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Abstract. In the last years we have witnessed a pervasive use of location-aware technologies such as
vehicular GPS-enabled devices, RFID based tools, mobile phones, etc which generate collection and
storing of a large amount of human mobility data. The powerful of this data has been recognized
by both the scientific community and the industrial worlds. Human mobility data can be used for
different scopes such as urban traffic management, urban planning, urban pollution estimation, etc.
Unfortunately, data describing human mobility is sensitive, because people’s whereabouts may allow
re-identification of individuals in a de-identified database and the access to the places visited by indi-
viduals may enable the inference of sensitive information such as religious belief, sexual preferences,
health conditions, and so on. The literature reports many approaches aimed at overcoming privacy
issues in mobility data, thus in this survey we discuss the advancements on privacy-preserving mo-
bility data publishing. We first describe the adversarial attack and privacy models typically taken
into consideration for mobility data, then we present frameworks for the privacy risk assessment
and finally, we discuss three main categories of privacy-preserving strategies: methods based on
anonymization of mobility data, methods based on the differential privacy models and methods
which protect privacy by exploiting generative models for synthetic trajectory generation.

1 Introduction

An ever increasing number of technologies nowadays, uses or somehow manages data
about our movements. In our daily lives we generate an astounding quantity of human
movement data, by interacting with devices and applications that have become common-
place in our everyday life. Whenever we interact with our mobile phone, use navigation
apps, access a social network etc., spatio-temporal points are generated describing where
we are and when we are moving. The mobility of millions of people is tracked every day
and used in a plethora of different services and applications. Some of them include: loca-
tion based advertisements, traffic analysis, transportation systems design, behavior profile,
car navigation systems and many more. The availability of human mobility data is not
fundamental only for developing services based on intelligent systems but can be useful
for understanding different and important phenomena which may have a huge impact on
our society. For example, the analysis of human mobility following a natural disaster can
help in improving the disaster management, in defining an effective humanitarian relief
and long-term societal reconstruction [97]. And more, the analysis of the human mobil-
ity during the COVID-19 pandemic enables the understanding of the relationship between
population’s mobility and the viral transmissibility. This is important because can help
in monitoring the pandemic’s evolution and in dynamically adapting policy interventions
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[18]. The availability of large quantities of mobility data is also at the forefront of research,
both in academia and in industry [80, 24, 62].

The paradigm shift towards a knowledge society, i.e., a society where decisions can be taken
– by individuals or by business and policy makers – on the basis of the knowledge distilled
from the ubiquitous digital traces, comes with unprecedented opportunities and ethico-legal
risks. Among these risks, individual privacy is one of the most important because it touches
a human fundamental right.

Data is leaking everywhere, everyday: malicious entities can have access to millions of
terabytes of data from a variety of sources, and the situation is getting worse. In 2021 alone
there were more than 1,200 recorded data breaches [43] and the data of millions of people
was exposed. For example, a breach in the popular social network Linkedin exposed the
details of more than 700 million profiles. The damage of this data breaches is twofold: not
only the information is now leaked and in the open, with the privacy of many individuals
irremediably damaged, but now this information can also be used as a knowledge pool for
future, possibly even worse attacks. As a consequence, privacy is one of the top concerns
for both customers and professionals across multiple fields, especially data management
[89, 19]. Public opinion’s awareness of privacy issues in data management and analysis
processes is constantly growing and people are getting educated more on the matter each
day. People’s awareness is particularly raising for privacy risks derived from the use and
processing of mobility and location data [109, 94]. Unfortunately, this skepticism is well
founded because the particular nature of mobility data may derive the inference of very
sensitive information on the personal and private sphere. Locations visited by an indi-
vidual in combination with the time of the visits can reveal not only personal habits but
also personal preferences related to sensitive aspects such as religion, health status, etc.
Pseudonymization of mobility traces, obtained by hiding direct identifiers simply replac-
ing them with pseudonyms, is not a solution because some mobility patterns hidden in the
data itself can reveal unique behaviors enabling individual re-identification [21].

However, today the paradoxical situation we are facing is that we are fully running the
risks, without fully catching the opportunities of our personal (mobility) data: while we
feel that our private personal sphere is vanishing in the digital world, and that our personal
data can be used without feedback and control, the same data are seized in the databases
of companies (e.g., telecommunication companies, insurance companies, etc), which use
legal constraints on privacy as a reason for not sharing it with science and society at large.
This leads to an absurd situation where we cannot benefit from our data and this precious
source of knowledge is locked to data analysts or service developers. What happened,
for example, with the data regarding COVID-19 contact tracing is emblematic: there has
been a huge difference in policy between countries concerning the use of the data. Many
experts advocate for implementation of innovative, privacy preserving techniques to al-
low the meaningful use of this data while at the same time protecting the privacy of the
individuals represented. [74].

In Europe, policy-makers reacted to this important issue by updating the European legis-
lation, replacing the 1995 Data Protection Directive with the General Data Protection Reg-
ulation (GDPR)[82]. Such regulation addresses privacy threats raised by the processing of
human and personal data by strengthening protections for individuals requiring the ap-
plication of the privacy-by-design principle, and by explicitly recognizing location data as
a factor enabling individual re-identification (Article 4 of GDPR). Moreover, since many
sensitive attributes are uniquely associated with places, collecting and publishing mobility
data that show a person frequently visits a place or attends a particular event represents a
means to draw a comprehensive picture of an individual and to lead to classify in that case
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location data as a special category of personal data or sensitive data requiring high level of
protection (Article 9 of GDPR). A very interesting study on the location data privacy under
the GDPR can be found in [73].

For guaranteeing the applicability of this regulation, we need to enable knowledge dis-
covery from data by setting mobility and location data free, i.e., it becomes fundamental
to have tools for exploiting the advantage of analyzing this type of data while by-design
preventing privacy violations, which may result in negative economic and social impacts.

Contribution and survey organization. Research activity on privacy issues and mitiga-
tion strategies for mobility data has been very active in the last two decades and today it is
still a prolific field. This confirms the great interest of the scientific research community and
industrial world on the power associate to the availability of mobility data. The research
literature on privacy for mobility data is covered by two main research lines: privacy in
location based services and privacy-preserving trajectory data publishing.

The first research line addresses the problem of protecting the user location privacy in
real-time while answering a query generated by a mobile device [9], while the second one
studies the problem of making available mobility datasets while protecting privacy of in-
dividuals represented in the data [10].

In this survey paper we give an overview of the main results in the second research area.
Designing privacy-preserving strategies for trajectory data requires to manage the trade-
off between privacy protection and data utility, an objective that in this context is particu-
larly challenging because of the high dimensionality of these type of data. Although the
data utility is hard to maintain under control it is very important because private mobil-
ity data after the sanitization process should be used as a proxy of human behavior which
may enable the understanding of important social and complex phenomena. A privacy-
preserving technique that completely destroys the human mobility laws hidden in the data
would make them useless.

