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Abstract. k-anonymity is a PPDP anonymization model preventing identity disclosure by making
each record of the table indistinguishable from k − 1 others. To obtain a k-anonymous version of
a table, a common technique is to generalize the quasi-identifier attributes values until records are
grouped in equivalence classes of size at least k. The choice of records to be grouped will influence the
amount of generalization to be performed and therefore the quality of the anonymized data (the more
a value is generalized, the more precision it loses). The different k-anonymous versions of a table are
therefore more or less interesting in terms of data utility. To assess the quality of a k-anonymized
table, information loss metrics are often used. They can also be used within the k-anonymization
process itself to choose the groupings of records resulting in the least data alteration. In this article,
we propose a unified modeling of such metrics, faciliting their implementation and their use. We
then analyze the behaviors of seven metrics when they are used in the k-anonymization process to
guide the equivalence classes mergings. Our analyzes compare these seven metrics on two public
tables for 14 values of k. After that, we turned to the limits of k-anonymity. In a k-anonymous table,
the distribution of sensitive values in equivalence classes can lead to the disclosure of sensitive in-
formation about an individual. l-diversity and t-closeness anonymization models impose constraints
that keep control over the distribution of sensitive values and therefore limit attribute disclosure.
We continue our study on k-anonymization by proposing strategies aimed at optimizing the data
alteration, the l-diversity and the t-closeness of the k-anonymous tables produced. Using two infor-
mation loss metrics, we evaluate the seven optimization strategies on the two public tables first on
real sensitive values distributions and then on 21 simulated sensitive values distributions. With this
large study, we would like to understand how to choose a metric and an optimization strategy to
provide k-anonymous database with strong guarantees on the data privacy and preserving as much
as possible the data utility.

1 Introduction

The volume of collected data on Internet continues to grow. Among all the data collected on
each of us, some have very great potential in many areas. For example, health data can be
crucial information for the study of diseases. Consumers’ data are of interest for marketing.
Data on the behaviors and habits of citizens can help decision-making on public policies.
However, publishing such data is also a significant risk for the people it concerns. To take
these risks into account, the legislation of most countries has evolved towards ever greater
protection. In order to continue to exploit data, it is therefore necessary to give guarantees
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of privacy to individuals. Before publishing data, the identity of individuals and their
sensitive data must be masked. This process is called anonymization [7].

Generally, the data sets considered are tables. Lines, or records, of these tables represent
individuals and columns represent attributes. We distinguish three categories of attributes.
The identifier attribute is a direct and unique link between an individual and a record of
the table (e.g. social security number, name). In Table 1a, T is a table of height lines and
four attributes. It has four equivalence classes that contain two records.

The quasi-identifier attributes could induce information disclosure if they are considered
totally or partially and/or crossed with external data source (e.g. gender, location, age). In
a table, we group records according to their quasi-identifying values: an equivalence class
of the table contains all the records with exactly the same quasi-identifiyng values. Finally,
the sensitive attributes contain the most useful information to protect and are the reason
for publishing the table (e.g. disease, salary). The data editor should be very careful
about qualifying an attribute as sensitive, especially when multiple sensitive attributes are
present. If this attribute turns out to be quasi-identifying in the context of the publication,
the protection offered by k-anonymity can be compromised. The problematic contexts can
be the presence of several sensitive attributes or even the publication of the same attribute
in two different databases, even if, considered independently, they are k-anonymous ([2]).
In this article, we do not consider such a situation, focusing on optimizing the usefulness
of a database with well-defined attributes.

The Privacy-Preserving Data Publishing [12, 11, 13], abbreviated as PPDP, is a research
field whose objective is to ensure that the publication of the data does not permit to asso-
ciate an individual with a record in the database or to learn more about the sensitive data
of the individual. Among the anonymization models proposed in PPDP, k-anonymity was
presented in [28] to struggle the identity disclosure [15] (ie the ability to associate an unique
record of the table with an individual). In a k-anonymous table, each record has to be in-
distinguishable from at least k − 1 other records with respect to the set of quasi-identifier
attributes. In other words, each equivalence class of the table contains at least k records.
By k-anonymizing a table, we guarantee that even if an adversary knows in which class
of the k-anonymous table an individual is, he will not be able to associate a record with
him except with a probability of 1

k . k-anonymity is so a protection against identity disclo-
sure. In Table 1b, Tano is a 4-anonymous version of T . We first replace the identifier values
by pseudonymes to achieve pseudonymization. Then, we construct two equivalence classes
containing four records.

To achieve k-anonymity, techniques as generalization [28], bucketisation [33], suppression
[29] or micro-agregation [8] have been proposed. In this article, we focus on the general-
ization technique for categorical data. In this approach, it is considered that the values
are replaced by less specific (more general) values, in order to group them into a set of at
least k entries. It implies that we dispose of generalization hierarchies [28] that lead how
the values can be replaced to be grouped maintaining the semantic of the records. Such
generalizations must be defined prior to apply the different algorithms we propose. These
hierarchies, for those that are categorical, have been chosen considering the finest grain
allowing semantic preservation. For each quasi-identifier attribute of the table, we so as-
sociate a generalization hierarchy that is a tree that represents the possible generalizations
of each original value of the attribute. The original values in the table are the leaves of the
hierarchy at level 0 and correspond to values without generalization. The upper levels in-
creasingly generalize the values until the complete loss of information represented by the
root of the hierarchy.

There are several ways to use the generalization technique to anonymize a table. When
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performing a global recoding, the identical records of the original table are found in the
same equivalence class of the anonymized table. On the other hand, in the case of local
recoding, each record is considered independently and identical records can be general-
ized differently. Moreover, we talk about single dimensional recoding when we allow only
one level of generalization for all the values of a quasi-identifier attribute. On the con-
trary, in a multidimensional recoding, several levels of generalization can be applied to the
values of a quasi-identifier attribute. Incognito [16] is an example of framework using a
single dimensional global recoding to k-anonymize a table. Mondrian [17] is based on a
multidimensional global recoding and improves Incognito performance [1]. Examples of
frameworks using a multidimensional local recoding are KACA [18], k-member [5], OKA
[21] or GCCG [26]. Although multidimensional local recoding have shown good perfor-
mance in data utility conservation, we will use multidimensional global recoding in our
work.

Using generalization technique, construct a k-anonymous version of a table consists in
partitioning the table into equivalence classes of size at least k. However, the number of
such partitions is the k-associated Stirling number of the second kind [6] which is greater
than 2n, with n the number of records. Among these k-anonymous tables, some have
undergone more generalizations of their values than others and are thus less interesting in
terms of data utility. In order to classify tables according to the data utility, information loss
metrics are frequently used. These metrics estimate the amount of information that has been
lost between the original table and the k-anonymized table with generalization technique.
Many metrics have been proposed like [14, 3, 18, 5]. The first contribution of this article will
be to propose a model unifying the writing of metrics and simplifying their use. We will
then compare the performance of information loss metrics when used in a k-anonymization
algorithm to construct equivalence classes of size greater than k (cf. Section 3). The model
and preliminary results limited to the adult data set was published in [23].

Although k-anonymity provides privacy guarantees, it does not totally protect against all
attacks. As showned in [28] or in [30], k-anonymity is sometimes not effective against at-
tribute disclosure. Indeed, if k-anonymity protects against the re-identification of individ-
uals in a database, it does not respond to linking attacks, which can be posed by the lack of
diversity of sensitive data (as all the de-identification techniques). In [22] and [19], authors
propose l-diversity and t-closeness, two anonymization models to strengthen the privacy
guarantees of k-anonymity. These models take a control on sensitive values distribution in
each equivalence class. In a l-diverse table, each equivalence class contains at least l sen-
sitive values that are fairly represented. In a table that has a t-closeness, sensitive values
distribution is quite the same as the sensitive values distribution in the whole table. Our
second contribution will be to propose strategies allowing to build the best k-anonymous
tables possible in terms of limitation of data alteration and optimization of l-diversity and
t-closeness (cf. Section 4). First results limited to adult data set and one optimisation metric
was published in [24].

The rest of the article is organized as follows. In Section 2, we give notations to use
the generalization technique and we present the anonymization algorithm GAA. In Sec-
tion 3, we present a new modeling unifying the information loss metrics writing and sim-
plying their use. We compare the performances of seven metrics when they are used in
a k-anonymization algorithm to guide the mergings of equivalence classes. We conduct
experiments on two public tables. In Section 4, we study the l-diversity and t-closeness
models. We present seven new strategies to use in the anonymization algorithm GAA and
that permit to optimize data alteration and l-diversity or t-closeness of the k-anonymous
tables produced. We experiment on real data and on simulated data which represents 45
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Identifier Quasi-identifier Sensitive
Name Gender Race Disease
Ana F Lion Cold
Bea F Dog Bronchitis

Carole F Lion Cold
Daphne F Dog Conjunctivitis

Eric M Cat Broken paw
Fred M Cat Broken paw
Gui M Lion Angina

Herve M Lion Bronchitis

(a) A table T

Identifier Quasi-identifier Sensitive
Name Gender Race Disease
P1 * Lion Cold
P2 * Mammal Bronchitis
P3 * Lion Cold
P4 * Mammal Conjonctivitis
P5 * Mammal Broken paw
P6 * Mammal Broken paw
P7 * Lion Angina
P8 * Lion Bronchitis

(b) A 4-anonymous version of a table T

Table 1: A table and a 4-anonymous version of it

tables to study. Section 5 concludes the article and gives perspectives.

2 Generalization Technique and Anonymization Algorithm

2.1 Generalization Technique

As said in Section 1, we use generalization technique to k-anonymize tables. For each quasi-
identifier attribute of the table, we construct a generalization hierarchy. Figure 1 presents
an example of such generalization hierarchies for the attributes Gender and Race of the table
1a.

•
Cat

•
Lion

•
Dog

•Felid

•Mammal

(a) Hierarchy of Race

•
Male

•
Female

•*

(b) Hierarchy of Gender

Figure 1: Two generalization hierarchies

For the following definitions, we consider a m-tuple H = (H1, . . . ,Hm) of hierarchies of
Q = {Q1, . . . , Qm}, with Q the set of quasi-identifier of the table. We denote byR the set of
generalized records on (A,H).

Definition 1 (Generalization of a record and generalized table on (T,H)). Let v and v′ be
two nodes of the generalization hierarchy Hj for j ∈ J1,mK. v′ is a generalization of v (or v
can be generalized in v′) if v′ is on the path from v to the root of Hj .
Let F = (f1, . . . , fm, s) and F ′ = (f ′1, . . . , f

′
m, s

′) be two records inR. F ′ is a generalization
of F if for all j ∈ J1,mK, f ′j is a generalization of fj and s′ = s (s is the sensitive attribute).
Let T = {E1, . . . , En} be a table on (A,H) of cardinal n ∈ N∗. A table T gen on (A,H) is

a generalized table on (T,H) if |T gen| = n and for all i ∈ J1, nK, the record F i of T gen is a
generalization of Ei.
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We denote by T gen(T,H) the set of generalized tables on (T,H). For the sake of clarity, we will
simply use T gen when there is no ambiguity.

To generalize subsets of records in a table, we use the notion of Lowest Commun Ancestor,
abbreviated as LCA, in a tree defined in [4]. The LCA of a set of nodes of a generalization
hierarchy is the ancestor of the nodes that is located farthest from the root.

Definition 2 (Generalization of a subset of records). Let T be a table on (A,H) of cardinal
n ∈ N∗. Set E = {Es1 , . . . , Est} a subset of records to generalize in T with t ∈ J1, nK. For
each x ∈ J1, tK, set Esx = (esx1 , . . . , e

sx
m ). We construct a table genT (E) = {F 1, . . . , Fn} in

which, for each i ∈ J1, nK:{
F i = (LCA(es11 , . . . , e

st
1 ), . . . ,LCA(es1m , . . . , e

st
m)) if Ei ∈ E

F i = Ei else

For example, to obtain Tano of Table 1b, we put generalizations (*, Lion) in records 1, 3 ,7
and 8 of T and generalizations (*, Mammal) in records 2,4, 5 and 6.

2.2 Anonymization Algorithm

In order to k-anonymize tables considering several anonymization models and measures,
we use the Greedy Anonymization Algorithm, abbreviated as GAA. Its pseudo-code is in Al-
gorithm 1. k-anonymity, l-diversity and t-closeness being NP-hard (cf. [25, 10], [34, 9], [20]
respectively), GAA uses an heuristic method to guide production of an anonymous table.
GAA aims to produce a version of the table which respects an anonymization model by
optimizing equivalence classes mergings according to a predeterminate strategy.

