all points in RZIP>99334

that have an Age value lower than or equal to 55 in a region R(ZIP>99334)∧(Age≤55), and the
remaining ones in region R(ZIP>99334)∧(Age>55). At this point, no further partitioning is pos-
sible without producing regions with less than k=2 points (all regions have already two
points but one, which has three points and cannot be split further). The recursion termi-
nates, and the records represented by points in each region are generalized to a same value,
thus satisfying 2-anonymity and obtaining the dataset in Figure 7(e). In this example, gen-
eralization has been obtained by recoding attribute Age into intervals and attribute ZIP

into sets enumerating their elements. We close this illustration of Mondrian by noting that
the approach has been recently extended and adopted for operating in parallel leveraging
the computational power of a set of workers and to also enforce the ℓ-diversity require-
ment [22, 23].
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Age ZIP Disease

35 98512 Heart attack
45 99413 COVID-19
30 98578 Cardiomyopathy
50 99356 COVID-19
60 99423 Dermatisis
40 98545 Pericarditis
65 99334 Short breath
70 99490 Cough
55 99301 COVID-19

(a) Original dataset
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Age ZIP Disease

[30,40] {98512, 98578,98545} Heart attack
[30,40] {98512, 98578,98545} Cardiomyopathy
[30,40] {98512, 98578,98545} Pericarditis
[55,65] {99301, 99334} COVID-19
[55,65] {99301, 99334} Short breath
[45,50] {99356, 99413} COVID-19
[45,50] {99356, 99413} COVID-19
[60,70] {99423, 99490} Dermatisis
[60,70] {99423, 99490} Cough

(e) Recoding-based 2-anonymous dataset

Figure 7: Computation of a 2-anonymous dataset with the Mondrian approach: original
dataset with QI={Age,ZIP} (a) and its spatial representation (b), partitioning process (c)–
(d), and 2-anonymous version of the dataset (e)

3.2 Fragmentation- and Microaggregation-Based Enforcement

The proposals discussed so far assume to enforce k-anonymity by generalizing the QI at-
tributes (with the possible suppression of outliers). Two different lines of work have inves-
tigated the possibility of adopting data fragmentation and microaggregation.

Data fragmentation. An alternative approach to generalization (and suppression) for pro-
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SSN LastName FirstName DoB Sex ZIP ID

1940/08/10 F 98512
1940/08/04 F 98578 1
1940/08/11 F 98545
1950/02/12 M 99413
1950/07/12 M 99423 2
1950/07/30 M 99490
1950/02/13 M 99356
1950/07/25 M 99334 3
1950/02/20 M 99301

ID Disease Count

Heart attack 1
1 Cardiomyopathy 1

Pericarditis 1
COVID-19 1

2 Dermatisis 1
Cough 1

3
Short breath 1
COVID-19 2

Figure 8: An example of a 3-anonymous and 2-diverse version of the dataset in Figure 2(a)
obtained with the Anatomy approach

tecting respondents, while still producing truthful information, consists in vertically split-
ting the original dataset in fragments, for example, to hide the precise correspondence be-
tween quasi-identifying and sensitive information and release it at the coarser (and hence
more protected) granularity level of groups of records. Following this intuition, Xiao and
Tao [80] propose a fragmentation-based approach, called Anatomy, to produce ℓ-diverse
datasets. Anatomy operates by first grouping the original de-identified records in groups
that contain at least ℓ well-represented sensitive values. These groups are then split so to
separate quasi-identifying attributes from the sensitive attributes. Figure 8 illustrates a 3-
anonymous and 2-diverse version of the dataset in Figure 2(a), again after the suppression
of the last record of Luke Lane. The two fragments are complemented with an attribute
ID, which can be used to link the sub-records in the two fragments at the granularity level
of group. The fragment including the sensitive attribute also has an additional attribute
Count, which associates with each sensitive value the number of occurrences in the spe-
cific group (e.g., in the third group value COVID-19 appears twice). It is easy to see that
the dataset in Figure 8 guarantees the same degree of protection as the dataset in Figure 4,
since any combination of QI values of respondents can be matched to at least 2 different
values for the sensitive attribute Disease. It is interesting to note that a similar approach
can be successfully adopted also whenever the release of a dataset requires to protect and
hide generic sensitive associations among data (e.g., [3, 21, 24, 25]).