This survey discusses three main aspects related to the privacy in mobility data: (i) the
privacy attack models, that a malicious adversary may conduct on trajectory data, and the
privacy models that guide the privacy mitigation strategies; (ii) the privacy risk assess-
ment frameworks designed for simulating the privacy attacks and quantifying the privacy
risks inherent to a mobility dataset under analysis; and (iii) the mitigation strategies devel-
oped to counter the well-known attacks. Concerning the privacy-preserving strategies we
will overview: methods assuring privacy by k-anonymity based models and its variants,
methods based on the differential privacy model and methods exploiting deep leaning gen-
erative models for protecting privacy. We also discuss recent privacy-preserving methods
that address the challenging task to preserve privacy in a setting where each individual
can express a personal privacy requirement (expectation). Although in the literature some
other survey exist [32, 50], to the best of our knowledge, this is the first survey that includes
in the literature overview also methods for personalized privacy in mobility data, methods
that protect individual privacy by generating synthetic trajectories by deep learning mod-
els and frameworks for privacy risk assessment.

The remaining of the paper is organized as follows. Section 2 introduces some preliminary
notions and definitions related to mobility data. Section 3 overviews the adversarial attacks
for mobility data and the privacy models exploited by the privacy-preserving techniques.
In Section 4 we describe the most important frameworks for a quantitative assessment of
privacy risks while in Section 5 we discuss the state-of-the-art privacy protection strategies
for trajectory data. Lastly, Section 6 concludes this survey.
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2 Mobility data

The techniques presented in this survey all focus on human mobility data, i.e., data de-
scribing the movements of a set of individuals during a period of observation. This type
of data is generally collected in an automatic way through electronic devices (e.g., mobile
phones, GPS devices) in form of raw trajectory data. A raw trajectory of an individual is
a sequence of records identifying the movements of that individual during the period of
observation [121]. A trajectory can therefore be represented as the list of spatio-temporal
points describing the movement of the individual.

Definition 1 (Trajectory). The trajectory Tu of an individual u is a temporally ordered se-
quence of tuples Tu = 〈(l1, t1), (l2, t2), . . . , (ln, tn)〉, where li = (xi, yi) is a location, xi and
yi are the coordinates of the geographic location, and ti is the corresponding temporal in-
formation, ti < tj if i < j. Locations are generally ordered according to the temporal
information, from the least recent to the most recent in time.

Intuitively, each pair (li, ti) indicates that the moving object is in the position li = (xi, yi)
at the specific time ti.

Definition 2 (Sub-Trajectory). Let Tu = 〈(l1, t1), (l2, t2), . . . , (ln, tn)〉 be a trajectory. A tra-
jectory S = 〈(l′1, t′1), (l′2, t′2), . . . , (l′m, t′m)〉 is a sub-trajectory of Tu or is contained in Tu (S �
Tu) if there exist integers 1 ≤ i1 < . . . < im ≤ n such that ∀1 ≤ j ≤ m(l′j , t

′
j) = (lij , tij ).

Many works proposing human mobility analysis or privacy-preserving techniques for
trajectory data do not exploit in depth the temporal information, they only consider a tra-
jectory as a ordered sequence of locations, i.e., Tu = 〈l1, l2, . . . , ln〉.

A Mobility Dataset, denoted by D, is a set of trajectories {T1, . . . , TN} referred to N indi-
viduals or moving objects.

ID Trajectory Diagnosis
u1 〈la, lb, lc〉 Flue
u2 〈le, lf , la, lc〉 AIDS
u3 〈la, lb, la, lf , la〉 Diabetes
u3 〈la, lb〉 AIDS

Table 1: Trajectory data and health data

Sometimes trajectory data are published together with some other sensitive attributes,
which not have a spatio-temporal nature, for instance attributes describing diseases, reli-
gion belief, etc. Table 1 shows an example of these trajectories. Alternatively, we can also
have trajectory data where geographical positions are enriched with semantic information
that describe aspects like the reason of the visit of a position/region. Typically, given a
raw trajectory some stops are identified and enriched with semantic information (e.g., ho-
tels, restaurants, museums, etc.) derived from a predefined taxonomy that is application
dependent. The derived trajectory is called semantic trajectory [72]. Figure 1 illustrates the
concept of semantic trajectory corresponding to a raw trajectory. In the semantic trajectory
the moving object first was at Home (stop 1), then she went to Hospital (stop 2), later she
went to Work (stop 3), and finally the moving object went to the Gym (stop 4).

This type of trajectories can reveal very sensitive information associated to the movement.
For example, the trajectory in Figure 1 reveals that the individual visited the Hospital and
this could help an attacker to infer sensitive information about diseases. Some works in the
literature studied privacy issues also for this particular type of trajectory data [72].
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Figure 1: Example of Semantic Trajectory

Table 2: Summary of privacy attacks on mobility data.
Authors & Reference Year Attack Model Adversary Knowledge
Krumm [54] 2007 Record Linkage Home location
Abul et al. [1] 2008 Record Linkage Sub-trajectory & spatial-time approx.
Mohammed et al. [69] 2009 Record and Attribute Linkage Specific sub-sequences
Yarovoy et al. [114] 2009 Attribute Linkage Sub-trajectory
Monreale et al. [70] 2010 Record Linkage Sub-trajectory
Zang and Bolot [117] 2011 Record Linkage Top-n frequent locations
Freudiger et al. [34] 2011 Attribute Linkage Sub-trajectory data
Monreale et al. [72] 2011 Attribute Linkage Taxonomy of visits
Srivatsa and Hicks [98] 2012 Record Linkage Side social-graph
de Montjoye et al. [21] 2013 Record Linkage Sampled spatio-temporal points
Chen et al. [15] 2013 Attribute Linkage Sub-trajectory
Rossi and Musolesi [92] 2014 Distance Based Record Linkage Location-based data
Chen et al. [16] 2015 Probabilistic Attack Mobility profiles
Sui et al. [100] 2016 Attribute Linkage Sub-trajectory
Gramaglia et al. [38] 2017 Probabilistic Attack Sub-trajectory
Liu et al. [60] 2018 Attribute Linkage Sub-trajectory with a max length
Yao et al. [113] 2019 Similarity Attack Sub-sequence data with a max length
Tu et al. [108] 2019 Semantic Attack PoI distribution
Basik et al. [8] 2020 Distance Based Record Linkage History of movements graphs

3 Adversary Attacks and Privacy Models

In the context of mobility data, a privacy attack is usually defined as the attempt by a
malicious adversary to infer, understand or somehow extrapolate information about an
individual’s mobility by leveraging some knowledge about that individual. The way in
which this knowledge is built and then leveraged varies depending on how the adversary
is modeled and on how the actual attack is modeled. There are three main families of
attacks. In this section we summarize the literature regarding them.