Algorithm 1 Greedy Anonymization Algorithm

Require: A = {Q1, . . . , Qm, S} a set ofm ∈ N∗ quasi-identifier attributes and one sensitive attribute,
H = (H1, . . . , Hm) a m-tuple of hierarchies of the quasi-identifier attributes of A, T a table on
(A,H), Φ an anonymization model and Strat a merging selection strategy

Ensure: A generalized table on (T,H) that respects the Φ model
1: procedure GAA(A,H, T , Φ, Strat)
2: while T does not respect the Φ model do
3: Choose arbitrarly an equivalence class Cs of T of minimal size that does not respect the Φ

model
4: Search an equivalence class C of T different from Cs that respects the conditions of Strat

strategy
5: T ← genT (Cs ∪ C)
6: end while
7: Return T
8: end procedure

At each step, GAA does the merging of two equivalence classes. The first class to merge,
denoted by Cs, is arbitrarly chosen among the equivalence classes that do not respect the
anonymization model Φ (e.g. among the equivalence classes of size less than k for a k-
anonymization). The choice of the second class to merge, denoted by C, is determined by
the condition of the Strat strategy: it is one whose merging withCs optimizes the conditions
of the strategy.
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3 Comparison of Information Loss Metrics

For a given table, there potentially exist several k-anonymous versions of it. Considering
a table of n records, the number of potential k-anonymous versions of it, corresponding to
the number of partitionings of n elements in subsets of size greater than k, is greater than∑k
i=1

(
n
k

)
which is of the order of 2n. More precisely, it is the k-associated Stirling number

of the second kind
{
n
m

}
≥k representing the number of ways to partition n labeled elements

in m unlabeled subsets containing at least k elements. It is therefore important to be able
to classify these k-anonymous tables according to their quality in terms of data utility. The
notion of information loss metrics is often used to assess the quality of anonymous tables.
An information loss metric is a map from a table to R that estimates the amount of informa-
tion that is lost during an anonymization process. Although the general principle remains
the same, several information loss metrics have been proposed [35, 5, 18, 23]. All these
metrics are defined to measure the loss of information by considering the generalization
hierarchies of the different attributes. They assume that the “shapes” of the hierarchies (i.e.
the degrees and connections of its nodes) describe the amount of information of general-
ized attribute values. Other techniques like micro-aggregation assume that attribute values
can be aggregated to reflect more or less multiple values grouped together in the same set
(e.g. using the average of multiple values, ...). For both approaches, determining the “cost”
of such a grouping is not insignificant and depends on the approach itself. A comparison
between these different approaches is hard and depends on the context in which the data
are used. For instance, consider an age attribute for three records with 20, 25, and 30 years
old. It can be aggregated over 25 years or generalized into a the set [20,30]. 25 can be con-
sidered better because it is at most 5 years from the original values, but 25 says nothing on
the range of the values and can be unusable for certain uses requiring this information (age
range of patients, ...). On the contrary, for some applications, the aggregate values may
be more interesting than the range of values. One way to evaluate the final k-anonymous
database is to use it as input to an ML algorithm or to measure the result of a data mining
query. But such comparisons must define specific tasks on the data and are highly depen-
dent on the data or queries on it. Thus, such a comparison is valid for a particular task or
set of tasks but may lead to very different results when applied to another query on the
data. In this paper, we focus on metric-based techniques and for each metric we use its
own criteria to evaluate it. Indeed, the results we present are computed as a ratio of the
worst case and calculated for and with the metric itself.

Most of the time, the notations used to define these information loss metrics are not the
same from one article to another. Moreover, few justifications are given for the choice of
one metric over another.

In this section, we will conduct a comparative study of information loss metrics. The ob-
jective is, firstly, to propose a unified and easily usable writing of information loss metrics
in Section 3.1. A new definition and a matrix-based modeling will be presented. In Sec-
tion 3.2, we will present three information loss metrics from the literature and four metrics
from our work. Finally, in Section 3.3, we will try to evaluate the performance of several
information loss metrics when used in a k-anonymization algorithm with experiments on
two public datasets.
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•
Cat

•
Lion

•
Dog

•Felid

•Mammal

1 1
4

3

(a) Hierarchy of Race

•
Male

•
Female

•*

5 5

(b) Hierarchy of Gender

Figure 2: Two generalization hierarchies with weighted edges

3.1 A Modeling of Information Loss Metrics

To unify the writing of the information loss metrics and to simplify their use, we propose
a new modeling. First, we propose a definition of an information loss metric based on
weights to be placed on the edges of the generalization hierarchies of the quasi-identifier at-
tributes of the table. Second, for a given metric, we define a matrix for each quasi-identifier
attribute in the table. This matrix is labeled by the nodes of the generalization hierarchy
of the quasi-identifier in row and in column. A value of the matrix will correspond to the
cost for the chosen information loss metric of generalizing the node labeling the row into
the common ancestor of the nodes labeling the row and the column.

In Definitions 3 to 5, we consider a set Q = {Q1, . . . , Qm} of m quasi-identifier attributes
and a m-tupleH = (H1, . . . ,Hm) of generalization hierarchies of Q.

Definition 3 (Information loss metric). For each j ∈ J1,mK, we weight the edges of Hj

with values in R+. For two nodes x and x′ of Hj , if there exists an edge (x, x′) in Hj , we
denote by ω(x, x′) the weight of (x, x′). A metric onH is a m-tuple of sets of weights on the
hierarchies ofH:

µ = (µ1, . . . , µm),

with µj = {ω(x, x′) : (x, x′) edge of Hj} for j ∈ J1,mK.

Thus, to define a metric, we define a set of weights on the edges of the generalization
hierarchies. For example, the weights in the edges of the hierarchies of Gender and Race
in Figure 2 define an information loss metric. For this metric, the cost of generalizing Dog
in Mammal is 4 (see Figure 2a) and the cost of generalizing Male or Female in * is 5 (see
Figure 2b).

Before presenting the costs matrices associated with an information loss metric, we define
the generalization cost for a metric of a node of a hierarchy in one of its generalizations.
Recall that a node v′ is a generalization of a node v in a hierarchy if v′ is on the path from v
to the root of the hierarchy.

Definition 4 (Generalization cost of a node v in a node v′). Let µ = (µ1, . . . , µm) be a metric
on H. For all j ∈ J1,mK, the application costHj : Hj ×Hj → R associates with each couple
of nodes of Hj :

costHj : Hj ×Hj −→ R

(v, v′) 7−→


∑

(x,x′)∈E(v,v′)
ω(x, x′) if v′ is a generalization of v

0 else

with E(v, v′) the set of edges in the path from v to v′ and ω(x, x′) ∈ µj for all (x, x′) ∈
E(v, v′).
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160 Clémence Mauger, Gaël Le Mahec, Gilles Dequen

If v′ is a generalization of v in Hj , costHj
(v, v′) represents the cost for µ of the path from v

to v′ i.e. the generalization cost of v to v′ for µ. For the sake of clarity, we will simply use
cost(v, v′) in the rest of the paper.

The costs matrix defines the cost of generalizing any pair of nodes in a hierarchy. The rows
and columns of the matrix being labeled by the nodes of the hierarchy, any coefficient rep-
resents the cost of generalizing the node labeling the row into the lowest common ancestor
of the node labeling the row and the node labeling the column.

Definition 5 (Costs matrix). For all j ∈ J1,mK, the costs matrix of Hj for µ, denoted by
Mµ,Hj

, is defined as:

• rows and columns of the matrix are labeled by the nodes of Hj

• for all couple of nodes (v, v′) of Hj , Mµ,Hj
(v, v′) = cost(v,LCA(v, v′))

Example 1. Consider the hierarchy HRace of Race attribute in Figure 2a and the metric de-
fined by the following weights: ω(Cat,Felid) = 1, ω(Lion,Felid) = 1, ω(Dog,Mammal) = 4
and ω(Felid,Mammal) = 3.

The costs matrix of HRace for µ is:

Mµ,HRace =



Cat Lion Dog Felid Mammal
Cat 0 1 4 1 4
Lion 1 0 4 1 4
Dog 4 4 0 4 4
Felid 0 0 3 0 3
Mammal 0 0 0 0 0


For instance, the coefficient Mµ,HRace(Cat,Dog) is computed as:

Mµ,HRace(Cat,Dog) = cost(Cat,LCA(Cat,Dog))

= cost(Cat,Mammal)
= ω(Cat,Felid) + ω(Felid,Mammal)
= 1 + 3 = 4

For Definitions 6 and 7, we consider a setA = {Q1, . . . , Qm, S} of m ∈ N∗ quasi-identifier
attributes and one sensitive attribute, a m-tuple H = (H1, . . . ,Hm) of hierarchies of Q =
{Q1, . . . , Qm}, a table T on (A,H) of cardinal n ∈ N∗ such that T = {E1, . . . , En} and a
metric µ onH.

Thanks to the costs matrices, we compute the generalization cost of a generalized table.

Definition 6 (Generalization cost of a generalized table). Let Mµ,Hj
be the costs matrix of

Hj for all j ∈ J1,mK.
We define the application µ : R × R → R+ which associates with two records on R the

cost of generalizing these tuples for µ:

µ : R×R −→ R+

(F, F ′) 7−→
m∑
j=1

Mµ,Hj (fj , f
′
j) +Mµ,Hj (f ′j , fj)

,

with F = (f1, . . . , fm, s) and F ′ = (f ′1, . . . , f
′
m, s

′). In other words, µ(F, F ′) is the cost to
generalize F and F’ so they are in the same equivalence class.
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We define the application µT : T gen → R which associates with each generalized table on
(T,H) its generalization cost according to T :

µT (T gen) =

n∑
i=1

µ(F i, Ei),

with T gen = {F 1, . . . , Fn}.
µT (T gen) is then the total cost of the generalization from T to T gen.

To obtain an estimation of the gap between the generalization cost for µ of a generalized
table and the cost for µ of the table in which all information is lost, we define the alteration of
a generalized table for µ. Alteration is a percentage so it is easily understandable whatever
the metric chosen.

Definition 7 (Alteration). Let T ∗ be the generalized table on (T,H) such that for all F i ∈ T ∗
with i ∈ J1, nK, F i = (r1, . . . , rm, si) with si the sensitive value of Ei and rj the root of Hj

for all j ∈ J1,mK.
We define the application altµ(T ) : T gen → R which associates with each generalized

table on (T,H) its alteration for µ:

altµ(T ) : T gen −→ R
T gen 7−→ µT (T gen)

µT (T∗) × 100
.

3.2 Information Loss Metrics

In the following, we will present seven information loss metrics in the light of the modeling
defined in Section 3.1. Three come from the literature: Distortion [18], NCP [35] and Total
[5]. Four have been exposed in a previous work [23]: Lost Leaves Metric (LLM), Normalized
Lost Leaves Metric (NLLM), Wid Lost Leaves Metric (WLLM) and Wid Normalized Lost Leaves
Metric (WNLLM).

First of all, we introduce notations and definitions. The height of a generalization hierar-
chy is the number of nodes in the longest path. We denote by lvl(v) the level of v in the
generalization hierarchy and by nl(v) the number of leaves in the subtree rooted in v.

Definition 8 (Weighting on a set of quasi-identifier attributes). Let Q = {Q1, . . . , Qm} be a
set of m ∈ N∗ quasi-identifier attributes and H = (H1, . . . ,Hm) be a m-tuple of hierarchies
of Q. Set hHj

the height of Hj for j ∈ J1,mK and hmax = max
1≤j≤m

hHj
.

We define the applicationw1 : Q → R which associates with each quasi-identifier attribute
of Q its weight for w1:

w1 : Q −→ R
Qj 7−→ 1− (hHj

−1)m∑m
i=1(hHi

−1)m
,

for j ∈ J1,mK. It is the wid presented in [27].
We define the applicationw2 : Q → R which associates with each quasi-identifier attribute

of Q its weight for w2:
w2 : Q −→ R

Qj 7−→ hmax

hHj

,

for j ∈ J1,mK.
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LetQ = {Q1, . . . , Qm} be a set ofm ∈ N∗ quasi-identifier attributes andH = (H1, . . . ,Hm)
be a m-tuple of hierarchies of Q. Let j ∈ J1,mK. Let x and x′ be two nodes of Hj such that
there is an edge from x to x′ and lvl(x) = lvl(x′) − 1. Let rj be the root of Hj . For each
studied metric, we give the weight ω(x, x′) to put on the edge (x, x′).