Microaggregation. Another alternative approach for achieving k-anonymity is based on
microaggregation (e.g., [29, 30, 64, 66]), a perturbative (unlike generalization and fragmen-
tation) data protection technique, which can be operationally defined in terms of a parti-
tioning step, followed by an aggregation step. In the partitioning step, similarly to what is
done in fragmentation-based approaches, the set of records composing the original dataset
is partitioned into different clusters in such a way that i) records in the same cluster are
similar to each other (e.g., for numerical attributes, clusters contain close values), and ii)
each cluster contains at least k records. In the aggregation step, an aggregation operator
(e.g., the mean for continuous data or the median for categorical data) is computed for
each cluster and over each QI attribute: the computed result replaces the original values of
the attribute on which it has been computed. Since each cluster contains at least k records,
each combination of quasi-identifying values appears at least k times. For instance, con-
sider the dataset in Figure 9(a), which –for simplicity– is a view of the dataset in Figure 7(a)
over attributes Age and Disease, where Age is a QI attribute and Disease is sensitive.
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Age Disease

35 Heart attack
45 COVID-19
30 Cardiomyopathy
50 COVID-19
60 Dermatisis
40 Pericarditis
65 Short breath
70 Cough
55 COVID-19

Age Disease

35 Cardiomyopathy
35 Heart attack
35 Pericarditis
50 COVID-19
50 COVID-19
50 COVID-19
65 Dermatisis
65 Short breath
65 Cough

(a) (b)

Figure 9: An example of a dataset (a) and of a 3-anonymous version of it (b) obtained
adopting microaggregation and assuming QI={Age}

Figure 9(b) illustrates a 3-anonymous version of the dataset in Figure 9(a) obtained through
microaggregation: the records have been clustered in three groups according to a similarity
in the values of attribute Age (in this example, according to an ordering over them), and
the quasi-identifying values in each group are replaced with the mean. Being microaggre-
gation a perturbative protection technique, k-anonymous datasets computed adopting this
approach do not preserve data truthfulness (e.g., all records in Figure 9(b) but the second,
fifth and eighth are not real records according to the original values in Figure 9(a)).

It is worth noticing that microaggregation besides being enforced per se as illustrated
above, can also be used to improve the utility of differentially private responses to arbi-
trary queries against a dataset [66]. As mentioned in the introduction, given a query to be
evaluated on a dataset, a differentially private algorithm adds random noise to the actual
result to ensure that the returned result does not strongly depend on the specific data of
any individual in the dataset. Clearly, the larger the amount of noise, the lesser the util-
ity for the recipients of the results. In [66], Soria-Comas et al. showed that the amount of
noise to be added to query results can be reduced by running the query of interest on a
microaggregated k-anonymous version of the dataset (considering all attributes as quasi-
identifier), rather than on the original unprotected dataset. In particular, they showed that
the information loss entailed by microaggregation is largely compensated by the reduction
in the amount of noise to be added to achieve differential privacy.

4 Advanced Application Scenarios

While k-anonymity has been first formulated to protect the identities (and, as illustrated
in the previous sections, further extended to also protect sensitive information) of the re-
spondents involved in a microdata release, it has been adopted since then also in other
application scenarios, possibly in extended/modified formulations as best suited for the
considered context. In particular, in this section we discuss scenarios concerning location-
based services and movements or positions of users (Section 4.1), social network analysis
(Section 4.2), contact tracing (Section 4.3), and big data analytics (Section 4.4)
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4.1 Location-Based Services and Movements Data

k-Anonymity has been proved to be effective in scenarios characterized by the private us-
age of location-based services, and by the private release of datasets of users’ movements.
We jointly discuss these scenarios as they are strictly interconnected, being both based on
the release of (live or historical) spatial information of a set of individuals.

Location-Based Services. Location-Based Services (LBSs) enable users to obtain real-time
services based on their current position: for example, an LBS can be used to query for
nearby points of interests, such as the nearest open restaurant. The release of the position
of a user, necessary for obtaining an LBS, and its link to the user’s identity can however
be considered sensitive and need to be protected. Effectively protecting users’ privacy
in the context of LBSs is a critical issue with multiple facets. On the one hand, location
information of a user can be seen as quasi-identifying and can then be linked to external
data sources to (re-)identify users. On the other hand, location information itself can be
considered sensitive, and appropriate protection could be needed to hide the actual, precise
location of a user. A third relevant facet relates to the actual content of a query submitted
to an LBS, which may be sensitive regardless of if and how the identity or the location
information of the submitting users are to be protected.