3.1 Record Linkage Attacks

The attacks belonging to this category are based on the same basic structure: an adversary,
i.e. a malicious entity intent on breaching the privacy of an individual, gets access to some
knowledge regarding the target individual. This knowledge can be generally assumed to
be some portion of data relating to the individual, and can be gathered by an adversary in
a variety of ways, either through direct observation of the individual or by the collection of
separate data sources. This is called ”prior knowledge” or ”background knowledge” [35]
and the corresponding kind of attack is also referred to as Background Knowledge Attack.
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The adversary uses the knowledge gathered to perform an attack on some anonymized
available dataset. The goal of the adversary is to correctly match the data in her posses-
sion to the record in the anonymized data corresponding to the actual individual of the
background knowledge. If the adversary successes in her scope, she can re-identify the in-
dividual in the data and/or infer new information about the individual thus breaching the
individual’s privacy. This may be a particularly damaging outcome in the specific case of
mobility data, as the information contained in a trajectory is very sensitive: knowing where
and when an individual moves can allow multiple inferences regarding personal details,
habits, behaviors etc.

Terrovitis et al. [103] and Xu et al. [112] introduced the ”prior knowledge based” attacks
on transactional data. The general concept was next applied in the context of mobility data
in several works taking into consideration the sequential nature of this type of data: for
example, Mohammed et al. [69] introduced a background knowledge attack where the
adversary knows the exact sequence of the visited locations as they appear in the trajectory
of the target individual, an attack later used by Monreale et al. [70]. Another example is the
attack introduced by Abul et al. in which the adversary also knows information regarding
the time of visit of an individual [1].

In these type of attacks, the assumption is that the knowledge of the adversary is itself
present inside the data under attack. In essence, this means that the background knowl-
edge can be simulated with a sub-sampling strategy applied to the trajectory data under
analysis. Therefore, following our Definitions 1 & 2, the background knowledge of an ad-
versary Bu can be described as the sub-trajectory of a given individual u, i.e., Bu � Tu. One
notable example of simulation of a such kind of attack is presented by de Montjoye et al. in
[21], where human mobility trajectories are attacked by subsampling random points from
the trajectories themselves. A special case of sub-sampling strategy is to extract particular
locations visited by an individual and use them for attacking the anonymous data. For
instance, Krumm [54] uses the knowledge about the inferred home of the individual target
of the attack to perform the trajectory linkage while Zang et al. [117] exploit the top-n fre-
quent locations visited by an individual to conduct the attack. Here it is therefore assumed
that the adversary has knowledge regarding the frequency of visit.

Other record linkage attacks aim at cross-referencing information from data related to the
same individual represented in the trajectory but stored in other databases. For example,
Srivatsa and Hicks [98] leverage social graphs to extract background knowledge to perform
an attack on individuals in a mobility dataset, considering that individuals that are friends
in the social network may encounter each other more frequently in the mobility dataset.

In case the information to be used for as background knowledge is derived from another
database, a powerful type of record linkage attack is the Distance Based Record Linkage
Attack[106]. The basic principle of this attack is that an adversary, having access to some
data, tries to link her data to specific records in an available database applying a distance
function to the two data sources. This technique is commonly used in database integration,
when multiple data sources belonging to the same entities need to be consolidated into a
single comprehensive source. The distance function is the central point of this approach:
the most popular distance function used is the Euclidean one, but many other functions
have been tested. As an example, Rossi and Musolesi in [92] performed an analysis on
distance based linkage of trajectory data from location-based social networks, applying the
Hausdorff distance between the locations in the trajectories. Another recent development
on this particular kind of attack is the SLIM algorithm by Basik et al. [8]. The SLIM al-
gorithm works on the history of movements of each individual and represents similarities
between histories of movements as graphs, weighting each connection with a defined sim-
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ilarity (i.e. inverse of the maximum geographical distance over a given time-frame).

3.2 Attribute Linkage Attacks

Attribute Linkage attacks are also known as homogeneity attacks [35]. Here, the adver-
sary tries to link the background knowledge to some sensitive attributes in the data. In
particular, the goal is not to re-identify the specific individual record but infer sensitive in-
formation within the record. As a consequence, the non-unicity of the records with respect
the quasi-identifiers, used for linking the adversary background knowledge, could be not
enough to counter the attack in case we have a lack of diversity for the sensitive informa-
tion. As an example, if in a tabular context we have 100 records with the same value of
quasi-identifiers gender, city, age the inference of the individual disease is unfortunately
enabled by the sharing of the same value of the disease.

In the field of trajectory data the homogeneity attack can be applied to infer sensitive lo-
cations [100, 34] or sensitive attributes explicitly or implicitly associated to each trajectory
[69, 15]. In the first case, it is assumed that some locations are considered more sensitive
with respect to others and the sensitivity can be derived by the semantic associated to the
location. Indeed, if we consider the possibility to infer points of interest (PoIs) and the
scopes of the different stops in a movement (see the notion of Semantic Trajectory in Sec-
tion 2) we can easily understand that some stops could lead to more sensitive inference
with respect to others. For example, visiting an hospital may lead to more sensitive infer-
ence than visiting a park. Some works assume that the sensitivity of some locations can be
defined by the individuals [114] or by domain experts [72]. Other works [100, 34] show
that the semantic of some locations can be easily inferred by analyzing the accessed tra-
jectories by exploiting the information about regular and frequent visits of some locations.
This is particularly harmful, since often the most frequent locations correspond to the home
and work locations of an individual. In order to guarantee the diversity of the sensitive
attributes or sensitive locations some works limit the length of the locations to be used as
background knowledge [69, 61].

3.3 Probabilistic Attacks

Another family of attacks that can be applied to mobility data are probabilistic attacks, also
known as inference attacks in the literature. In this kind of attack, a malicious adversary
tries to increase her knowledge by accessing the target database [35]. As a consequence, to
guarantee protection against this attack, the access to a mobility dataset should not reveal
too much additional information with respect to what is already known by the adversary.
This type of attack can be seen as a generalization of the attribute linkage attack because it
measures the increase of knowledge, not only in terms of disclosure of sensitive attributes
and locations, but in terms of quantity of unknown information acquired. An example of
probabilistic attack on trajectory data has been defined in the work of Gramaglia et al. [38],
where the adversary success is measured in terms of the number of additional locations
acquired after the attack. Also the similarity attack [113] belongs to this category. It indeed
exploits the similarity between different sensitive attribute values to infer sensitive infor-
mation also in presence of diversity of the values. For example, if we have three individuals
with the same trajectory data and with associated three different diseases gastric ulcer, gas-
tritis and stomach cancer an adversary may conclude that the individual under attack has
some stomach-related problems, given that all the diseases belong to the same category.
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Similarly, the semantic attack enables an increase of the adversary knowledge exploiting
the semantic information associated to some spatio-temporal points of the trajectories. For
example, one could derive frequent visits of an individual to a region where most of the
POIs are related to public or private health institutions as a consequence the analysis of
the individual mobility together with the POIs distribution can cause a privacy disclosure
revealing information about the individual health status [108].