3.2.1 Metrics of the Literature

Distortion Distortion is a metric exposed in [18]. We use the weightingw1 as in [27] to take
into account the heights of the hierarchies: these multipliers put a penalty on hierarchies of
small height (e.g. Gender, an attribute with only one possible generalization, has a bigger
w1 than Age, an attribute that could have several levels of generalization).

The weight to put on the edge (x, x′) for Distortion is:

ω(x, x′) =

1
hHj
−lvl(x′)∑hHj
−1

i=1
1

hHj
−i

× w1(Qj).

NCP Normalized Certainty Penalty, or NCP, is a metric that deals with the number of lost
leaves when a generalization is applied to a value. A normalization step is done by dividing
by the number of leaves in the hierarchy. It comes from [35]. The weight to put on the edge
(x, x′) for NCP is:

ω(x, x′) =
nl(x′)− nl(x)

nl(rj)
.

Total Exposed in [5], Total focuses on the level of the nodes in the hierarchy. The closer a
node is to the root, the higher its generalization cost for Total. A normalization step is done
by dividing by the height of the hierarchy minus 1. The weight to put on the edge (x, x′)
for Total is:

ω(x, x′) =
lvl(x′)− lvl(x)

hHj − 1
.

3.2.2 LLM and Three Variants

We now present LLM and three of its variants as they are defined in our previous work
[23].

LLM The Lost Leaves Metric, or LLM, is a metric based on the number of lost leaves when
a generalization is done. It is the same idea as in NCP but we add the weighting w2 to take
into account the heights of the hierarchies. The weight to put on the edge (x, x′) for LLM is:

ω(x, x′) = (nl(x′)− nl(x))× w2(Qj).

NLLM The first variant of LLM is the Normalized Lost Leaves Metric or NLLM. A normal-
ization step is added by dividing by the number of leaves in the hierarchy. It is the NCP
metric in which we add the weighting w2. The purpose of this variant is to study the effects
of the normalization on the node generalization cost when the weighting used is w2. The
weight to put on the edge (x, x′) for NLLM is:

ω(x, x′) =
nl(x′)− nl(x)

nl(rj)
× w2(Qj).
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WLLM The second variant of LLM is the Wid Lost Leaves Metric or WLLM. The weighting
used is w1. The purpose is to compare the performances of the two weightings. The weight
to put on the edge (x, x′) for WLLM is:

ω(x, x′) = (nl(x′)− nl(x))× w1(Qj).

WNLLM The last variant of LLM is the Wid Normalized Lost Leaves Metric or WNLLM. In
this metric, a normalization step on the node generalization cost is done and the weighting
used is w1. The purpose of this variant is to study the effects of the normalization on the
node generalization cost when the weighting used in w1. The weight to put on the edge
(x, x′) for WNLLM is:

ω(x, x′) =
nl(x′)− nl(x)

nl(rj)
× w1(Qj).

To better understand what the metrics are calculated on, we decompose the compute of
the value’s cost in two phases. The first one consists in assigning to the value an interme-
diate cost and the second one is a multiplication of this intermediate cost by a multiplier
depending on the attribute which the value belongs. We note µinter to represent the first
phase, for µ a metric, and µmulti for the second phase.

For instance, for Distortion, Distortioninter =

1
hHj

−lvl(x′)∑hHj
−1

i=1
1

hHj
−i

and Distortionmulti = w1(Qj).

For NLLM, we have NLLMinter = nl(x′)−nl(x)
nl(rj)

and NLLMmulti = w2(Qj). Finally, NCPinter =

NLLMinter and NCPmulti = 1. Table 2 lists characteristics of the two phases for the seven
studied metrics.

Distortion NCP Total LLM NLLM WLLM WNLLM

µinter depends on the level
of the node in the hierachy 3 5 3 5 5 5 5

µinter depends on the
number of lost leaves 5 3 5 3 3 3 3

Normalization on µinter 3 3 3 5 3 5 3

µmulti penalizes the small
hierarchies w1 5 5 w2 w2 w1 w1

Table 2: Characteristics of the seven studied metrics

3.3 Experiments

In this section, we will study the performances of information loss metrics when used in a
k-anonymization process. We present the experimental protocol and then we analyze the
results obtained.

3.3.1 Experimental Protocol

We conduct experiments on two public and available online tables: the Adult data set1 [31]
and an extract of records from the voter list of Florida state2 [32]. In Adult data set, we con-
serve nine attributes (Age, Gender, Race, Marital status, Education, Native country, Work class,

1[Online; accessed on June 2019] https://archive.ics.uci.edu/ml/index.php
2[Online; accessed on May 2020] http://flvoters.com/
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Occupation and Salary). Adult data set contains 30162 complete records (we removed the
lines with missing values). In order to have two tables with the same number of records
and so to simplify comparisons between the two tables, we randomly extract 30162 records
from the Florida voter list. The extract is denoted florida 30162. In florida 30162, we con-
serve five attributes (Zipcode, Year of birth, Gender, Race and Affiliation). All table attributes
will be considered quasi-identifiers.

LetM = {Distortion, NCP, Total, LLM, NLLM, WLLM, WNLLM} be the set of information
loss metrics training that we are going to study.

For each table, for each metric ofM, we will use GAA (cf. Section 2.2) to k-anonymize the
table for 14 values of k between 3 and 15000. The range of k values is large and the greatest
of them are not realistic for a table of 30162 records. We tested these high values to analyze
the behavior of the algorithms and optimization strategies. The choice of a suitable value
for k is not easy and depends on the acceptance of the individuals whose data is made
public.

The strategy to give to GAA as Strat parameter has for condition:

C ∈ {C ′ ∈ C(T )− Cs : µ(Cs, C
′) = min

C′′∈C(T )−Cs

µ(Cs, C
′′)}.

This condition reflects the fact that C is chosen so that its generalization cost with Cs for
the metric µ is minimal.

In other words, for a table T , for a metric µ ∈ M, for an integer k, we will build a k-
anonymous version of T with GAA by guiding the mergings of equivalence classes to be
performed thanks to the metric µ.

To compare k-anonymous tables obtained by running GAA with the seven metrics, we use
three quality criteria.

Definition 9 (Quality criteria). LetA = {Q1, . . . , Qm, S} be a set ofm ∈ N∗ quasi-identifier-
identifiers attributes and one sensitive attribute. Let H = (H1, . . . ,Hm) be a m-tuple of
hierarchies ofQ = {Q1, . . . , Qm}with rj the root ofHj for all j ∈ J1,mK. Let T be a table on
(A,H) of cardinal n ∈ N∗. Set T = {E1, . . . , En} with Ei = (ei1, . . . , e

i
m, s

i) for all i ∈ J1, nK.
Let T gen = {F 1, . . . , Fn} be a generalized table on (T,H) with F i = (f i1, . . . , f

i
m, s

i) for all
i ∈ J1, nK. LetM be a set of information loss metrics.

Mean alteration onM The mean alteration of T gen onM is:

altM,T (T gen) =
1

|M|
×
∑
µ∈M

altµ,T (T gen).

Percentage of generalized values The percentage of generalized values of T gen according
to T is:

pgen,T (T gen) =
|{(i, j) ∈ J1, nK× J1,mK : lvl(f ij) > lvl(eij)}|

n×m
× 100.

Percentage of generalized values at the root (i.e. at the maximum level of the hierarchy)
The percentage of generalized values at the root of T gen according to T is:

proot,T (T gen) =
|{(i, j) ∈ J1, nK× J1,mK : f ij = rj}|

n×m
× 100.
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Figure 3: Experimental results on Adult data set
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Figure 4: Experimental results on florida 30162
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Mean alteration Percentage of
generalized values

Percentage of
generalized at the root

values
Metric NAUC Metric NAUC Metric NAUC
NLLM 56.07 NLLM 59.63 Distortion 48.35

Distortion 57.3 WNLLM 63.24 NLLM 49.74
WNLLM 59.29 Total 63.59 WNLLM 53.1

Total 60.06 Distortion 63.66 Total 54.96
NCP 64.65 NCP 66.28 NCP 59.64

WLLM 66.6 WLLM 80.06 LLM 66.93A
du

lt
da

ta
se

t

LLM 68.12 LLM 84.43 WLLM 68.03

Total 50.4 Total 49.75 Total 31.03
Distortion 53.96 Distortion 50.07 Distortion 41.32
WNLLM 54.33 WNLLM 51.43 WNLLM 42.59
NLLM 55.25 NLLM 52.92 NCP 42.85
NCP 56.13 NCP 54.4 NLLM 45.64
LLM 72.91 WLLM 99.4 WLLM 72.71flo

ri
da

30
16

2

WLLM 74.48 LLM 99.76 LLM 77.79

Table 3: NAUC for the seven metrics for mean alteration, percentage of generalized values
and percentage of generalized at the root values computed on [3, 2000] on both tables

Thus, for each k-anonymous table, we compute its mean alteration on M, its percent-
age of generalized values and its percentage of generalized values at the root. Results are
presented in Figures 3 and 4.

For each table, to have a representative value of the results, we compute for each metric
a mean value for each quality criterion. To do so, we use the following formula: for a
continuous function f on [a, b] ⊂ R, the mean value of f on [a, b] is 1

b−a
∫ b
a
f(x)dx. Thus, for

a metric and a quality criterion, we call Normalized Area Under Curve, abbreviated in NAUC,
of the metric for the criterion the mean value of the results for the criterion obtained by the
k-anonymous tables produced with GAA by using the metric for k ∈ [3, 15 000]. As our
three quality criteria are percentages to be minimized, the NAUC are also percentages and
if a metric has a low NAUC for a criterion, we say that this metric has good performance
for this criterion. Because metrics have a chaotic behavior for high values of k, we compute
the NAUC on [3, 2000]. Results are presented in Table 3.

3.3.2 Results Analysis

Results analysis will be done in two parts. The first part consists in comparing metrics
performance according to the three quality criteria. In the second part, we analyze the
effects of three characteristics of the metrics definitions on the performance of the metrics.

For mean alteration onM, we notice that NLLM has the best NAUC on Adult data set (cf.
line Adult data set and column Mean alteration of Table 3). For florida 30162, Total is the
best metric with its NAUC around 50% (cf. line florida 30162 and column Mean alteration
of Table 3). LLM and WLLM are the worst metrics for both tables for this criterion. On
florida 30162, LLM has a NAUC for mean alteration around 73% whereas NCP has a NAUC
around 56%.

For the percentage of generalized values, we notice in line Adult data set and column Per-
centage of generalized values of Table 3 that NLLM has the best NAUC on Adult data set.
The percentage of generalized values of the k-anonymous versions of Adult data set for
k ∈ [3, 2000] produced with NLLM is on average around 60%. Distortion, Total and WNLLM
have NAUC around 63% for the percentage of generalized values on Adult data set. LLM and
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WLLM are the worst for this criterion on Adult data set. It is the same report on florida 30162
(cf. line florida 30162 and column Percentage of generalized values of Table 3). The per-
centage of generalized values of the k-anonymous versions of florida 30162 for k ∈ [3, 2000]
produced with LLM and WLLM is more than 99% on average. This observation is visible
on Figure 4b: the curves of LLM and WLLM reach 100% from k = 250.

For the percentage of generalized values at the root, we observe the same results. LLM
and WLLM have the worst NAUC on both tables. On Adult data set (cf. line Adult data set
and column Percentage of generalized at the root values of Table 3), NLLM is among the
best metrics with its NAUC around 50%. On florida 30162 (cf. line florida 30162 and column
Percentage of generalized at the root values of Table 3), Total obtains a NAUC of 10 points
lower than the NAUC of the second best metric.

To conclude on this first point, LLM and WLLM obtained the worst results for the three
quality criteria in terms of NAUC computed in [3, 2000]. Regarding metrics with the best
results, NLLM seems to be the more interesting to use on Adult data set and Total achieves
to produce good k-anonymous versions of florida 30162 with regard to the three quality
criteria.