k-Anonymity can be effectively adopted to facilitate anonymous usage of LBSs. Among
the first attempts to adopt k-anonymity in this context, Gruteser and Grunwald [38] put
forward the idea of considering an LBS request sent by a user k-anonymous if it is in-
distinguishable from the spatial (and temporal) information of at least k−1 other requests
sent from different users (so to associate any location-based request with at least k indi-
viduals). This intuition has been used by different solutions permitting anonymous usage
of location-based services (e.g., [10, 36, 38, 55, 56]). The privacy requirement is typically
enforced by decreasing the accuracy of the location information to be sent to the location-
based service provider, blurring it to a cloaked area that includes at least k different individu-
als. In this way, the service provider (and any subject observing an LBS request) can match
any request, through its location information, to at least k different users. It is intuitive
that the rationale behind spatial cloaking shows similarities with the rationale behind gen-
eralization in traditional k-anonymity: the coarser the level of details of quasi-identifying
information (be them attributes in database scenarios, or locations in LBSs), the harder the
possibility to relate it to a single individual. Spatial cloaking is typically enforced by a
trusted entity that acts as anonymizer, and mediates the communication between a user, re-
questing a location-based service, and the LBS provider. Instead of communicating directly
to the provider, the user sends her request to the anonymizer, which modifies the (precise)
location information included in the original request to obtain a cloaked region with at least
k users, and forwards the request with the cloaked region to the provider. Clearly, being
the provider’s response based on a larger area, it can include spurious results that would
not have been returned evaluating the actual, precise location of the user. Such results then
can be directly filtered by the user. It is interesting to note that, to generate useful responses
from the provider, cloaked areas must be inclusive (i.e., defined so to guarantee that all re-
sults that would be obtained on the precise real location of the user are also included among
those returned for the cloaked area), and minimal (i.e., defined not to include more data
items than necessary to ensure k-anonymity) [56]. Elaborating on these key concepts, dif-
ferent solutions have addressed specific aspects of different application scenarios, such as
the private evaluation of location-based queries on cloaked regions [55] and on constrained
spaces such as road networks (which inevitably complicate spatial cloaking as users’ po-
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sitions are often constrained by roads and intersections) [56], the support for personalized
privacy preferences (e.g., the support for different values of k specified by users) [36] pos-
sibly in specific scenarios such as autonomous vehicles in cyber-physical systems [75], the
support for distributed location anonymizers to limit the risk of being a single point of
failure [10], the protection of location information in crowdsensing scenarios [78], and the
protection of location information when users request navigation routes [48].
A slight modification of k-anonymity, which however shares with it the main idea of pro-

tection through hiding in a crowd, is the concept of feeling-based location privacy [83], ac-
cording to which a location of a user can be safely released to an LBS provider if it is at least
popular (with the popularity of a place measured in terms of the entropy of the footprints
left by users in the place) as that of a public place specified by the user as baseline. Spatial
cloaking is then used to blur the actual location of each user into a (larger) area that satisfies
this privacy requirement.

Movement data publication. Another application scenario in the context of location data
that has seen the adoption of k-anonymity concerns the privacy-preserving publication of
movement datasets. Publishing or sharing movements, or trajectories, followed by users
may prove useful to derive knowledge about, for example, how individuals move within
a region, or whether road networks or public transportation systems should be improved.
To protect the privacy of the individuals involved in the release, different privacy require-
ments and notions for trajectories based on k-anonymity have then been proposed. One of
the first attempts in this regard is the notion of (k, δ)-anonymity [1] where δ is the radius of
a circular area surrounding each point of a trajectory (due to errors and imprecisions of the
location measurements). (k, δ)-Anonymity is satisfied if there are at least k (anonymized)
trajectories that follow the same route with respect to the value of δ (i.e., such that the ith

points of all trajectories fall within a circular area based on the value of δ). Given a value
for δ, a (k, δ)-anonymous trajectory dataset can then be achieved by possibly translating
some points of the original trajectories to be published [1]. Another notion of trajectory k-
anonymity is proposed in [31]. This solution aims at counteracting the risk that a recipient
can leverage her knowledge of some locations visited by a user to identify her trajectory
in a de-identified trajectory data collection, and hence discover other locations visited by
that user. The trajectory k-anonymity requirement demands that recipients can map an
original trajectory they partially know to no less than k different anonymized trajectories.
Trajectories are therefore grouped, based on their similarity, in clusters of at least k ele-
ments each, and are transformed perturbing their locations. Orthogonally to these privacy
notions, the approach in [74] focuses on the problem of effectively generalizing location
data represented through GPS coordinates.