The activity attack proposed by Chen et al. [16] follows a similar principle: here, the
adversary uses the mobility profiles of individual to estimate the probability of an activity
trajectory, i.e., a sequence of visits with a certain staying time, for a number of PoIs for each
individual. Here the focus is not on the actual spatio-temporal information, but on what
the individual did in its trajectory, that is, the purpose of the movement. The authors use
an optimization approach to find the most likely activity trajectory for ech individual.

3.4 Privacy Models

In this section we introduce the privacy models and their standard definitions that are
used in many techniques addressing the problem of guaranteeing privacy in trajectory data
against the attacks described in the previous section. We highlight that in some cases,
for instantiating these models in the field of mobility data, it has been required to define
opportune variants suitable to the needs of the particular nature of trajectory data. These
variants will be discussed in Section 5.

k-anonymity. To counter record linkage attacks most of the privacy-preserving techniques
base their protection strategy on the k-anonymity privacy model [93] or its variants that of-
ten are necessary to guarantee higher data quality. This model has been initially introduced
for tabular data [93] and later has been applied to different types of data such as mobility
data [1, 107, 70, 71], itemset-based data [103, 6], sequence data [71] and graph data [99].

The standard k-anonymity privacy model assumes that the set of attributes in a dataset is
divided into sensitive attributes and quasi-identifiers. Sensitive attributes are the attributes
that need to be protected. Quasi-identifiers are attributes that may be linked to external
information retrieved by an adversary for a linking attack. If the adversary succeeds in
the linking then, can get access to the identity of the individual and its sensitive attributes.
Therefore, this privacy model requires that for each released record we have at least (k− 1)
other records in the released dataset whose values are indistinct over the quasi-identifiers.

The k-anonymity is a property that can be achieved on a given dataset using techniques
based on: generalization [46], i.e. reducing the granularity of the representation of quasi-
identifiers; suppression [101], i.e. deleting the value of highly informative attributes from
the data altogether, and microaggregation[25], i.e., a perturbation-based protection method
where the data is divided into small clusters and values of quasi-identifier attributes are
substituted with the values of the centroids of the clusters. The problem of achieving op-
timal k-anonymity has been proven to be NP-Hard in [67]. Some heuristics have been
proposed in the literature to achieve k-anonymity. For example, a greedy partition-based
algorithm was proposed in [56].

l-diversity. K-anonymity has some vulnerabilities: it does not provide protection against
attribute linking attacks. To tackle this problem, Machanavajjhala et al. in [63] propose the
l-diversity model, with the objective of maintaining a degree of diversity in the sensitive
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attributes of an anonymity set, i.e., a group pf k record sharing the same values of quasi-
identifiers. The l-diversity principle requires that every group of individuals, that can be
isolated by an attacker by a specific background knowledge exploiting the quasi-identifiers,
should contain at least l well-represented values for a sensitive attribute. A number of
different instantiations for the l-diversity definition have been also proposed for complex
data such as social network data [122] and mobility data [69, 15, 72].

t-closeness. However, in case the overall distribution of the sensitive attribute is skewed,
further measures have to be taken to prevent inference of sensitive information. In this
case the t-closeness model, introduced in [59], could help in making data safe against these
attacks. This privacy model imposes that the distance between the distribution of a sensi-
tive attribute in any equivalence class and the distribution of that attribute in the overall
dataset has to be bounded by a threshold t. Also this model, as we will see in Section 5.1.2,
has been successful applied to trajectory data to counter the semantic attack [108].

Differential Privacy. In 2006, Dwork et al. [27] introduce the Differential Privacy model
that can be satisfied applying specific techniques of data randomization. The fundamen-
tal idea at the base of differential privacy is that an algorithm applied to two datasets that
differ only on the record of a single individual should yield almost the same result. This
means that the individual can safely submit her record to the dataset because nothing, or
almost nothing, can be discovered from the database with her information that could not
have been discovered without her information. More formally, a randomized algorithm A
is ε-differentially private if for all datasets D and D′ differing only on a single record, and
for all S ⊆ range(A) the property Pr[A(D) ∈ S] ≤ eε × Pr[A(D′) ∈ S] holds. A relaxed
version of differential privacy was proposed in [7], in which the authors claim that the
privacy protection can be achieved even when admitting a small amount of privacy loss.
Formally, the relaxed version of the differential privacy model, named (ε, δ)-differential
privacy, changes then to Pr[A(D) ∈ S] ≤ eε × Pr[A(D′) ∈ S] + δ. Note that, δ models
the privacy loss and with δ = 0 we have the original definition of differential privacy. The
two most common mechanisms for achieving different privacy are the Laplace and Expo-
nential mechanisms. The first one requires to add noise to the results of the algorithm to be
computed drawing it from a Laplace distribution [28]. The noise has to be proportional to
the global sensitivity of the algorithm under consideration. This approach is suitable for
randomizing numerical values. There are however cases in which adding noise through
the Laplace distribution may not be feasible. For the analysis whose outputs are not real or
when adding noise destroys the sense of data, the authors of [66] propose an exponential
mechanism, selecting an output from the output domain, r ∈ R, by taking into considera-
tion the score of a given utility function q. In [29] authors give estimates for the ε parameter,
stating how it is possible to produce meaningful results even assuming values larger than
1. This privacy model has been extensively used in different contexts. In Section 5.2 we
overview the literature that applies this model and its variants to trajectory data especially
to counter probabilistic attacks.

4 Privacy Risk Assessment

Privacy risk assessment, also called Privacy impact assessment is a crucial part in any
Privacy By Design process [12, 11]. Privacy risk assessment is traditionally defined in
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generic terms, with little reference to practical methodologies. Some examples are the NIST
methodology [47] or the OWASP [79] risk rating methodology. These methodologies are
often cited as guidelines, even though they lack substantial indications on the actual tech-
niques to be used and how to tackle the specific nature of certain kinds of data. Privacy
threats are hereby ranked depending on their perceived likelihood or potential damage.
What we are interested in is methodologies to quantify privacy risk with some metric. Wag-
ner compiled a comprehensive survey on the metrics used to quantify privacy risk [111]
and the same Wagner with Eckhoff performed several simulations of privacy assessment
based on attack models for vehicular movement data [110]. Among these, for example, the
User Centric Privacy metric introduced by Freudiger et al. [33] measures privacy risk based
on the time elapsed from the last application of a privacy protection countermeasure.