After the metrics presentation in Section 3.2, we listed some characteristics of the metrics
definitions. To define a metric, we gave a formula computing the weights to put in the
hierarchies edges. This formula can be break down in two phases: the node generalization
cost and weighting on the set of quasi-identifier attributes. We have identified three main
characteristics for the different metrics (see Table 2):

1. the node generalization cost depends on hierarchy height or hierarchy width: In-
creasing the cost based on the height of the hierarchy assumes that the more time a
data is generalized, the more its utility decreases (e.g. generalizing a “cat” to “felid”
is more precise than generalize it to “mammal”). But this assumption ignores the de-
tails of original data and the distribution of possible values. Indeed, it can be very
different to generalize a data in a set of two possibilities compared to generalizing it
in a set of several tens (for instance a hierarchy which contains the dog and the wolf
as only “canids” but the 40 species of felids grouped in a single generalization “fel-
idae”). Considering the width of the hierarchy attempts to take into account such a
situation.

2. weighting on the set of quasi-identifier attributes is w1, w2 or none: This weight-
ing is set to take into account the height differences between the hierarchies of the
quasi-identifier attributes in the calculation of generalization cost of a record. For
example, generalizing a cat to a felid, in a hierarchy of height 4 (cat→ felid→mam-
mal→ animal) represents 25% of the maximum level of generalization compared to
generalizing ”Male” to ”*”, i.e. a 100% generalization (total loss of information).

3. there is or not a normalization step in the node generalization cost computation: The
normalization step reduces the generalization costs of the different attributes to com-
mon values between 0 and 1. A proportion of the maximum score is considered
rather than a ”raw” score. This avoids favoring the generalization of one attribute
over another.

For each previous point, each metric ofM satisfies exactly one affirmation. For instance,
for NCP, the node generalization cost depends on hierarchy width (point 1) and has a nor-
malization step (point 3). Any weighting on the set of quasi-identifier attributes is used for
NCP (point 2).
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For each point, we will study if the differences in the metrics definitions have conse-
quences on the results obtained for the three quality criteria and for both tables. We focus
on the NAUC computed in [3, 2000] (cf. Table 3).

For the point 1, we seek to know if the way to compute the node generalization cost
influences the metrics performance. We distinguish two groups of metrics inM: those for
which node generalization cost depends on the hierarchy height (Distortion and Total) and
those for which the node generalization cost depends on the hierarchy width (NCP, LLM,
NLLM, WLLM and WNLLM). For Adult data set, for the three quality criteria (cf. line Adult
data set of Table 3), this characteristic seems to have no impact on metrics performance.
NLLM (computation on the hierarchy width) has the lowest NAUC on [3, 2000] for two
criteria and Distortion (computation on hierarchy height) has the lowest NAUC on [3, 2000]
for the last criterion. In contrast, for florida 30162, for the three criteria (cf. line florida 30162
of Table 3), Distortion and Total have the lowest NAUC on [3, 2000]. These are the only two
metrics in which the node generalization cost depends on the hierarchy height.

For the point 2, we study the impact of the application or not of a weighting on the set of
quasi-identifier attributes. We presented two weightings in Definition 8. The weighting
w1 is used in Distortion, WLLM and WNLLM (group w1). The weighting w2 is used in LLM
and NLLM (group w2). For NCP and Total, no weighting is used (group “no weighting”).
For both tables, for the three quality criteria, no group of metrics, based on the weighting,
obtains significantly better results than the others. For instance, for Adult data set, for mean
alteration (cf. line Adult data set and column Mean alteration of Table 3) and percentage of
generalized values (cf. line Adult data set and column Percentage of generalized values
of Table 3), NLLM and LLM have respectively the best and the worst NAUC on [3, 2000]
whereas the weighting w2 is used in both metrics. The application of a weighting on the
quasi-identifier attributes alone does not appear to be a determining factor in obtaining a
metric with good performance.

For the point 3, we study the effects of a normalization step in the computation of the
node generalization cost in metrics definitions on the metrics performance. For instance,
in the NCP definition, the number of leaves in the subtree rooted in the node is divided
by the total number of leaves in the hierarchy. In metrics definitions of M, either we do
a normalization step in the computation of the node generalization cost (Distortion, Total,
NCP, NLLM and WNLLM) or we do not (LLM and WLLM). For the three quality criteria
(cf. Table 3), LLM and WLLM have the highest NAUC on [3, 2000] for both tables. Gaps
with NAUC on [3, 2000] of other metrics are important (excepted for mean alteration on
Adult data set). For instance, we denote a gap of around 27 points between the NAUC of
WLLM and NLLM for the percentage of values generalized at the root. It seems so that a
normalization step in the computation of the node generalization cost greatly influences
the metric performance. This characteristic seems essential for the metric to produce good
quality k-anonymous tables according to the three quality criteria studied.

3.4 Summary

In this section, our purpose was to compare performance of information loss metrics when
they are used in a k-anonymization algorithm.

To do so, we defined in Section 3.1 an information loss metric on a set of generalization
hierarchies as a set of weights put on the edges of the hierarchies. With this definition,
we presented a modeling that permits to simplify the use of information loss metrics: we
defined costs matrices associated with a metric. Thanks to costs matrices, we explained the
alteration of a generalized table used to compare the quality of k-anonymous tables.
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Then, we got interested in several information metrics in Section 3.2. Distortion, NCP and
Total are metrics already defined in articles and LLM and three of its variants come from
our research.

Finally, in Section 3.3, we experimented on two public datasets to compare the perfor-
mance of the chosen metrics during a k-anonymization process. We used three quality
criteria to compare the quality of the obtained k-anonymous tables. We note that the met-
rics with best performance are not the same in the two tables studied. On Adult data set,
NLLM is among the best metrics for the three criteria. On florida 30162, Total produces the
best k-anonymous tables in view of the three quality criteria. Regarding the worst metrics,
our experiments show that metrics without a normalization step on the computation of
the node generalization cost do not achieve to produce good quality k-anonymous tables.
Indeed, metrics that do not do this normalization step, LLM and WLLM, obtain the worst
results for the three quality criteria on both tables.

We have seen that the metric used to produce the best k-anonymous tables is not the same
on the two tables. To continue this work, it would be interesting to look for criteria based
on the characteristics of the table or on the shape of the hierarchies and allowing to choose
the best metric to use to k-anonymize a table.

4 Optimization Strategies

In Section 3, we k-anonymize tables containing exclusively quasi-identifier attributes. But,
a weakness of k-anonymity is that a lack of diversity could appear in the sensitive val-
ues in equivalence classes of k-anonymous table and potentially disclose information [22].
As k-anonymity does not take into account sensitive attributes, nothing guarantees that
equivalence classes of a k-anonymous table will not present very unbalanced sensitive val-
ues distributions. Intituively, the greater the requested k value is, the more important the
probablity of a better sensitive values distribution in the equivalence classes is. It is there-
fore necessary to define what better distribution of sensitive values means. We study here
l-diversity [22] and t-closeness [19], two anonymization models controlling sensitive values
distribution in equivalence classes of a table.

Our purpose is still to produce k-anonymous tables. In this section, we develop new
strategies, each corresponding to a way to guide equivalence classes mergings in GAA (cf.
Section 2.2). Thanks to these strategies mixing generalization cost for a metric, l-diversity
and t-closeness, we hope that produced k-anonymous tables have other privacy guarantees
than the one brought by k-anonymity.

In the rest of this section, we will present the definitions of l-diversity and t-closeness and
two measures to evaluate levels of l-diversity and t-closeness of a table in Section 4.1. Then,
we will detail seven strategies to use in the anonymization algorithm GAA to produce good
quality k-anonymous tables in terms of l-diversity and t-closeness in Section 4.2. Finally,
we will present our experiments and the results obtained in Section 4.3.

4.1 l-diversity, t-closeness and Measures

In this section, we consider a set A = {Q1, . . . , Qm, S} of m ∈ N∗ quasi-identifier attributes
and one sensitive attribute, a m-tuple H = (H1, . . . ,Hm) of generalization hierarchies of
Q = {Q1, . . . , Qm} and a table T on (A,H) of cardinal n ∈ N∗.

Definition of l-diversity was first given by Machanavajjhala et al. in [22]. It is an anonymi-
zation model that guarantees that, in each equivalence class of a table, a set of sensitive
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values is well represented. An equivalence class C is well represented by l sensitive values
if there exists at least l ≥ 2 sensitive values in C such that the l most frequent values in C
have mostly the same frequency of occurrence.

In other words, the idea of l-diversity is to guarantee that, in each equivalence class, there
are at least l distinct sensivite values present in sufficient quantity. Thus, although an ad-
versary knows the equivalence class of the anonymous table in which is an individual,
probability to associate a sensitive value to the individual is low. It avoids situations where
belonging to an equivalence class gives strong clues about the sensitive values.

In our work, we use the entropy l-diversity [22].

Definition 10 (Entropy l-diversity). Let l ∈ N∗. T is entropic l-diverse if, for each equivalence
class C of T , we have:

−
∑
s∈SC

pT (s, C) ln(pT (s, C)) ≥ ln(l),

with pT (s, C) := 1
|C| |{E = (e1, . . . , er, sE) ∈ C : sE = s}| the proportion of sensitive value

s in records of C and SC = {s ∈ S : ∃E = (e1, . . . , em, sE) ∈ C : sE = s} the set of distinct
sensitive values in C.

We use the previous definition to introduce a measure of l-diversity of a table.

Definition 11 (l-diversity measure). We define the application ldiv,T : C(T ) → R which
associates with each equivalence class of T :

ldiv,T : C(T ) −→ R

C 7−→ exp

(
−
∑
s∈SC

pT (s, C) ln (pT (s, C))

)
with SC = {s ∈ S : ∃E = (e1, . . . , em, sE) ∈ C : sE = s}.

We define the application ldiv : T n(A,H) → R which associates with each table on (A,H) its
l-diversity value:

ldiv : T n(A,H) −→ R
T 7−→ min

C∈C(T )
ldiv,T (C) .

Defined by Li et al. in [19], t-closeness requests sensitive values distribution in each equiv-
alence class to be not further than a threshold t from sensitive values distribution in the
whole table. We say that the equivalence class has a t-closeness. The knowledge of sensi-
tive values distribution in the whole table is a prerequisite to achieve t-closeness.

In other words, the idea of t-closeness is to guarantee that, in each equivalence class,
sensitive values distribution is approximatively similar to sensitive values distribution in
the whole table. Thus, although an adversary knows which equivalence class an individual
belongs to, probability of finding the sensitive value of the individual is the same as in the
whole table.

We use here the definition of t-closeness with norm 1.

Definition 12 (Associated distance to norm 1 on Rn). Let n ∈ N∗.
Norm 1 on Rn is:

‖.‖1 : Rn −→ R
(x1, . . . , xn) 7−→

∑n
i=1 |xi|

.

Associated distance to norm 1 on Rn is:

d‖.‖1 : Rn × Rn −→ R
(x, y) 7−→ ‖x− y‖1

.
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Definition 13 (t-closeness of a table). Set S = {s1, . . . , sq} for q ∈ N∗. Let C be an equiva-
lence class of T . Let t ∈ [0, 1].

Set P (S, T ) = (p(s1, T ), . . . , p(sq, T )) the vector of sensitive values distribution of S in T
and PT (S,C) = (pT (s1, C), . . . , pT (sq, C)) the vector of sensitive values distribution of S in
C.
C has a t-closeness for d‖.‖1 if:

d‖.‖1(PT (S,C), P (S, T )) ≤ t.

T has a t-closeness for d‖.‖1 if each equivalence class of T has a t-closeness for d‖.‖1 .

We use the previous definition to introduce a measure of t-closeness of a table.

Definition 14 (t-closeness measure). We define the application tclo,T : C(T ) → R which
associates with each equivalence class of T :

tclo,T : C(T ) −→ R
C 7−→ d‖.‖1(PT (S,C), P (S, T ))

,

with P (S, T ) = (p(s1, T ), . . . , p(sq, T )) and PT (S,C) = (pT (s1, C), . . . , pT (sq, C)).
We define the application tclo : T n(A,H) → R which associates with each table on (A,H) its

t-closeness value for d‖.‖1 :

tclo : T n(A,H) −→ R
T 7−→ max

C∈C(T )
tclo,T (C) .

4.2 Optimization Strategies

In this section, we present seven optimization strategies mixing generalization cost for an
information loss metric, value of l-diversity and value of t-closeness to use in GAA as Strat
parameter. These strategies give conditions of selection of the equivalence class C to merge
with Cs at each round of GAA.