4.2 Social Network Analysis

Publishing social network data can undoubtedly represent a useful way to gain insights on
the social relations existing within a community of interest. Social network data are usually
released in the form of graph structures where vertices represent the social network users,
and edges represent existing relationships among them. The negative impacts that an un-
controlled release of such data can have on the privacy of the users in the social network
are easy to understand, and have fostered lines of research aiming at permitting the release
of sanitized social network graphs where users’ personal information and/or relations are
protected. Figure 10(a) illustrates a sample social network graph with 7 users (vertices),
where the identities of users have been removed from the vertices. Backstrom et at. [8]
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Figure 10: An example of a de-identified social network graph (a), and of the 1-
neighborhood of de-identified vertex 1 (b)

observed that such a simple vertex de-identification does not provide any guarantee of
anonymity. As pointed in [12], proper modifications to the graph structure (e.g., addition
and deletion of vertices and/or edges to/from the graph, or grouping them into super-
vertices and/or super-edges) are needed to ensure a desirable degree of protection. A first
possibility is a random application of such modifications, which can provide some form of
probabilistic resistance to re-identification [12]. Other solutions are based on k-anonymity
to offer quantifiable protection against re-identification. A common assumption in this
context considers the degree of the vertices of a social network graph as quasi-identifying
information [39]. Building on this assumption, Liu and Terzi [51] propose the notion of k-
degree anonymity, whose privacy requirement demands that each vertex in a graph has the
same degree of at least other k−1 vertices in the graph. Given a social network graph, their
proposal builds a sanitized version satisfying k-degree anonymity for a given value of k by
adding a (minimal) set of edges to the input graph without modifying vertices. The notion
of k-degree anonymity has then been adopted in other proposals addressing specific as-
pects of the problem, such as the protection of specific individuals in a social network (e.g.,
represented by structurally important vertices in the graph) [57]. k-Degree anonymity is
also adopted by Casas-Roma et at. [11] who propose an approach for generating k-degree
anonymous social network graphs combining edge removal and edge addition (possibly
adopted together, resulting in a switching between edges), and considering a notion of edge
relevance (defined in terms of neighborhood centrality of the graph edges) to improve the
utility of the sanitized graph. Other proposals have investigated the possibility of comput-
ing k-degree anonymous social network graphs through modifications to the vertices of
the original graph, such as the insertion of dummy vertices to represent dummy users of
the social network (e.g., [15, 52]).

Zhou and Pei [87] propose a different privacy requirement, building on the assumption
that a de-identified social network user may be re-identified through the structure of the
1-neighborhood sub-graph of the vertex representing the user. Figure 10(b) illustrates the
1-neighborhood of vertex 1 of the network in Figure 10(a). The rationale behind this as-
sumption is that the 1-neighborhood sub-graph of the vertex representing a user actually
represents information about her social relationships that recipients may know, such as
the fact that she has only two friends that know each other. They propose the notion of
k-neighborhood anonymity, whose privacy requirement requires the 1-neighborhood sub-
graph of each vertex in the graph to be isomorphic to that of at least k−1 other vertices.
They propose a method to enforce such privacy requirement based on the addition of a
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set of edges in the social network graph. In case original vertices are labeled with prop-
erties (e.g., attributes of the represented entities such as the date of birth of users), edge
addition can be coupled by the generalization of such properties (e.g., generalizing the ac-
tual birth dates by only releasing the years of birth) [87]. This approach has been extended
in [71] to consider cases in which the recipient has knowledge of the social relationships of
users that go beyond the first level (i.e., of vertices in the higher hops of a vertex). Varia-
tions/enhancements of these approaches have been investigated to address specific adver-
sarial scenarios and re-identification risks (e.g., [7, 40, 42, 54, 85, 72, 88]).