In general, we can assess privacy risk by evaluating how much some attack can be ef-
fective on a certain dataset. This means that, to properly understand if individuals in a
mobility dataset are at risk, the most accurate way is to simulate some attacks on the data
and evaluate how an adversary would fare. This way of assessing privacy risk is, how-
ever, heavily dependent on the context and chosen threat model. Shokri et al. model the
adversary attack against location privacy preserving techniques by formalizing its perfor-
mance with three different metrics: accuracy, certainty, and correctness [95]. They state that
correctness, i.e., the inverse of the probability of the adversary error, is the metric that deter-
mines the privacy of users. This is something that is often expressed in many other works
in various ways: an attack is more powerful when its probability of failure is minimized.

In privacy literature, the general assumption when simulating a privacy attack is the
worst-case scenario, i.e., it is assumed that an adversary could use all possible knowledge
in her attack. Pratesi et al. proposed PRUDEnce [88], a framework for assessing both the
empirical (not theoretical) privacy risk associated to users represented in the data, and the
data quality guaranteed only with users not at risk. The framework considers a scenario
where a Data Analyst requests a Data Provider human mobility data in order to develop
an analytical service. For its part, the Data Provider has to guarantee the right to privacy
of the individuals whose data are recorded. As a first step, the Data Analyst communicates
to the Data Provider the data requirements for the analytical service. Assuming that the
Data Provider stores a database D, it aggregates, selects and filters the dataset D to meet
the requirements by the Data Analyst and produces a set of mobility datasets {D1, . . . , Dz}
each with a different data structure and/or aggregation of the data. The Data Provider then
reiterates a four-step procedure until it considers the data delivery safe:

1. Identification of Attacks: identify a set of possible attacks that an adversary might con-
duct in order to re-identify the individuals in the mobility datasets {D1, . . . , Dz};

2. Privacy Risk Computation: simulate the attacks and compute the set of privacy risk
values for every individual in the mobility datasets {D1, . . . , Dz};

3. Dataset Selection: select a mobility dataset D ∈ {D1, . . . , Dz} with the best trade-off
between the privacy risks of the individuals and the quality of the data, given a cer-
tain level of tolerated privacy risk and the data requirements by the Data Analyst;

4. Risk Mitigation and Data delivery: apply a privacy-preserving transformation (e.g., gen-
eralization, randomization, etc.) on the chosen mobility dataset D to eliminate the
residual privacy risk, producing a filtered mobility dataset Dfilt. Deliver the mobil-
ity dataset Dfilt to the Data Analyst when the Dfilt is adequately safe.

The framework is summarized in Figure 2.
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Figure 2: PRUDEnce privacy-aware ecosystem schema.

The framework allows for the definition of the background knowledge of an adversary in
terms of the dimensions of the data available (in the context of mobility data this could be
for example the time and/or the frequency of visits to a location). In PRUDEnce, attacks
are evaluated based on the k-anonymity achieved by individuals in the data, i.e., how well
hidden individuals are within each other with respect to the knowledge of the adversary.
The simulation of an attack is done for every possible knowledge that the adversary may
have, thus guaranteeing the worst-case scenario principle. In the same paper, Pratesi et al.
show an application of the framework to mobility data. For how thorough PRUDEnce is,
this comes at the cost of high computational complexity, being a combinatorial evaluation
algorithm. Moreover, as new data gets added or previous data is updated, risk needs to be
recomputed from the start. To overcome this issue Pellungrini et al. [83] proposed a data
mining approach to predict privacy risk in mobility data based on individual mobility pro-
files. The basic idea is to use machine learning models such as Random Forests to predict
privacy risk so that PRUDEnce is needed just as a one-time labeller for the data. The ap-
proach was tested on mobility profiles extracted from data covering mobility of two major
cities in Tuscany for a period of observation of one-month. The results show that indeed,
privacy risk may be predicted from individual mobility profile, and that the approach is
transferable between regions with similar mobility patterns. Given the recent trends in
explainable AI, Naretto et al. proposed an extension to the PRUDEnce framework called
EXPERT [75, 76]. EXPERT (EXplainable Privacy ExposuRe predicTion), exploits machine
learning models for predicting a user’s individual privacy risk and local explainers for
producing explanations of the predicted risk. First, EXPERT extracts from human mobility
data an individual mobility profile describing the mobility behavior of any user. Second,
for each user it exploits PRUDEnce to compute the associated privacy risk. Third, it uses
the mobility profiles of the users with their associated privacy risks to train a machine
learning model. For the prediction task, EXPERT exploits tree-based ensemble models to
effectively handle the class-imbalance problem, i.e., a high number of risky users vs a low
number of non-risky ones, that is typical of the data in this context. The aim is to have a
predictor that preserves the privacy of risky users while providing the freedom of using
data-driven services to users with low privacy risk. For a new user, along with the predic-
tion of risk, EXPERT also provides an explanation of the predicted risk. EXPERT exploits
two state-of-the-art explanation techniques, i.e., SHAP and LORE. The two methods pro-
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duce explanations based on feature importance and logic rules, respectively. The goal of
explanations is to provide users with insights on which mobility behavior contributes to
their privacy risk. EXPERT is summarized in Figure 3

Figure 3: EXPERT Framework.

All the frameworks mentioned above assess privacy risk by simulating background knowl-
edge based attacks. However, no assumption is made on the actual availability of the as-
sumed knowledge for the adversary: it is systematically generated from the original data
under attack. Pellungrini et al. [84] propose an adversarial model tailored for human mo-
bility data, where the background knowledge is generated by modeling the behavior of an
adversary as a mobility trajectory. The authors present three scenarios:

1. if the adversary is assumed to be one of the individuals in the data, the adversary
trajectory is one of the original trajectory in the data;

2. if the adversary is assumed to be an individual not present in the data, the adversary
trajectory is synthesized with a generative method trained on the original data;

3. if the adversary is assumed to be actively trying to maximize the overall knowledge
in the data, the adversary trajectory is built with an optimization method. For this
last scenario, the authors propose an adaptation of Simulated Annealing to mobility
data, with the addition of spatio-temporal constraints. The end goal of the method
is to generate a trajectory that, if followed by the adversary, would maximizes the
knowledge of an adversary while at the same time maintaining plausible movements
in the considered area.

The authors prove that, when constrained to plausible movements, it would be hard for
the adversary to target multiple individuals in an area as it would require him to survey
multiple locations and adopt peculiar patterns of movement. Moreover, the privacy risk
for the individuals is considerably lower than the theoretical worst-case scenario.