Each strategy aims to optimize one or several of the following measures:

• generalization cost represented by µ with µ an information loss metric defined in
Section 3.2

• l-diversity value represented by ldiv defined in Section 4.1

• t-closeness value represented by tclo defined in Section 4.1

Two approaches are possible:

1. two measures are successively considered. The selected merging is chosen among
the mergings optimizing the second measure among those optimizing the first mea-
sure (e.g. selection of the best mergings minimizing the generalization cost and then,
among these mergings, selection of the one which maximizes the l-diversity)

2. the selected merging is chosen among those optimizing two measures in the same
time
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In the first approach, we evaluate the merging of Cs with all other equivalence classes
according to a first measure then, among classes that obtain the best result for the first
measure, we choose a class such that the merging with Cs gives the best result for the
second measure.

In the second approach, the aim is to optimize equivalence classes mergings according
to two measures simultaneously. To do so, we define two applications: one mixing gen-
eralization cost and l-diversity value, the other mixing generalization cost and t-closeness
value (cf. Definition 15). Recall that generalization cost and t-closeness value are to be
minimized in a table and l-diversity value is to be maximized.

For Definitions 15 to 17, we consider a setA = {Q1, . . . , Qm, S} of m ∈ N∗ quasi-identifier
attributes and one sensitive attribute, a m-tuple H = (H1, . . . ,Hm) of hierarchies of Q =
{Q1, . . . , Qm}, a table T on (A,H) of cardinal n ∈ N∗ with C(T ) its set of equivalence classes
and a metric µ onH.

Definition 15 (Generalization cost, l-diversity value and t-closeness value). We define the
application µldiv : C(T ) × C(T ) → R which associates with each couple of equivalence
classes of T their generalization cost for µ divided by the l-diversity value of the general-
ized table in which both classes are merged:

µldiv : C(T )× C(T ) −→ R
(C,C ′) 7−→ µ(C,C′)

ldiv(genT(C∪C′))
.

We define the application µtclo : C(T ) × C(T ) → R which associates with each couple of
equivalence classes of T their generalization cost for µ multiplied by the t-closeness value
of the generalized table in which both classes are merged:

µtclo : C(T )× C(T ) −→ R
(C,C ′) 7−→ µ(C,C ′)× tclo (genT (C ∪ C ′)) .

To minimize µldiv , we can minimize µ or maximize l-diversity value. The idea is to pro-
pose a tradeoff between generalization cost for µ and l-diversity value. In other words, we
allow a generalization cost for µ x times more important if the merging has a l-diversity
value of x.

To minimize µtclo , we can minimize µ or minimize t-closeness value. The idea is to pro-
pose a tradeoff between generalization cost for µ and t-closeness value. In other words, we
allow a generalization cost of x if the merging has a t-closeness value of 1

x .
To lighten the descriptions of optimization strategies, we define subsets of equivalence

classes respecting certain properties.

Definition 16 (Subsets of equivalence classes). Let C ∈ C(T ). We define five subsets of
C(T ) depending on C.

The set of equivalence classes such that their merging withC minimizes the generalization
cost for µ is:

∆µ (C, C(T )) = {C ′ ∈ C(T )− C : µ(C,C ′) = min
C′′∈C(T )−C

µ(C,C ′′)}.

The set of equivalence classes such that their merging with C maximizes the l-diversity
value is:

∆ldiv (C, C(T )) = {C ′ ∈ C(T )− C : ldiv (genT (C ∪ C ′)) = max
C′′∈C(T )−C

ldiv (genT (C ∪ C ′′))}.
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The set of equivalence classes such that their merging with C minimizes the t-closeness
value is:

∆tclo (C, C(T )) = {C ′ ∈ C(T )− C : tclo (genT (C ∪ C ′)) = min
C′′∈C(T )−C

tclo (genT (C ∪ C ′′))}.

The set of equivalence classes such that their merging with C minimizes µldiv is:

∆µldiv
(C, C(T )) = {C ′ ∈ C(T )− C : µldiv (C,C ′) = min

C′′∈C(T )−C
µldiv (C,C ′′)}.

The set of equivalence classes such that their merging with C minimizes µtclo is:

∆µtclo
(C, C(T )) = {C ′ ∈ C(T )− C : µtclo (C,C ′) = min

C′′∈C(T )−C
µtclo (C,C ′′)}.

We define the seven following strategies by the conditions of selection of the equivalence
class C to merge with Cs in GAA.

Definition 17 (Optimization strategies). Let Φ be an anonymization model. Let Cs be the
chosen equivalence class of minimum size in a round of GAA(A,H, T,Φ,Strat).

Strategy 1 (S1) C is chosen among the classes such that their merging with Cs minimizes
the generalization cost for µ: C ∈ ∆µ (Cs, C(T )).

Strategy 2 (S2) C is chosen among the classes such that their merging with Cs maximizes
the l-diversity value among those such that their merging with Cs minimizes the
generalization cost for µ: C ∈ ∆ldiv (Cs,∆µ (Cs, C(T ))).

Strategy 3 (S3) C is chosen among the classes such that their merging with Cs minimizes
the generalization cost for µ among those such that their merging with Cs maximizes
the l-diversity value: C ∈ ∆µ (Cs,∆ldiv (Cs, C(T ))).

Strategy 4 (S4) C is chosen among the classes such that their merging with Cs minimizes
the generalization cost for µ divided by the l-diversity value: C ∈ ∆µldiv

(Cs, C(T )).

Strategy 5 (S5) C is chosen among the classes such that their merging with Cs minimizes
the t-closeness value among those such that their merging with Cs minimizes the
generalization cost for µ: C ∈ ∆tclo (Cs,∆µ (Cs, C(T ))).

Strategy 6 (S6) C is chosen among the classes such that their merging with Cs minimizes
the generalization cost for µ among those such that their merging with Cs minimizes
the t-closeness value: C ∈ ∆µ (Cs,∆tclo (Cs, C(T ))).

Strategy 7 (S7) C is chosen among the classes such that their merging with Cs minimizes
the generalization cost for µ multiplied by the t-closeness value:
C ∈ ∆µtclo

(Cs, C(T )).

Strategy 1, in which generalization cost only is taken into account, will be a repository
for the measures to optimize. Indeed, for l-diversity and t-closeness values, the mergings
choices made by this strategy can be considered random. For the generalization cost for µ,
we hope that k-anonymous tables produced using Strategy 1 have good results. Strategies 2
to 4 optimize l-diversity and generalization cost for µ. Strategies 5 to 7 optimize t-closeness
and generalization cost for µ.
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4.3 Experiments

In this section, we will study the performance of optimization strategies when used in a
k-anonymization process. For this, we will return to the experimental protocol set up and
we will analyze the results obtained.

4.3.1 Experimental Protocol

As in Section 3.3, we choose Adult data set and florida 30162 as experimental tables.
We do two kind of experiments depending on the sensitive attribute considered in the

table:

Real data the sensitive attribute is an attribute of the original table

Simulated data the sensitive attribute is a new column added to the table and following a
predeterminated distribution

For experiments on real data, we consider two configurations of Adult data set in which
Age and Marital status are the sensitive attributes and one configuration of florida 30162 in
which Affiliation is the sensitive attribute. We denote these tables by AdultAge, AdultMar and
florida 30162Aff .

For experiments on simulated data, we create seven sensitive attributes with 5, 10, 20,
50, 100, 200 or 500 possible values. Then, for each attribute, we generate sets of 30162
values whose distribution is Equivalent, Geometric or Standard Normal. Finally, we add
these sets as new columns to Adult data set and florida 30162. We obtain 21 configurations
for each table in which the sensitive attribute is one of the new attribute and the original
attributes are quasi-identifier.

In both cases, we compare k-anonymous tables with three measures:

• alteration (to be minimized)

• l-diversity value (to be maximized)

• t-closeness value (to be minimized)

For certain strategies and for the alteration measure, we have to specify an information
loss metric. As we saw in Section 3, the metrics with the best performance on Adult data
set and florida 30162 are NLLM and Total respectively. We therefore carried out our two
kind of experiments using NLLM and Total. We note for both types of experiments that the
behaviors of the strategies are slightly equivalent when we use NLLM and when we use
Total. Thus, the choice of metric does not seem to influence the performance of optimization
strategies when they are used in a k-anonymization process. In the following, we will only
comment the results obtained using the NLLM metric.

4.3.2 On real Data

Firstly, we study two strategies that are not in our seven strategies: a strategy in which
only l-diversity value is to be optimized and a strategy in which only t-closeness value
is to be optimized. For both strategies, generalization cost is not taken into account. The
aim is to justify the introduction of strategies mixing l-diversity and t-closeness values and
generalization cost.
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Denote by Strategy ldiv (Strategy tclo) the strategy only optimizing on l-diversity value
(t-closeness value).

For both strategies, we produce with GAA k-anonymous versions of the tables AdultAge,
AdultMar and florida 30162Aff for k ∈ {3, 4, 5, 10, 20, 100, 250, 500, 1000, 2000, 5000, 10000,
15000}.

For Strategy ldiv , we compute alteration for NLLM and l-diversity value of each k-anony-
mous table. Figures 5a, 6a and 7a present the results on the three tables. Each graph has two
curves: the purple triangle curve represents alteration for NLLM of the k-anonymous table
according to k and the red square curve represents l-diversity value of the k-anonymous
table according to k. Recall that l-diversity value is to be maximized.

In order to analyze these graphs, we compute maximum l-diversity value for each sensi-
tive attribute studied. This value corresponds to the case in which all the records of the table
are in the same equivalence class. We obtain ldiv

(
Adult∗Age

)
' 50.03, ldiv

(
Adult∗Mar

)
' 3.53

and ldiv
(

florida 30162∗Aff

)
' 3.16.

For AdultMar and florida 30162Aff , we note in Figures 6a and 7a that l-diversity value of
k-anonymous tables is quickly equal to the maximum l-diversity value: for AdultMar, the
maximum l-diversity value is reached from the 50-anonymous table and for florida 30162Aff ,
it is reached from the 10-anonymous table. For AdultAge, the curve grows slower but the
maximum l-diversity value is reached from the 500-anonymous table.

Nevertheless, alteration for NLLM of k-anonymous tables is high from the first k values.
For AdultMar, alteration of the 3-anonymous table is close to 60% and for florida 30162Aff ,
alteration of the 3-anonymous table is higher than 97%. To compare, if we use in GAA
the Strategy 1 guiding mergings only with generalization cost, the 3-anonymous version
of AdultMar produced has an alteration around 2.77% and the 3-anonymous version of
florida 30162Aff produced has an alteration around 1.23%.

Let’s study results obtained with Strategy tclo. For this strategy, we compute the alteration
for NLLM and t-closeness value of each k-anonymous table. Figures 5b, 6b and 7b present
the results on the three tables. Each graph has two curves: the purple triangle curve repre-
sents alteration for NLLM of the k-anonymous table according to k and the green diamond
curve represents t-closeness value of the k-anonymous table according to k. Recall that t-
closeness value is between 0 and 1 and is to be minimized in a table. Purple triangle curve
is the alteration depending on the requested value of k (read on left y axis); red square curve
is the l-diversity value depending on the requested value of k (read on right y axis); green
diamonds are t-closeness values depending on the requested value of k (read on right y
axis).

For AdultMar and florida 30162Aff , we note in Figures 6b and 7b that t-closeness value is
quickly close to 0: for AdultMar, t-closeness value is close to 0 from the 50-anonymous table
and for florida 30162Aff , t-closeness value is 0 from the 10-anonymous table. For AdultAge,
the curve decreases slower but t-closeness value is 0 from the 500-anonymous table.

Nevertheless, alteration for NLLM of k-anonymous tables is high from the first k values.
For AdultMar, alteration of the 3-anonymous table is close to 60% and for florida 30162Aff ,
alteration of the 3-anonymous table is close to 97%.

To conclude on this first experiment, although l-diversity and t-closeness values are quick-
ly optimized in the k-anonymous tables when we use Strategies ldiv and tclo, this implies
a high alteration of the k-anonymous tables from the first k values. It is 100% when l-
diversity and t-closeness values are optimal in the k-anonymous table.
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(a) Optimization of l-diversity only
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(b) Optimization of t-closeness only

Figure 5: Optimization on sensitive attribute Age of Adult data set- read the right y axis
for l-diversity (squares) or t-closeness (diamonds) values, read the left y axis for alteration
values (triangles)
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(a) Optimization of l-diversity only
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(b) Optimization of t-closeness only

Figure 6: Optimization on sensitive attribute Marital status of Adult data set- read the right
y axis for l-diversity (squares) or t-closeness (diamonds) values, read the left y axis for
alteration values (triangles)

Thus, results obtained for Strategies ldiv and tclo suggest that an optimization taking into
account only sensitive values distribution do not permit to maintain a reasonable alteration
in k-anonymous tables. In general case, it is necessary to guide equivalence classes merg-
ings in GAA considering both l-diversity value or t-closeness value and generalization cost.