4.3 Contact Tracing

Another application scenario that has seen the adoption of k-anonymity is contact tracing,
which has gained momentum at the time of writing due to the recent COVID-19 pandemic
(e.g., [59]), but whose scientific and societal values are not limited to this pandemic. In
fact, it is well-known that close contacts among individuals are critical to the spread of any
airborne disease. Contact tracing is then one possibility out of a toolbox of approaches for
limiting the diffusion of an airborne disease, as it permits an early detection of possible
contagion events. Typically, contact tracing is done through ad-hoc mobile apps, which
send (e.g., broadcast) beacons that are intercepted by nearby devices. In this way, users’
devices maintain a log of close users. Typical approaches have leveraged the Bluetooth Low
Energy (BLE) interface of smartphones. A well-known contact tracing protocol developed
by Google and Apple protects the privacy of a user by encrypting her beacon IDs with
temporal daily keys that can be disseminated in the event she tested positive [73]. Ali
and Dyo [5] propose an approach based on the hashing of the representations of contacts
among users, while achieving k-anonymity. Tedeschi et al. [68] propose a different contact
tracing architecture, based on IoT, where users’ smartphones only send (and never collect)
BLE beacons to IoT totems, smart devices equipped with BLE transceivers. Totems collect
beacons from users’ devices and forward them to a central authority. When a user, recorded
at a certain time at totem t, tests positive, the central authority publishes all tokens (i.e.,
regardless of whether the associated users tested positive or negative) received from t close
at that time. Each user of the app then locally checks whether her beacon is in the list.
As pointed out by the authors of [68], this solution achieves k-anonymity with respect to
disclosing diagnosis: given a dataset of k beacons from totem t published by the central
authority, each beacon could be the positive one (with a probability of 1/k of being the
actual positive one). The adoption of geolocation data instead of BLE beacons has also been
investigated for contact tracing: proposals in this direction (e.g. [13, 37, 41]) can protect
respondents’ privacy through more traditional k-anonymity-based solutions developed,
for example, in the context of location data.

In the context of studying or predicting the evolution of airborne diseases, also offline
analysis of human mobility data can be crucial for preventing or containing outbreaks [4].
Protecting the privacy of the involved individuals is clearly a key requirement in these sce-
narios [43]. For example, Chang et al. [14] studied the hourly movements of 98 million users
from neighborhoods to points of interest (such as restaurants and religious establishments)
to simulate the spread of COVID-19 in large metropolitan areas. In their analysis, they use
location data from mobile applications and, to provide a basic protection to the individuals
involved in the analysis, locations where fewer than five mobile devices were recorded are
excluded (thus following a naive application of the 5-anonymity privacy requirement).
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4.4 Big Data Analytics

We close this section with some observations on the adoption of k-anonymity for permit-
ting private analytics of big data. While there is not a unique definition of big data, five
distinctive characteristics that are usually adopted for defining big data are volume, variety,
velocity, veracity, and value. Volume refers to the fact that the size of big data collections
is typically very large. Variety refers to the fact that big data collections usually contain
data collected from different sources. Velocity refers to the fact that big data are usually
generated, collected, and analyzed at a fast pace, possibly in streams. Veracity refers to the
quality and accuracy of big data. Value refers to the value that big data can provide. In
principle, as observed in [84], the volume of big data may represent an advantage in the
context of privacy (and, most specifically, of privacy through k-anonymity): intuitively, the
more the records in a dataset, the more the respondents that can be used for ‘hiding’ the
individual identities and, for example in the context of generalization-based approaches,
the lesser the amount of generalization that can be necessary to hide identities in groups.
However, effectively anonymizing big data entails issues that need careful analysis. Soria-
Comas and Domingo-Ferrer [65] identify three properties of privacy models, including
those based on k-anonymity, that should be evaluated for assessing their applicability to
big data: composability (required for preserving privacy), computational cost, and linkability
(demanded for permitting analytics over multiple data sources). In a nutshell, compos-
ability concerns the guarantee that independent repeated applications of a privacy model
preserve the privacy guarantees ensured by the model, so that multiple and independent
releases of private data satisfy the privacy requirement even when considered in combina-
tion [35]. The computational cost of a privacy model estimates how much work is needed
to transform the original data collection in a protected one that satisfies the privacy require-
ment of the adopted model. Linkability concerns the possibility of linking multiple records
related to the same individual (possibly in different data collections to be anonymized) [65].

• As for the composability property, k-anonymity has been specifically designed to
anonymize a single dataset. If applied to datasets with overlapping respondents,
k-anonymity may not guarantee composability [67]. However, as noted in [65], k-
anonymity can preserve composability if no overlapping respondents nor sensitive
attributes are included in the different (anonymized) datasets or when, if different
sources include the same respondents, equivalence classes across the datasets include
the same respondents [27].

• As for the computation cost, the problem of computing an optimal k-anonymous
dataset (e.g., minimizing generalization or optimizing microaggregation) is compu-
tationally hard [62, 65]. However, it has to be noted that there exist (heuristic) ap-
proaches that can be adopted to compute (approximate) k-anonymous solutions in
reasonable time. For example, Incognito (Section 3.1) is experimentally proved to en-
sure good performances when QI attributes are limited in number [44]. Mondrian
(Section 3.1) adopts a heuristic approach quasi-linear in the number n of records of
the dataset to be anonymized (O(n log n)) [45]. MDAV, an enforcement approach that
adopts microaggregation (Section 3.2), has quadratic cost in the number of records
in the dataset to be anonymized (O(n2)) [30]. Hence, existing approaches may be
applied to datasets composed of a large number of records as expected in big data
scenarios.