Other privacy risk assessment frameworks have been proposed in the literature. ARX
[87, 86] for example is an anonymization and privacy risk assessment tool, where the as-
sessment is done to verify the efficacy of the privacy preserving techniques applied on the
data. In essence, this means that the data is sanitized with some technique and metrics
are applied to the data in order to verify the efficacy of this technique. Currently, ARX
in mainly applied to tabular data and struggles with high dimensionality (30 attributes
dataset is considered high-dimensional). PRUDEnce is instead designed to be applied
alongside privacy protection techniques, to select the best approach to protect the data
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Figure 4: Taxonomy of privacy-preserving techniques for trajectory data

and maximize utility. Makri et al. [65] propose a privacy impact assessment methodology
based on the characteristics of the organization responsible for the data. However, from a
purely technical standpoint, this approach is a variation of the well known CRAMM [30]
and therefore does not provide significant technical information to be readily applied.

5 Privacy-Preserving Methods

Concerning the privacy-preserving techniques for trajectory data, as summarized in Fig-
ure 4, the analysis and review of the literature led to the identification of three main cat-
egories: anonymity based techniques (summarized in Table 3), differential privacy based
techniques (listed in Table 4) and methods exploiting generative models for protecting pri-
vacy (summarized in Table 5). All the methods described in the following aim at protecting
individual privacy while publishing mobility data, which can be then freely used for other
scopes, such as developing data-driven services and studying social and complex phenom-
ena (e.g., social well-being [81], virus spread [4], human predictability [80, 24], estimation
of air pollution [78], estimation of migration flows [96], etc.).

5.1 Privacy protection by Anonymity

Anonymity based protection techniques have the goal of reducing the probability of trajec-
tory identification by public information. They are suitable in case trajectory data transfor-
mation for privacy protection is not to be performed at data-collection time. In the literature
related to temporal data privacy, three privacy models have been taken into consideration:
k-anonymity, l-diversity and t-closeness.
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5.1.1 Approaches based on k-Anonymity and its variants

Among the privacy models, k-anonymity [93] is one of the most extensively applied in
trajectory anonymity (see Section 3.4 for more details). The goal of k-anonymity is to guar-
antee that every individual object is hidden in a crowd of size k. In the standard tabular
setting, a dataset satisfies the property of k-anonymity if each released record has at least
(k-1) other records also visible in the release whose values are indistinct over the quasi-
identifiers; i.e., attributes that, in combination, can uniquely identify individuals, such as
birth date and gender. In k-anonymity techniques, methods such as generalization and sup-
pression are usually employed to reduce the granularity of representation of quasi-identifiers.
The method of generalization generalizes the attribute values to a range in order to reduce
the granularity of representation. For instance, the city could be generalized to the region.
Instead, the method of suppression, removes the value of an attribute.

In the case of trajectory data, where each record is a temporal sequence of location vis-
ited by a specific person, the above dichotomy of attributes into quasi-identifiers (QI) and
private information (PI) does not hold any longer: here, a (sub)sequence of locations can
play both the role of QI and the role of PI [71]. To see this point, consider the case where the
attacker may know a sequence of locations visited by some specific person P : e.g., by shad-
owing P for some time, the attacker may learn that P was in the shopping mall, then in the
park, and then at the train station, represented by the trajectory. The attacker could employ
such sequence to retrieve the complete trajectory of P in the released dataset: this attempt
would succeed, provided that the attacker knows that P ’s trajectory is actually present in
the dataset, if the known trajectory is compatible with (i.e., is a sub-trajectory of) just one
trajectory in the dataset. In this example of a linking attack in the trajectory domain, the
sub-trajectory known by the attacker serves as QI, while the entire trajectory is the PI that
is disclosed after the re-identification of the respondent. Clearly, as the example suggests,
is rather difficult to distinguish QI and PI: in principle, any specific location can be the
theater of a shadowing actions by a spy, and therefore any possible sequence of locations
can be used as a QI, i.e., as a means for re-identification. As a consequence, distinguishing
between QI and PI among the locations of a trajectory means putting artificial limits on
the attacker’s background knowledge; since most of the anonymity based techniques need
assumption on the attacker’s knowledge the approach is to make it as liberal as possible,
in order to achieve maximal protection. In other words, the radical and typical assump-
tion used is that any sub-trajectory that can be linked to a small number of individuals is a
potentially dangerous QI and a potentially sensitive PI.

With this characteristic in mind, different papers proposed methods for making a trajec-
tory dataset k-anonymous. Abul et al. [1] study the problem of privacy-preserving pub-
lishing of trajectory data and propose the notion of (k, δ)-anonymity for movement data,
where δ represents the possible location imprecision. In particular, this is a novel concept
of k-anonymity based on co-localization that exploits the inherent uncertainty of the mov-
ing objects whereabouts. In this work authors also propose an approach, called Never Walk
Alone (NWA), for obtaining a (k, δ)-anonymous movement data. The method is based on
trajectory clustering and spatial translation. In order to compute the trajectory similarity
NWA applies Euclidean distance. This makes NWA only applicable to trajectories with
equal length. Thus, the same authors in [2] propose W4M exploiting the EDR-based time
tolerant distance. In particular, it groups k similar trajectories by using a greedy clustering
based on the EDR distance, and then exploits the minimum space translation via spatio-
temporal editing to force all the trajectories of a cluster to be sufficiently similar with its
center trajectory. Unfortunately, a successive work [107] proved that in general, these ap-
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Table 3: Summary of methods based on Anonymity Models.
Name Authors & Reference Year Privacy Model Strategy Data

Real Synthetic
- Terrovitis et al. [102] 2008 k-anonymity suppression !

NWA Abul et al. [1] 2008 (k, δ)-Anonymity
clustering,

spatial translation ! !

- Nergiz et al. [77] 2009 k-Anonymity clustering ! !

- Yarovoy et al. [114] 2009 k-Anonymity generalization ! !

KAM-REC Monreale et al. [70] 2010 k-Anonymity generalization !

W4M Abul et al. [2] 2010 (k, δ)-Anonymity
clustering,

spatial translation ! !
Swap

Location Domingo-Ferrer et al. [26] 2012 k-Anonymity
clustering and
permutation ! !

ICBA Gurung et al. [41] 2014 k-Anonymity clustering ! !

SeqAnon Poulis et al. [85] 2014 km-anonymity generalization ! !

GLOVE Gramaglia et al. [37] 2015 k-Anonymity generalization !

WCOP Kopanaki et al. [53] 2016
Personalized

(k, δ)-Anonymity
clustering,

spatial translation !

SC-TDP Li et al. [57] 2016 k-Anonymity
clustering and

traj. segmentation ! !
- Mohammed et al. [69] 2009 LKC-privacy global suppression

CAST Monreale et al. [72] 2011 c-safety
semantic location

generalization !