Secondly, we study the performances of the seven strategies introduced in Section 4.2
when sensitive attribute considererd is an attribute of the table. Consider again the tables
AdultAge, AdultMar and florida 30162Aff .

For each table, for each strategy, we apply GAA using the strategy on the table for each
k ∈ {3, 4, 5, 10, 20, 100, 250, 500, 1000, 2000, 5000, 10 000, 15 000}. For each k-anonymous ta-
ble produced, we compute its alteration for NLLM, its l-diversity value and its t-closeness
value.

Figures 8, 9 and 10 present results for the three measures on the three tables (see Fig-
ures 11, 12 and 13 for results obtained with the Total metric). Each graph has seven curves
corresponding to the seven strategies studied.
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(a) Optimization of l-diversity only
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(b) Optimization of t-closeness only

Figure 7: Optimization on sensitive attribute Affiliation of florida 30162- read the right y axis
for l-diversity (squares) or t-closeness (diamonds) values, read the left y axis for alteration
values (triangles)
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(b) l-diversity value (ldiv)
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(c) t-closeness value (tclo)

Figure 8: Alteration for NLLM, l-diversity value and t-closeness value of k-anonymous ver-
sions of Adult data set with Age as sensitive attribute produced using the seven optimization
strategies
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(b) l-diversity value (ldiv)
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(c) t-closeness value (tclo)

Figure 9: Alteration for NLLM, l-diversity value and t-closeness value of k-anonymous
versions of Adult data set with Marital status as sensitive attribute produced using the seven
optimization strategies
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(b) l-diversity value (ldiv)
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(c) t-closeness value (tclo)

Figure 10: Alteration for NLLM, l-diversity value and t-closeness value of k-anonymous
versions of florida 30162 with Affiliation as sensitive attribute produced using the seven
optimization strategies
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Figure 11: Alteration for Total, l-diversity value and t-closeness value of k-anonymous ver-
sions of Adult data set with Age as sensitive attribute produced using the seven optimization
strategies
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(b) l-diversity value (ldiv)

3 4 5 10 20 50 10
0

25
0

50
0

10
00

20
00

50
00

10
00

0

15
00

0

0.0

0.2

0.4

0.6

0.8

1.0 ●

● ●

●

●

● ● ● ● ●
● ● ● ●

t−
cl

os
en

es
s 

va
lu

e

Requested k        

●

S1
S2
S3
S4
S5
S6
S7

(c) t-closeness value (tclo)

Figure 12: Alteration for Total, l-diversity value and t-closeness value of k-anonymous ver-
sions of Adult data set with Marital status as sensitive attribute produced using the seven
optimization strategies
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Figure 13: Alteration for Total, l-diversity value and t-closeness value of k-anonymous ver-
sions of florida 30162 with Affiliation as sensitive attribute produced using the seven opti-
mization strategies

For each table, to have a representative value of the results, we compute for each strategy
a mean value for each measure. To do so, we use the following formula: for a continuous
function f on [a, b] ⊂ R, the mean value of f on [a, b] is 1

b−a
∫ b
a
f(x)dx. For each table, for

each strategy, for each measure, we compute a mean value of the results for this measure
obtained by the k-anonymous versions of this table produced with GAA using this strategy.

Nevertheless, by computing a mean value of the results for a measure, it is not easy to
compare the results obtained by the strategies on two different tables. Instead of a mean
value, we associate to each strategy a percentage for each measure and for each table. For
each table, for each strategy, for each measure, the percentage obtained is called NAUC of
the strategy for the measure on the table.

Alteration is already expressed in percentage. So, for each table, for each strategy and for
each measure, NAUC of the strategy for the measure on the table is the mean value of the
curve. For t-closeness value, we multiply the mean value by 100 to obtain a percentage. For
l-diversity value, we take the percentage of the mean value over the maximum l-diversity
value.

Table 4 presents the NAUC computed on [3, 15 000] of the seven strategies for the three
measures and the three tables (see Table 5 for results obtained with the Total metric).

We now study the results for the three measures.
For alteration for NLLM (cf. column Alteration for NLLM of Table 4), we observe similar

results for the three tables. Strategies 1 (optimization on generalization cost), 2 (optimiza-
tion on generalization cost then on l-diversity value) and 4 (optimization on generalization
cost divided by l-diversity value) have the best NAUC for alteration ; Strategies 3 (optimiza-
tion on l-diversity value then on generalization cost), 5 (optimization on generalization cost
then on t-closeness value) and 6 (optimization on t-closeness value then on generalization
cost) have the worst NAUC for alteration ; Strategy 7 (optimization on generalization cost
multiplied by t-closeness value) has an intermediate NAUC for alteration. For instance, on
florida 30162Aff , we observe in line florida 30162Aff and column Alteration for NLLM of Ta-
ble 4 that Strategies 1, 2 and 4 have a NAUC for alteration around 72%, Strategies 3, 5 and
6 have a NAUC for alteration greater than 90% and Strategy 7 has a NAUC for alteration
around 80%.

We conclude that k-anonymous tables produced using Strategies 3, 5 and 6 are more al-
tered on average than k-anonymous tables produced using Strategies 1, 2 and 4. This ob-
servation is confirmed by the shape of the curves in graphs of Figures 8a, 9a and 10a.
Moreover, Strategy 5 has a NAUC for alteration greater than 99% for the three tables. This
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Alteration for NLLM l-diversity value t-closeness value
Strategy NAUC Strategy NAUC Strategy NAUC

4 69.71 5 98.56 5 1.36
2 70.07 6 96.29 6 4.65
1 71.19 3 94.9 3 7.15
7 79.46 7 90.41 7 12.14
3 88.02 4 86.65 4 17.44
6 89.77 1 83.35 1 17.63

A
du

lt A
ge

5 99.6 2 82.22 2 20.13

4 72.92 5 97.85 5 1.2
2 73.37 7 94.01 6 3.7
1 76.58 6 93.85 7 4.95
7 83.35 3 89.46 3 9.4
3 90.43 1 73.97 1 20.69
6 92.45 2 72.64 4 24.48

A
du

lt M
ar

5 99.28 4 66.77 2 24.99

2 72.71 5 99.98 5 0.02
1 72.72 3 98.74 6 3.06
4 72.79 6 98.68 3 3.1
7 80.34 7 97.43 7 4.93
3 90.24 2 86.65 2 15.98
6 90.89 1 86.64 1 15.98flo

ri
da

30
16

2 A
ff

5 100.0 4 86.6 4 16.01

Table 4: NAUC for the seven strategies for alteration for NLLM, l-diversity value and t-
closeness value computed on [3, 15000] on the three tables

Alteration for Total l-diversity value t-closeness value
Strategy NAUC Strategy NAUC Strategy NAUC

2 79.97 5 98.56 5 1.36
7 83.9 3 95.71 3 5.18
1 84.51 6 95.17 6 6.22
4 85.93 7 90.61 7 11.47
3 90.87 4 88.6 4 13.59
6 92.42 1 82.16 1 17.88

A
du

lt A
ge

5 99.6 2 81.99 2 20.6

1 78.39 5 99.16 5 0.43
4 78.96 6 96.4 7 2.45
2 83.96 3 96.01 6 3.8
7 90.13 7 95.98 3 6.37
6 92.93 4 82.25 4 13.24
3 93.26 2 78.25 2 17.12

A
du

lt M
ar

5 99.83 1 73.78 1 18.24

4 67.55 5 99.98 5 0.02
1 67.86 3 98.64 6 2.37
2 69.51 6 98.62 3 3.77
7 82.07 7 97.14 7 4.63
3 89.54 1 88.63 1 15.09
6 91.3 2 88.59 2 15.2flo

ri
da

30
16

2 A
ff

5 100.0 4 87.76 4 15.82

Table 5: NAUC for the seven strategies for alteration for Total, l-diversity value and t-
closeness value computed on [3, 15000] on the three tables
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strategy does not seem suitable for maintaining reasonable alteration in k-anonymous ta-
bles.

For l-diversity value (cf. column l-diversity value of Table 4) and t-closeness value (cf.
column t-closeness value of Table 4), we also observe similar results on the three tables.
Recall that l-diversity value is to be maximized and t-closeness value is to be minimized.

Strategy 5 has much better NAUC for l-diversity and t-closeness values than the other
strategies. For instance, on florida 30162Aff , the NAUC of Strategy 5 for l-diversity value is
99.98% and its NAUC for t-closeness value is around 0.02%. It means that k-anonymous
tables produced using Strategy 5 almost all have optimal l-diversity and t-closeness values.
This observation is confirmed by the shape of the curves in graphs of Figures 10b and
10c: we observe that optimal l-diversity and t-closeness values are reached from the 10-
anonymous table.

Strategies 1, 2 and 4 have the worst NAUC for l-diversity and t-closeness values on the
three tables. However, their NAUC for l-diversity value are greater than 66% and their
NAUC for t-closeness value are lower than 25%.

To conlude on experiments on real data, we first studied two strategies which only take
into account l-diversity value (Strategy ldiv) or t-closeness value (Strategy tclo). Results ob-
tained on three tables showed that k-anonymous tables produced using these strategies in
GAA have optimal l-diversity and t-closeness values for a large range of k values. However,
alteration of k-anonymous tables is high even for small k values. If data were published in
this way, they would be of no use. Using strategies mixing l-diversity value or t-closeness
value and generalization cost is so justified.

Then, we evaluated the seven strategies presented in Section 4.2 on three tables. Results,
similar for the three tables, showed that Strategies 1, 2 and 4 are the best strategies to
limit alteration in k-anonymous tables. However, these strategies have the worst results
for l-diversity and t-closeness values. Strategy 5 is equivalent to Strategies ldiv and tclo:
l-diversity and t-closeness values are quickly optimized to the detriment of very high al-
teration from the first k values.

Strategies 3 and 6 do not achieve to limit alteration in k-anonymous tables but maintain
good levels of l-diversity and t-closeness in the k-anonymous tables.

Strategy 7 has no significant advantage over other strategies: it obtains intermediate re-
sults for the three measures.

4.3.3 On simulated Data

In this section, we study the performances of the seven strategies when sensitive attributes
are simulated values added to the table following a predeterminated distribution. We con-
sider 42 tables as explained in Section 4.3: 21 configurations of Adult data set and 21 config-
urations of florida 30162.

For each configuration, for each strategy, we apply GAA using the strategy on the config-
uration for each k ∈ {3, 4, 5, 10, 20, 100, 250, 500, 1000, 2000, 5000}. For each k-anonymous
table produced, we compute alteration for NLLM, l-diversity value and t-closeness value.
As in experiments on real data, for each configuration, for each measure, for each strategy,
we compute the NAUC on [3, 5000] of the strategy for the measure on the configuration.