• As for the linkability property, a k-anonymous relation always permits to determine
the equivalence class to which a respondent (for which quasi-identifying values are
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known) belongs. If a recipient is included in two or more k-anonymous relations,
it is then possible to (at least) link the equivalence classes to which she and for this
reason, to a certain degree, k-anonymity guarantees linkability. It is however to be
noted that, although linkability is a desideratum in the context of big data, the more
the degree of linkability, the more the amount of information about respondents that
is leaked and, as mentioned above, the possibility for a recipient to belong to multiple
k-anonymous relations makes k-anonymity not always composable.

The observations above suggest that a definitive answer to whether k-anonymity can be
effectively adopted in the context of the anonymization of big data is still to be given.
Considering its computational cost, leveraging k-anonymity for anonymizing big data can
successfully deal with their volume and velocity. Specific large-scale and distributed com-
putation paradigms, such as MapReduce or solutions based on Apache Spark, can also be
adopted for ensuring scalability and further improve performances of the computation of
k-anonymous solutions (e.g., [22, 23, 84]). On the other hand, its limited composability
(and, similarly, its linkability property) may represent an issue with the variety of big data
when data from multiple k-anonymous sources are combined, with the risk that such com-
bination satisfies k′-anonymity with k′<k (and, in the worst case scenario, k′=1). There
are preliminary attempts for adopting, and adapting, k-anonymity to big data anonymiza-
tion. Salas and Torra [61] propose a microaggregation-based approach for computing k-
anonymity over evolving relations, published over time, that ensures composability. In
particular, composability is guaranteed by the fact that all relations to be published over
time are managed by a single data owner, who therefore has full visibility over the data
and over their evolutions over time [61].

Domingo-Ferrer and Soria-Comas [28] observe that, in the context of big data, the tradi-
tional distinction between quasi-identifying attributes and confidential attributes may blur,
especially when different datasets come from different (and possibly not fully trusted) data
owners. In this case, they observe that an untrusted owner may share, leak or sell any
confidential attribute of the respondents of its dataset, so that these confidential attributes
may become part of the (identified) information available for mounting re-identification at-
tacks – or, similarly, use it herself to re-identify the related respondents coming from other
k-anonymous datasets. This observation is in line with the fact that in big data scenar-
ios, information can be generated and released by a multitude of subjects (in contrast to
a few data collectors/publishers such as statistical agencies that characterized more tradi-
tional scenarios). Simply adding all sensitive attributes to the quasi-identifier and adopt
k-anonymity would unfortunately –especially when the number of sensitive attributes is
high– considerably increase the size of the quasi-identifier hence resulting, as pointed in [2],
in a large amount of generalization and consequent large amount of data loss. The ap-
proach in [28], focusing on the anonymization of a single k-anonymous relation where
sensitive attributes can be quasi-identifying, tackles this issue by computing and releas-
ing multiple k-anonymous views over the original relation. In particular, given a relation
R(aq1, . . . , a

q
n, a

c
1, . . . , a

c
m) to be anonymized, where aqi is the ith quasi-identifying attribute

and aci is the ith confidential attribute that could also be used as quasi-identifying, the ap-
proach in [28] proposes to release a set of m k-anonymous relations, where the ith relation
(i = 1, . . . ,m) has schema R(aq1, . . . , a

q
n, a

c
i). If confidential attributes are non-correlated,

then these m k-anonymous relations can be independently computed adopting any k-
anonymity algorithm considering aci among the quasi-identifier, i=1, . . . ,m. If, on the other
hand, confidential attributes are correlated, they may be linked (with a certain degree of
precision) among the different k-anonymous datasets, permitting intersection attacks and
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possibly pinpointing specific respondents as the independent generalizations of the differ-
ent datasets may cluster records (and hence respondents) differently. When this is the case,
the generalization can be performed in two steps: 1) attributes aq1, . . . , a

q
n are first general-

ized to obtain a set of k-anonymous equivalence classes, 2) the ith relation corresponds to
the set of equivalence classes computed in the first step and the generalization of the values
of attribute aci within each class. This permits to create, among the different k-anonymous
views, the same equivalence classes (i.e., an equivalence class contains the same general-
ized records in all views, as in all views they are computed generalizing aq1, . . . , a

q
n).