- Chen et al. [15] 2013 LKC-privacy local suppression ! !

SLAT Liu et al. [61] 2018 (α,K,L)-privacy

local suppression
and attribute

generalization !

DPPP Yao et al. [113] 2019 (l, α, β)-privacy location perturbation !

- Tu et al. [108] 2019

k-anonymity,
l-diversity,
t-closeness generalization !

proaches offer trajectory k-anonymity only for δ = 0, i.e., when each cluster contains at
least k identical trajectories. Clearly, in this case the uncertainty of trajectory is no longer
exploited. In 2016, to improve the quality of the anonymized trajectories Li et al. [57]
propose an alternative approach to obtain a (k, δ)−anonymity trajectory dataset. In partic-
ular, they introduce a segment clustering-based privacy-preserving algorithm which first
divides the original data into blocks of similar trajectories and then, partitions trajectories
belonging to each block into segments based on the minimum description length principle.
The derived segments are anonymized by using a cluster-constraint strategy and guaran-
teeing that each clustering group satisfies (k, δ)− anonymity.

Kopanaki et al. [53] extended the (k, δ)-anonymization approaches to the aim to take into
consideration different user privacy requirements. This approach first applies a trajectory
segmentation to partition the trajectories into sub-trajectories. This transformation allows
the clustering algorithm to discover similarities between the trajectories and to assign the
respective partitions into clusters useful for applying the spatio-temporal translation and
obtain the required anonymization. Since this setting requires personalized privacy re-
quirements, the distortion applied in each cluster depends on the minimum value of δ
required by the members of that cluster. The idea of personalized privacy in trajectory data
has been introduced by Mahdavifar et al. [64] which considers each trajectory associated
with the number of trajectories from which it should be indistinguishable (i.e., its privacy
expectation). As a consequence the approach applies a clustering based approach that takes
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into account similarities of trajectories also in terms of privacy expectation.
In [77] Nergiz et al. provide privacy protection in trajectory data by an approach based on

two main steps: (1) first enforcing k-anonymity, meaning every released information refers
to at least k users/trajectories; and (2) then, reconstructing randomly a representation of
the original dataset from the anonymization.

Another approach based on the concept of k-anonymity is proposed in [70], where Mon-
reale et al. present a framework for k-anonymization of movement data combining the
notions of spatial generalization and k-anonymity. Their approach is based on the idea
to hide locations by means of generalization, specifically, replacing exact positions in the
trajectories by approximate positions, i.e. points by centroids of areas obtained by spatial
clustering of characteristic points of trajectories. The main steps involved in the proposed
method are: (i) to construct a suitable tessellation of the geographical area into sub-areas in
a data-driven fashion, i.e., that depends on the input trajectory dataset; (ii) to apply a spa-
tial generalization of the original trajectories; (iii) to transform the dataset of generalized
trajectories to ensure that it satisfies the notion of k-anonymity by exploiting a prefix-tree
data structure representing the trajectories in a compact way.

Spatio-temporal generalization is taken into consideration to reach k-anonymity in [37],
where the GLOVE approach is proposed. The basic idea of this approach is that most
of the trajectories can be anonymized with limited loss of accuracy and only a smaller
portion of trajectories requires drastic generalization. As a consequence they suggest a
way to apply specialized generalization, i.e., each trajectory is affected by an independent
and minimal reduction of granularity that hides it among other k-1 similar trajectories.
The anonymization method computes for each pair of trajectories to be merged the cost in
terms of loss of spatio-termporal granularity and iteratively, merges two trajectories with
the smallest cost until each trajectory is k-anonymous.

Domingo-Ferrer and Trujillo-Rasua propose to reach the k-anonymity property in trajec-
tory data by microaggregation and location permutations [26]. In particular, they group
the trajectories into clusters of at least k similar trajectories and then, permute the locations
of the trajectories belonging to each cluster.

Poulis et al. [85] propose to adapt the notion of km-anonymity, introduced in [104] for
transaction data publishing, to the mobility context. In particular, this privacy model as-
sumes that an attacker has a background knowledge corresponding to a sub-trajectory of
m locations. The authors propose two anonymization algorithms applying generalization
to increasingly larger parts of trajectories. Both algorithms do not consider the temporal in-
formation associated to each location. The SEQANON approach applies a distance-based
generalization, creating generalized trajectories with locations that are close in proximity. It
aims at preserving the distance between original locations. The SD-SEQANON approach
considers the presence of a location taxonomy that enables a generalization that exploits
the semantic similarity of trajectories. This algorithm tends to generalize trajectories whose
locations are typically slightly more distant but much more semantically similar.

Most of these anonymization techniques do not take into consideration the actual road-
network constraints. Gurung et al. [41] is one of the few works that propose a method that
guarantees k-anonymity of trajectory data while generating trajectories following the road-
network constraints. The anonymization approach is based on a trajectory clustering phase
applied after eliminating records involving infrequent roads. The road-network constraints
are especially enforced when computing the representative trajectory in a cluster.

All the anonymization techniques described so far are based on the assumption that it is
hard to know for each trajectory data points representing QI for the individual. In the lit-
erature there exist methods, such as those introduced in [114, 102] that although deriving
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spatio-temporal QI in the real-world is not an easy task, assume that QI may be provided
directly by the users when they subscribe to the service, or be part of the users’ personalized
settings, or they may be found by means of statistical data analysis or data mining. Based
on these assumptions these works designed anonymization algorithms that protect against
adversaries exploiting the knowledge of QI. The approach presented in [114] is based on
the idea that different individuals may have different QI, because in mobility it is not re-
alistic to assume that a set o locations and time intervals can be QI for all the individuals
in the data. As a consequence, anonymization groups associated with different individual
trajectories may not be disjoint. Therefore, they introduce a variant of k-anonymity model
that takes into consideration the possibility to re-identify individuals by combining dif-
ferent anonymization groups. In order to counter this type of privacy attacks and satisfy
the k-anonymity property, Yarovoy et al. propose two approaches exploiting the space-
generalization called Extreme Union and Symmetric Anonymization that differ in the strategy
used to maintain under control the information loss that could derive from the overlapping
of the anonymization groups which might force revisiting earlier spatial generalizations.

Terrovitis and Mamoulis [102] devise an anonymization approach that protects trajectory
data against a specific number of adversaries that have the opportunity to reconstruct a
subset of locations and link them to specific individual trajectories in the published data.
In order to protect individuals against this set of adversaries they suggest an algorithm
aiming at suppressing from the trajectories the dangerous data points. Since identifying
the optimal set of points to be suppressed with the minimum possible information loss is
an NP-hard problem, they propose a greedy heuristic solution that iteratively suppresses
locations, until the privacy constraint is met. This approach simulates each possible attack
that an adversary can conduct and then resolves the identified privacy breaches.