In order to study NAUC, for each configuration, for each measure, we make a ranking of
the strategies according to their NAUC for the measure on the configuration. The strategy
that obtained the best NAUC for the measure for the configuration is ranked 1 and the color
associated with it is green. The strategy that obtained the worst NAUC for the measure for
the configuration is ranked 7 and the color associated to it is red.
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Equivalent distribution Geometric distribution Standard Normal distribution
Mean

5 10 20 50 100 200 500 5 10 20 50 100 200 500 5 10 20 50 100 200 500

Strategy 1
Alteration for NLLM 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 51.974

l-diversity value 6 6 6 7 4 7 6 6 6 4 5 3 4 6 6 7 7 7 5 4 6 93.829
t-closeness value 6 7 6 6 4 7 4 7 6 7 4 7 7 6 7 7 7 7 6 6 6 9.628

Strategy 2
Alteration for NLLM 3 2 2 3 3 2 3 2 3 3 4 3 3 1 1 2 3 4 3 3 2 55.282

l-diversity value 7 7 5 6 7 5 5 5 5 5 7 7 6 5 5 6 6 6 7 6 7 93.775
t-closeness value 7 6 5 7 6 5 6 6 5 6 6 5 5 5 6 6 5 5 7 7 7 9.619

Strategy 3
Alteration for NLLM 5 5 5 5 5 6 5 6 6 6 6 6 6 6 6 5 6 6 5 5 5 77.286

l-diversity value 4 2 2 2 3 2 4 4 2 2 2 2 2 3 3 2 2 2 6 2 4 94.86
t-closeness value 3 2 2 2 3 2 5 3 3 2 2 2 2 2 3 3 3 2 3 2 4 8.031

Strategy 4
Alteration for NLLM 2 3 3 2 2 3 6 3 2 2 2 4 4 4 3 3 2 2 2 2 4 56.619

l-diversity value 5 5 4 5 5 4 2 7 7 7 6 4 3 4 7 5 5 5 4 3 2 94.189
t-closeness value 5 5 7 5 7 4 2 5 7 5 7 4 3 7 5 5 6 6 4 3 3 9.191

Strategy 5
Alteration for NLLM 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 99.938

l-diversity value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 99.528
t-closeness value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.455

Strategy 6
Alteration for NLLM 4 4 6 6 6 5 4 5 5 5 5 5 5 5 5 6 5 5 6 6 6 75.462

l-diversity value 3 3 7 3 2 3 3 2 3 6 3 6 7 7 2 3 3 3 2 7 3 94.186
t-closeness value 4 3 4 3 2 3 3 2 2 3 3 3 6 4 2 2 2 3 5 4 2 8.29

Strategy 7
Alteration for NLLM 6 6 4 4 4 4 2 4 4 4 3 2 2 3 4 4 4 3 4 4 3 63.345

l-diversity value 2 4 3 4 6 6 7 3 4 3 4 5 5 2 4 4 4 4 3 5 5 94.168
t-closeness value 2 4 3 4 5 6 7 4 4 4 5 6 4 3 4 4 4 4 2 5 5 8.887

(a) For Adult data set
Equivalent distribution Geometric distribution Standard Normal distribution

Mean
5 10 20 50 100 200 500 5 10 20 50 100 200 500 5 10 20 50 100 200 500

Strategy 1
Alteration for NLLM 3 3 4 4 4 5 6 4 4 4 4 4 5 5 4 4 4 4 4 4 6 61.146

l-diversity value 6 6 6 4 5 3 4 6 5 3 4 5 4 2 6 5 6 3 4 3 2 94.317
t-closeness value 6 4 4 4 2 3 2 4 4 4 3 4 3 2 6 4 4 3 2 2 2 8.001

Strategy 2
Alteration for NLLM 2 1 1 3 2 1 2 2 3 2 2 1 1 1 2 2 1 1 2 2 1 50.17

l-diversity value 7 7 7 7 6 7 7 5 6 6 6 4 6 6 5 6 7 7 7 7 7 93.7
t-closeness value 7 7 7 7 6 7 6 7 6 5 7 5 5 7 4 6 7 7 7 7 7 9.635

Strategy 3
Alteration for NLLM 6 4 5 5 5 4 5 5 6 6 6 6 6 4 6 6 6 6 5 6 3 73.326

l-diversity value 2 2 2 2 3 5 2 2 2 2 2 3 2 3 2 2 2 2 2 2 4 94.822
t-closeness value 3 2 2 2 5 5 3 5 2 3 2 2 2 4 3 2 2 2 3 4 5 8.058

Strategy 4
Alteration for NLLM 1 2 2 2 1 2 3 1 2 3 3 2 2 3 1 3 2 3 1 1 4 51.005

l-diversity value 5 5 5 5 7 4 5 7 4 5 5 6 5 5 7 7 5 6 5 6 6 93.897
t-closeness value 5 6 6 6 7 4 5 6 5 6 5 7 6 5 7 7 6 6 5 6 6 9.349

Strategy 5
Alteration for NLLM 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 99.999

l-diversity value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 99.927
t-closeness value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.073

Strategy 6
Alteration for NLLM 5 5 6 6 6 6 4 6 5 5 5 5 4 6 5 5 5 5 6 5 5 71.669

l-diversity value 4 4 3 3 2 2 3 3 7 4 7 7 3 4 3 3 3 4 3 4 3 94.224
t-closeness value 4 5 3 3 3 2 4 2 7 2 4 6 4 3 2 3 5 4 4 5 3 8.419

Strategy 7
Alteration for NLLM 4 6 3 1 3 3 1 3 1 1 1 3 3 2 3 1 3 2 3 3 2 55.592

l-diversity value 3 3 4 6 4 6 6 4 3 7 3 2 7 7 4 4 4 5 6 5 5 93.976
t-closeness value 2 3 5 5 4 6 7 3 3 7 6 3 7 6 5 5 3 5 6 3 4 9.031

(b) For florida 30162

Figure 14: Strategies ranking according to their NAUC for alteration for NLLM, l-diversity
value and t-closeness value on 42 tables

TRANSACTIONS ON DATA PRIVACY 16 (2023)



Optimizing Privacy and Data Utility: Metrics and Strategies 183

Equivalent distribution Geometric distribution Standard Normal distribution
Mean

5 10 20 50 100 200 500 5 10 20 50 100 200 500 5 10 20 50 100 200 500

Strategy 1
Alteration for Total 3 2 2 2 2 1 3 2 2 3 1 2 1 3 2 2 2 2 2 2 2 71.088
l-diversity value 7 7 5 7 5 7 6 5 5 5 6 3 6 6 6 6 5 6 6 5 5 94.089
t-closeness value 5 7 6 7 4 6 5 6 6 7 6 4 7 3 6 6 6 6 4 6 5 9.143

Strategy 2
Alteration for Total 2 3 1 1 1 2 1 3 3 2 3 4 2 2 1 3 3 1 1 1 1 71.028
l-diversity value 5 6 7 6 7 6 7 6 6 4 3 4 3 5 7 5 6 7 7 6 6 94.004
t-closeness value 7 6 7 6 7 7 7 5 5 6 7 6 5 5 7 5 5 7 7 7 7 9.356

Strategy 3
Alteration for Total 6 5 5 5 4 3 4 6 6 6 6 6 4 4 4 5 6 5 5 3 4 83.542
l-diversity value 4 4 2 2 2 3 3 3 4 2 2 2 4 4 4 3 2 2 2 4 3 95.011
t-closeness value 2 4 2 3 2 3 3 3 3 3 3 2 4 4 4 4 3 2 3 5 3 7.961

Strategy 4
Alteration for Total 1 1 3 3 6 6 6 1 1 1 4 3 5 6 3 1 1 4 4 6 6 79.478
l-diversity value 6 5 6 5 4 2 2 7 7 6 4 5 5 2 5 7 7 5 4 2 2 95.095
t-closeness value 6 5 5 5 6 2 2 7 7 5 5 5 2 2 5 7 7 4 5 2 2 7.283

Strategy 5
Alteration for Total 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 99.939
l-diversity value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 99.528
t-closeness value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.455

Strategy 6
Alteration for Total 5 4 6 6 5 5 5 5 5 5 5 5 3 5 5 4 5 6 6 5 3 84.474
l-diversity value 3 2 4 3 3 4 5 2 2 3 5 6 7 7 3 4 3 3 3 7 4 94.39
t-closeness value 3 3 4 2 3 4 6 2 2 2 2 3 6 7 3 3 2 3 2 4 4 8.04

Strategy 7
Alteration for Total 4 6 4 4 3 4 2 4 4 4 2 1 6 1 6 6 4 3 3 4 5 79.973
l-diversity value 2 3 3 4 6 5 4 4 3 7 7 7 2 3 2 2 4 4 5 3 7 94.421
t-closeness value 4 2 3 4 5 5 4 4 4 4 4 7 3 6 2 2 4 5 6 3 6 8.376

(a) For Adult data set
Equivalent distribution Geometric distribution Standard Normal distribution

Mean
5 10 20 50 100 200 500 5 10 20 50 100 200 500 5 10 20 50 100 200 500

Strategy 1
Alteration for Total 1 2 2 1 2 1 1 1 2 3 2 3 2 1 1 2 2 2 2 2 1 56.386
l-diversity value 7 7 7 7 6 7 7 6 7 6 7 6 7 6 7 5 7 6 7 6 7 93.698
t-closeness value 6 7 7 6 6 7 7 6 6 7 7 7 7 7 7 7 7 6 7 6 7 9.524

Strategy 2
Alteration for Total 2 3 4 3 1 3 2 3 3 4 3 4 4 2 2 3 4 3 4 1 3 58.893
l-diversity value 6 6 6 6 7 6 6 7 5 7 6 7 6 5 6 6 6 7 5 7 6 93.725
t-closeness value 4 5 5 7 7 6 6 7 5 6 5 6 5 5 6 6 6 7 6 7 4 9.358

Strategy 3
Alteration for Total 5 6 5 5 5 5 4 6 6 5 6 6 6 4 6 5 6 6 6 6 5 76.422
l-diversity value 3 2 2 3 2 2 4 3 3 3 2 2 3 7 3 2 2 2 4 2 3 94.719
t-closeness value 3 2 2 3 2 3 4 4 4 3 2 3 3 6 3 2 2 2 4 2 5 8.391

Strategy 4
Alteration for Total 3 1 3 4 4 4 6 2 1 2 4 2 1 6 3 4 3 1 1 4 6 61.757
l-diversity value 5 5 3 4 4 4 2 5 6 5 5 4 4 2 4 4 3 3 2 3 2 95.745
t-closeness value 7 6 3 5 4 5 2 5 7 5 4 4 4 2 5 5 4 4 2 4 2 7.343

Strategy 5
Alteration for Total 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 99.999
l-diversity value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 99.927
t-closeness value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.073

Strategy 6
Alteration for Total 4 5 6 6 6 6 5 5 5 6 5 5 5 5 5 6 5 5 5 5 4 75.471
l-diversity value 4 3 4 2 3 3 3 4 2 2 3 3 2 3 5 7 5 4 3 4 5 94.612
t-closeness value 5 3 4 2 3 2 3 2 2 2 3 2 2 3 4 3 3 3 3 5 6 8.446

Strategy 7
Alteration for Total 6 4 1 2 3 2 3 4 4 1 1 1 3 3 4 1 1 4 3 3 2 61.431
l-diversity value 2 4 5 5 5 5 5 2 4 4 4 5 5 4 2 3 4 5 6 5 4 94.227
t-closeness value 2 4 6 4 5 4 5 3 3 4 6 5 6 4 2 4 5 5 5 3 3 8.775

(b) For florida 30162

Figure 15: Strategies ranking according to their NAUC for alteration for Total, l-diversity
value and t-closeness value on 42 tables
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Figure 14 presents the rankings obtained for each measure on each table: Figure 14a for
Adult data set and Figure 14b for florida 30162 (see Figure 15 for results obtained with the
Total metric). Lines of each table correspond to the three measures for the seven strategies
and columns correspond to number of possible values of the seven created attributes for
the three distributions.

We first study the results obtained for Adult data set and florida 30162 separately.
For Adult data set, in Figure 14a, we observe that Strategies 1, 2 and 4 are ranked first

for alteration for NLLM on a majority of configurations of Adult data set (lines (Strategy i,
Alteration for NLLM) for i ∈ {1, 2, 4}). However, they are less well ranked than the other
strategies for the l-diversity and t-closeness values on a majority of configurations: we
notice that they are often ranked 5, 6 and 7 for these two measures.

Strategies 3 and 6 are ranked last for alteration for NLLM on configurations of Adult data
set. However, they are well ranked for l-diversity ant t-closeness values.

Strategy 5 is last ranked for alteration rankings on all the configurations of Adult data
set. However, it is ranked first for l-diversity and t-closeness values rankings on all the
configurations of Adult data set (lines (Strategy 5, l-diversity) and (Strategy 5, t-closeness)
of Figure 14a).

Always in Figure 14a, we observe that Strategy 7 has intermediate results but heteroge-
neous for the three measures on configurations of Adult data set. It is often ranked 4 (in 30
rankings out of 63) but, for the rest, it is ranked as much in the first strategies as in the last.

For florida 30162, in Figure 14b, we observe that Strategies 2, 4 and 7 are the top-ranked
strategies for alteration for NLLM on a majority of configurations of florida 30162.
Strategies 2 and 4 are the less well ranked for l-diversity and t-closeness values on a ma-
jority of configurations of florida 30162. Strategy 7 obtains heterogeneous results for these
two measures.