5 Conclusions

In this paper, we have discussed the theory and application of k-anonymity. We have il-
lustrated the main privacy requirements pursued by k-anonymity and by some of its well-
known extensions, and we have presented enforcement approaches and algorithms based
on data generalization, data fragmentation, and microaggregation. As highlighted in the
paper, k-anonymity still represents a valid approach for addressing some aspects of the
complex privacy problem, and several and diverse application scenarios have recently seen
(and more will reasonably see) the adoption of k-anonymity. We have also discussed some
of these application scenarios, including location-based services, movement data publica-
tion, analysis of social network data, contact tracing applications, and big data analytics.

Acknowledgments

This work was supported in part by the EC within the H2020 Program under projects MO-
SAICrOWN and MARSAL, by the Italian Ministry of Research within the PRIN program
under project HOPE, and by JPMorgan Chase & Co under project “k-anonymity for AR/VR
and IoT/5G”.

References

[1] O. Abul, F. Bonchi, and M. Nanni. Never walk alone: Uncertainty for anonymity in moving
objects databases. In Proc. of ICDE 2008, pages 376–385, Cancun, Mexico, April 2008.

[2] C. C. Aggarwal. On k-anonymity and the curse of dimensionality. In Proc. of VLDB 2005, pages
901–909, Trondheim, Norway, August/September 2005.

[3] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina, K. Kenthapadi, R. Motwani, U. Sri-
vastava, D. Thomas, and Y. Xu. Two can keep a secret: A distributed architecture for secure
database services. In Proc. of CIDR 2005, pages 186–200, Asilomar, CA, USA, January 2005.

[4] L. Alessandretti. What human mobility data tell us about COVID-19 spread. Nature Reviews
Physics, 4(1):12–13, 2022.

[5] J. Ali and V. Dyo. Cross hashing: Anonymizing encounters in decentralised contact tracing
protocols. In Proc. of ICOIN 2021, pages 181–185, Jeju Island, Korea, January 2021.

[6] H.S. Asif, P.A. Papakonstantinou, and J. Vaidya. How to accurately and privately identify
anomalies. In Proc. of ACM CCS 2019, pages 719–736, London, UK, November 2019.

[7] R. Assam, M. Hassani, M. Brysch, and T. Seidl. (k, δ)-Core anonymity: Structural anonymiza-
tion of massive networks. In Proc. of SSDBM 2014, pages 1–12, Aalborg, Denmark, June/July
2014.

TRANSACTIONS ON DATA PRIVACY 16 (2023)



46 Sabrina De Capitani di Vimercati, Sara Foresti, Giovanni Livraga, Pierangela Samarati

[8] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore art thou R3579X? anonymized social
networks, hidden patterns, and structural steganography. In Proc. of WWW 2007, pages 181–
190, Banff, Canada, May 2007.

[9] R. J. Bayardo and R. Agrawal. Data privacy through optimal k-anonymization. In Proc. of ICDE
2005), pages 217–228, Tokyo, Japan, April 2005.

[10] F. Buccafurri, V. De Angelis, M. F. Idone, and C. Labrini. A distributed location trusted service
achieving k-anonymity against the global adversary. In Proc. of MDM 2021, pages 133–138,
Paphos, Cyprus, June 2021.

[11] J. Casas-Roma, J. Herrera-Joancomartı́, and V. Torra. k-Degree anonymity and edge selection:
Improving data utility in large networks. KAIS, 50(2):447–474, 2017.

[12] J. Casas-Roma, J. Herrera-Joancomartı́, and V. Torra. A survey of graph-modification techniques
for privacy-preserving on networks. Artificial Intelligence Review, 47(3):341–366, 2017.

[13] C. A. Cassa, S. J. Grannis, J. M. Overhage, and K. D. Mandl. A context-sensitive approach to
anonymizing spatial surveillance data: impact on outbreak detection. JAMIA, 13(2):160–165,
2006.

[14] S. Chang, E. Pierson, P. W. Koh, J. Gerardin, B. Redbird, D. Grusky, and J. Leskovec. Mobility
network models of COVID-19 explain inequities and inform reopening. Nature, 589(7840):82–87,
2021.

[15] S. Chester, B. M. Kapron, G. Ramesh, G. Srivastava, A. Thomo, and S. Venkatesh. Why Waldo
befriended the dummy? k-Anonymization of social networks with pseudo-nodes. SNAM,
3(3):381–399, 2013.

[16] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati. k-Anonymity. In T. Yu and
S. Jajodia, editors, Secure Data Management in Decentralized Systems, pages 323–353. Springer-
Verlag, 2007.

[17] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati. Theory of privacy and
anonymity. In M. Atallah and M. Blanton, editors, Algorithms and Theory of Computation Hand-
book (2nd edition). CRC Press, 2009.

[18] C. Clifton and T. Tassa. On syntactic anonymity and differential privacy. In Proc. of ICDEW
2013, pages 88–93, Brisbane, Australia, April 2013.

[19] G. Cormode, C. M. Procopiuc, E. Shen, D. Srivastava, and T. Yu Empirical privacy and empirical
utility of anonymized data. In Proc. of ICDEW 2013, pages 77–82, Brisbane, Australia, April 2013.

[20] C. Cumby and R. Ghani. A machine learning based system for semi-automatically redacting
documents. In Proc.of AAAI 2011, pages 1628–1635, San Francisco, CA, USA, August 2011.

[21] S. De Capitani di Vimercati, R.F. Erbacher, S. Foresti, S. Jajodia, G. Livraga, and P. Samarati.
Encryption and fragmentation for data confidentiality in the cloud. In A. Aldini, J. Lopez, and
F. Martinelli, editors, Foundations of Security Analysis and Design VII, pages 212–243. Springer,
2014.

[22] S. De Capitani di Vimercati, D. Facchinetti, S. Foresti, G. Oldani, S. Paraboschi, M. Rossi, and
P. Samarati. Scalable distributed data anonymization. In Proc. of PerCom 2021, pages 401–403,
Kassel, Germany, March 2021.

[23] S. De Capitani di Vimercati, D. Facchinetti, S. Foresti, G. Oldani, S. Paraboschi, M. Rossi, and
P. Samarati. Artifact: Scalable distributed data anonymization. In Proc. of PerCom 2021, pages
401–403, Kassel, Germany, March 2021.

[24] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, G. Livraga, S. Paraboschi, and P. Samarati.
Fragmentation in presence of data dependencies. IEEE TDSC, 11(6):510–523, 2014.

[25] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, G. Livraga, S. Paraboschi, and P. Samarati.
Loose associations to increase utility in data publishing. JCS, 23(1):59–88, 2015.

[26] S. De Capitani di Vimercati, S. Foresti, G. Livraga, and P. Samarati. Data privacy: Definitions

TRANSACTIONS ON DATA PRIVACY 16 (2023)



k-Anonymity: From Theory to Applications 47

and techniques. IJUFKBS, 20(6):793–817, 2012.

[27] J. Domingo-Ferrer. Big data anonymization requirements vs privacy models. In Proc. of SE-
CRYPT 2018, pages 471–478, Porto, Portugal, July 2018.

[28] J. Domingo-Ferrer and J. Soria-Comas. Anonymization in the time of big data. In Proc. of PSD
2016, pages 57–68, Dubrovnik, Croatia, September 2016.

[29] J. Domingo-Ferrer, J. Soria-Comas, and R. Mulero-Vellido. Steered microaggregation as a unified
primitive to anonymize data sets and data streams. IEEE TIFS, 14(12):3298–3311, 2019.

[30] J. Domingo-Ferrer and V. Torra. Ordinal, continuous and heterogeneous k-anonymity through
microaggregation. Data Mining and Knowledge Discovery, 11(2):195–212, 2005.

[31] J. Domingo-Ferrer and R. Trujillo-Rasua. Microaggregation-and permutation-based anonymiza-
tion of movement data. Information Sciences, 208:55–80, 2012.

[32] C. Dwork. Differential privacy. In Proc. of ICALP 2006, pages 1–12, Venice, Italy, July 2006.

[33] Federal Committee on Statistical Methodology. Statistical policy working paper 22 (Second Version).
USA, December 2005. Report on Statistical Disclosure Limitation Methodology.

[34] K. B. Frikken and Y. Zhang. Yet another privacy metric for publishing micro-data. In Proc. of
WPES 2008, pages 117–122, Alexandria, VA, USA, October 2008.

[35] S. R. Ganta, S. P. Kasiviswanathan, and A. Smith. Composition attacks and auxiliary information
in data privacy. In Proc. of KDD 2008, pages 265–273, Las Vegas, NV, USA, August 2008.

[36] B. Gedik and L. Liu. Protecting location privacy with personalized k-anonymity: Architecture
and algorithms. IEEE TMC, 7(1):1–18, 2008.
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