As on Adult data set, Strategies 3 and 6 are among the best ranked strategies for l-diversity
and t-closeness values but are among the worst ranked strategies for alteration for NLLM
on a majority of configurations of florida 30162.

Strategy 5 is ranked first for l-diversity and t-closeness values but is ranked 7 for alteration
for all the configurations of florida 30162.

As Strategy 7 on Adult data set, Strategy 1 obtains intermediate results for the three mea-
sures: it is ranked 4 for 28 rankings out of 63 on the configurations of florida 30162. How-
ever, with Strategy 1, generalization cost only is to be optimized during the choice of the
equivalence classes mergings in GAA. This may be due to the fact that method used in GAA
is heuristic and does not guarantee global optimality of the produced k-anonymous table.

To conclude on these first observations, we notice that Strategy 5 has a extreme behavior:
it optimizes l-diversity and t-closeness values leading to major alteration on all the config-
urations of Adult data set and florida 30162. On both tables, Strategies 2 and 4 manage to
limit alteration for a majority of configurations but they do not rank well in the rankings
of l-diversity and t-closeness values. On the contrary, Strategies 3 and 6 favor l-diversity
and t-closeness values but k-anonymous tables produced are more altered for a majority
of configurations. Strategies 1 and 7 obtain different and heterogeneous results on both
tables.

Secondly, for each table, for each strategy, for each measure, we compute the mean of the
NAUC obtained by the strategies for the measure on the configurations of the table. Thus
we have a representative value of the measure for the strategy on all the configurations of
the table.

We add the Mean column to tables of Figures 14a and 14b. Values are rounded at 10−3.
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Recall that for alteration for NLLM and t-closeness value, NAUC is to be minimized: the
closer a strategy has a NAUC for one of these two measures to 0% the better its performance
for the measure is. However, for l-diversity value, NAUC is to be maximized: the closer a
strategy has a NAUC for l-diversity value to 100% the better its performance for l-diversity
value is.

We notice that, for both tables, mean NAUC for l-diversity and t-closeness values are good
for all the strategies. Mean NAUC for l-diversity value are greater than 93% for the seven
strategies: the lower mean NAUC for l-diversity value is 93.775% on Adult data set and
93.7% on florida 30162, both of them obtained by Strategy 2. Mean NAUC for t-closeness
value are lower than 10% for the seven strategies: the higher mean NAUC for t-closeness
value is 9.628% on Adult data set and 9.635% on florida 30162, obtained by Strategies 1 and
2 respectively. On an another side, mean NAUC for alteration are greater than 50% for all
the strategies and for both tables.

These observations suggest that an increase of mean NAUC of a strategy for alteration
brings an optimization of mean NAUC of the strategy for l-diversity and t-closeness values.
In other words, the more the k-anonymous tables produced using this strategy in GAA are
altered, the more the l-diversity and t-closeness values of these k-anonymous tables are
optimized. Indeed, a k-anonymous table with a high alteration has usually few equivalence
classes but they contain a lot of records. As l-diversity and t-closeness models deal with
sensitive values distribution in each equivalence class of the table, it is easier to respect
these models when sensitive values are numerous in each equivalence class.

4.4 Summary

In this section, our purpose was to propose strategies that permit to produce k-anonymous
tables with interesting l-diversity and t-closeness values. Indeed, we noticed that k-anony-
mous tables sometimes suffer from a lack of diversity of the sensitive values in their equiv-
alence classes. We therefore take into account the distribution of sensitive values in equiv-
alence classes during a k-anonymization process.

In Section 4.1, we first came back to l-diversity and t-closeness, two anonymization mod-
els whose requirements relate on the distribution of sensitive values in the equivalence
classes of a table. We introduced two measures that permit to evaluate the quality of a
table in terms of l-diversity and t-closeness: l-diversity value and t-closeness value.

In Section 4.2, we presented seven optimization strategies to be used in GAA to guide
equivalence classes mergings. The proposed strategies permit to optimize, at each round
of the algorithm, alteration and l-diversity or t-closeness value of the table. Strategy 1 only
optimizes generalization cost. Strategies 2 to 4 optimize l-diversity and generalization cost
for µ. Strategies 5 to 7 optimize t-closeness and generalization cost for µ.

In Section 4.3, we experimented to compare the performance of the seven strategies on the
production of k-anonymous tables. We considered two tables, Adult data set and florida 30162,
and three measures to evaluate the quality of the k-anonymous tables produced, alteration
for NLLM, l-diversity value and t-closeness value. We conducted two types of experiments
according to the choice of the sensitive attribute in the table: either the sensitive attribute
is present in the table (it contains real data) or the sensitive attribute is a new generated
column (it contains simulated data following a predetermined distribution).

Experiments on real data showed that Strategies 1, 2 and 4 are better at limiting alter-
ation than optimizing l-diversity and t-closeness values. On contrary, Strategies 3, 6 and 7
are better at favoring l-diversity and t-closeness values than limiting alteration. Strategy 5
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behaves like a strategy optimizing only l-diversity value or t-closeness value. On an an-
other side, experiments on simulated data suggest that the performance of the strategies
are equivalent in terms of optimizing l-diversity and t-closeness values and that only the
alteration results are at consider when determining the strategy for producing the best k-
anonymous versions of a table.

To continue this work, we could adopt an opposite approach to that proposed in this
section. Instead of trying to build a k-anonymous table by optimizing the values of l-
diversity and t-closeness, we could build a table respecting the models of l-diversity or
t-closeness by optimizing the value of k at each merging of equivalence classes in GAA.

5 Conclusion

In this article, we have sought to optimize the data utility in k-anonymous tables. We first
presented the GAA algorithm in Section 2.2 for producing k-anonymous tables. With this
algorithm, equivalence classes mergings are performed until a table respecting the desired
anonymization model is obtained. The choice of mergings is made thanks to a strategy
given as a parameter of the algorithm.

At first, we were interested in Section 3 in information loss metrics. These metrics per-
mit to evaluate the quantity of information lost during the anonymization of a table by the
generalization technique. As many k-anonymous versions of a table exist, it is necessary to
have a way to compare them: information loss metrics fulfill this role. Our first contribu-
tion consisted in proposing a model unifying the writing of information loss metrics and
simplifying their use. A metric is defined as a set of weights to put on the edges of general-
ization hierarchies of quasi-identifier attributes. From these weights, we constructed a costs
matrix for each quasi-identifier attribute containing the costs of generalizing the nodes of
the hierarchy of this attribute. Then, we compared the performance of seven information
loss metrics when they are used in a k-anonymization algorithm to guide the equivalence
classes mergings to be performed. For it, we conducted experiments on the tables Adult
data set and florida 30162. Results showed that the metrics with best performances are not
the same in the two tables studied according to three quality criteria. On Adult data set,
NLLM is among the best metrics for the three criteria. On florida 30162, Total produces the
best k-anonymous tables in view of the three quality criteria. Regarding the worst metrics,
our experiments showed that metrics without a normalization step on the computation of
the node generalization cost do not achieve to produce good quality k-anonymous tables.
Indeed, metrics that do not do this normalization step, LLM and WLLM, obtain the worst
results for the three quality criteria on both tables. In conclusion of this study, we nev-
ertheless believe that the choice of the metric to use to k-anonymize a table depends in
particular on the table to be k-anonymized, the requested value of k and the generalization
hierarchies chosen for the quasi-identifier attributes.

Secondly, we sought to limit one of the weaknesses of k-anonymity in Section 4. In some
k-anonymous tables, it may happen that a lack of diversity appears in the sensitive val-
ues of the equivalence classes. To remedy this problem, l-diversity and t-closeness models
have been proposed in [22] and [19] respectively. These two anonymization models give
constraints on the sensitive values distribution in the equivalence classes of the table. By
relying on l-diversity and t-closeness, we therefore sought to produce k-anonymous tables
preserving a good data utility while keeping control over the senstive values distribution in
equivalence classes. Then, we have proposed seven strategies to be used in GAA with the
objective of optimizing the alteration and the values of l-diversity or t-closeness of the k-
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anonymous tables produced. To compare the performance of these seven strategies during
a k-anonymization process, we conducted experiments on real data and on simulated data.
We used three measures to evaluate the quality of the k-anonymous tables produced: alter-
ation for NLLM, l-diversity value and t-closeness value. Experiments on real data showed
that Strategies 1, 2 and 4 are better at limiting alteration than optimizing l-diversity and
t-closeness values. On the contrary, Strategies 3, 6 and 7 are better at favoring l-diversity
and t-closeness values than limiting alteration. Strategy 5 behaves like a strategy optimiz-
ing only l-diversity value or t-closeness value. Experiments on simulated data suggest that
the performance of the strategies are equivalent in terms of optimizing l-diversity and t-
closeness values and that only the alteration results are at consider when determining the
strategy for producing the best k-anonymous versions of a table.

Whether working with information loss metrics as in Section 3 or with optimization strate-
gies as in Section 4, we believe that choosing the best metric or strategy to use to k-anonymi-
ze a table depends on many parameters. We could in particular be interested in the char-
acteristics of the table and of the generalization hierarchies provided. The objective would
then be to propose a procedure based on this information and making it possible to deter-
mine the most appropriate metric or strategy for k-anonymizing the table while keeping
the best data utility and privacy.
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[23] Clémence Mauger, Gaël Le Mahec, and Gilles Dequen. Modeling and evaluation of k-
anonymization metrics. In Privacy Preserving Artificial Intelligence Workshop of AAAI 2020, 2020.

[24] Clémence Mauger, Gaël Le Mahec, and Gilles Dequen. Multi-criteria optimization using l-
diversity and t-closeness for k-anonymization. In Data Privacy Management, Cryptocurrencies
and Blockchain Technology, pages 73–88. Springer, 2020.

[25] Adam Meyerson and Ryan Williams. On the complexity of optimal k-anonymity. In Proceedings
of the Twenty-third ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
PODS ’04, pages 223–228, New York, NY, USA, 2004. ACM.

[26] Sang Ni, Mengbo Xie, and Quan Qian. Clustering based k-anonymity algorithm for privacy
preservation. Int. J. Netw. Secur., 19(6):1062–1071, 2017.

[27] Md Ileas Pramanik, Raymond Y.K. Lau, and Wenping Zhang. K-anonymity through the en-
hanced clustering method. In 2016 IEEE 13th Int. Conf. on e-Business Engineering (ICEBE), pages
85–91, 11 2016.

TRANSACTIONS ON DATA PRIVACY 16 (2023)



Optimizing Privacy and Data Utility: Metrics and Strategies 189

[28] Pierangela Samarati. Protecting respondents identities in microdata release. IEEE transactions
on Knowledge and Data Engineering, 13(6):1010–1027, 2001.

[29] Latanya Sweeney. Achieving k-anonymity privacy protection using generalization and sup-
pression. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):571–
588, 2002.

[30] Latanya Sweeney. k-anonymity: A model for protecting privacy. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570, 2002.

[31] UCIrvine. Machine Learning Repository, 1987. [Online; accessed on June 2019] https://
archive.ics.uci.edu/ml/index.php.

[32] US Government. Registered voters in the State of Florida, U.S.A. [Online; accessed on May
2020] http://flvoters.com/.

[33] Xiaokui Xiao and Yufei Tao. Anatomy: Simple and effective privacy preservation. In Proceedings
of the 32nd international conference on Very large data bases, pages 139–150, 2006.

[34] Xiaokui Xiao, Ke Yi, and Yufei Tao. The hardness and approximation algorithms for l-diversity.
In Proceedings of the 13th International Conference on Extending Database Technology, pages 135–146,
2010.

[35] Jian Xu, Wei Wang, Jian Pei, Xiaoyuan Wang, Baile Shi, and Ada Wai-Chee Fu. Utility-based
anonymization using local recoding. In Proceedings of the 12th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD ’06, pages 785–790, New York, NY, USA,
2006. ACM.

TRANSACTIONS ON DATA PRIVACY 16 (2023)

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
http://flvoters.com/

	Introduction
	Generalization Technique and Anonymization Algorithm
	Generalization Technique
	Anonymization Algorithm

	Comparison of Information Loss Metrics
	A Modeling of Information Loss Metrics
	Information Loss Metrics
	Metrics of the Literature
	LLM and Three Variants

	Experiments
	Experimental Protocol
	Results Analysis

	Summary

	Optimization Strategies
	l-diversity, t-closeness and Measures
	Optimization Strategies
	Experiments
	Experimental Protocol
	On real Data
	On simulated Data

	Summary

	Conclusion