5.1.2 Approaches based on diversity of sensitive information

All the privacy techniques discussed in the previous section (Section 5.1.1) are able to
counter the trajectory linking attack by releasing groups of trajectories with minimum size
k which are indistinguishable. Unfortunately, this property is not enough to counter at-
tribute linking attacks that enables to derive sensitive information when individuals of the
same anonymity group share similar values on some sensitive attributes. In the mobil-
ity literature there exist two different settings: protecting against the inference of sensitive
information associated to each trajectory [69, 15, 52, 61, 113] and protecting against the
inference of sensitive location data [72, 108].

The first category of approaches aims at defending the published records, composed by
pairs of trajectories and sensitive attributes (e.g., disease) against two types of attacks:
record linkage attack, which succeeds in case a trajectory in the database is so specific that
not many individuals match the same data, and attribute linkage attack, which succeeds
when a sensitive value occurs frequently with some trajectory and even if the record of an
individual is not unique the adversary can infer the sensitive value.

Mohammed et al. [69] introduce a privacy model named LKC-privacy requiring that
for each sub-trajectory with maximum length L in a trajectory database exist at least K-1
trajectories and the confidence of inferring any sensitive attribute value is not greater than
C. They also propose an anonymization technique that transforms the original database
by global suppression of dangerous locations in order to enforce that requirement. In this
context global suppression means that if a location is chosen to be suppressed, all instances
of the location in the database are suppressed. This implies significant deterioration in
the quality of the data. In order to improve the data quality in [15] Chen et al. some
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years later propose a framework exploiting both local and global suppression to satisfy the
LKC-privacy. Liu et al. [61] propose an extended version of the LKC-privacy model that
considers also the protection of sensitive locations. The privacy model is called (α,K,L)-
privacy and requires that each sub-trajectory at most L non-sensitive locations is shared
by at least K trajectories and the probability to infer any sensitive location or any sensitive
value is less than α. They also describe an algorithm for the enforcing of this privacy
property called SLAT which combines trajectory splitting with location suppression and
sensitive value generalization.

Another approach that is also able to prevent the similarity attack is that one presented
in [113]. It protects the sensitive values by using perturbation, i.e., by adding or deleting
some moving points and without changing any sensitive attribute. This approach guaran-
tees a trajectory transformation that ensures the (l, α, β)-privacy requiring l-diversity of the
sensitive value, α-sensitivity, i.e., the probability to infer sensitive value is less than α, and
β-similarity, i.e., the probability to infer that an individual possesses some sensitive value
of a specific category is below β.

The second category of approaches [72, 108] considers the publication of trajectory data
without any sensitive value assigned. Here, the only sensitive information to be protected
is the sensitive locations. This case could be seen as a special case of the context presented
by Liu et al. [61] where there is no sensitive attribute. Monreale et al. in [72] propose the pri-
vacy protection of sensitive locations of semantic trajectories, i.e., trajectories enriched with
contextual information, by using a generalization techniques of the different visited places
guided by a place taxonomy. The algorithm transforms the original trajectory dataset in
a way that the c-safety property is satisfied; in particular this privacy model provides an
upper bound c to the probability of inferring that a given person, observed in a sequence
of non-sensitive places, has also stopped in any sensitive location.

Lastly, Tu et al. [108] considers the setting where a trajectory is formed by a series of lo-
cations which may contain several PoIs, but some locations may have limited categories of
PoIs or their distributions differ from the whole city. As a consequence, the authors pro-
pose an approach for the trajectory generalization that prevents both semantic attack and
re-identification attack, by assuring k-anonymity, l-diversity and t-closeness at the same
time. In particular, the proposed method during the merging operation of trajectories com-
bines neighboring regions to make the resulting region satisfying l-diversity. This means
that the number of distinct POI categories in that resulting region needs to exceed l. Sim-
ilarly, in order to achieve t-closeness neighboring regions are merged until the divergence
between its POI distribution and that of the entire city is no larger than the threshold t.

5.2 Privacy protection by Differential Privacy

In the mobility literature different approaches based on the differential privacy model [27]
have been proposed. A differential private dataset can be obtained by using different mech-
anisms. The most used are: the Laplace mechanism, which adds Laplacian noise a vector
of numerical values [27], and the exponential mechanism, which randomizes a probability
distribution over a discrete, and finite set of values [66]. In both mechanisms the pertur-
bation introduced in the data is calibrated by the parameter ε called privacy budget. The
general idea of this privacy model is that regardless of the background knowledge, an ad-
versary accessing to the private trajectory dataset comes to the same conclusion whether an
individual’s trajectory is included in the dataset or not. Thus, the differential privacy model
can assure the individual that the released trajectory will not leak their privacy whether or
not their trajectory is in the dataset.
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Table 4: Summary of methods based on Differential Privacy.
Name Authors & Reference Year Privacy Model Mechanism Data

Laplace Exponential Real Synthetic
- Chen et al. [14] 2012 ε-differential privacy ! !

n-grams Chen et al. [13] 2012 ε-differential privacy ! ! !

SDD Jiang et al. [49] 2013 ε-differential privacy ! !

DP-Where Mir et al. [68] 2013 ε-differential privacy ! ! !

DPT He et al. [42] 2015 ε-differential privacy ! ! !

- Hua et al. [45] 2015 ε-differential privacy ! ! !

PrivTree Zhang et al. [119] 2016 ε-differential privacy ! !

- Li et al. [58] 2017 ε-differential privacy ! ! !

SafePath Al-Hussaeni et al. [3] 2018 ε-differential privacy ! !

DP-Star Gursoy et al. [40] 2019 ε-differential privacy ! ! ! !

NTPT Zhao et al. [120] 2020 ε-differential privacy ! !

PDPDP Tian et al. [105] 2017 PDP per trajectory ! !

PLDP-TD Deldar and Abadi [22] 2018 PDP per location ! !

PDP-SAG Deldar and Abadi [23] 2019 PDP per location ! ! !

OPTDP Cheng et al. [17] 2022 PDP per loc. and traj. !

5.2.1 Approaches exploiting Laplace Mechanism

Most of the approaches using the differential privacy model for guaranteeing privacy in
trajectory data are based on the Laplace mechanism. Typically, they first transform the
original trajectory exploiting a specific data representation that may be randomized by
the differential privacy mechanism and then, the private data representation is used to
generate the private set of trajectories. In general, these approaches aim at minimizing
the noise added with the Laplace mechanism so that data utility is preserved as much as
possible. Many of these works measure data utility by evaluating specific tasks after the
protection mechanism is applied. Information loss therefore may vary depending on the
type of data and approach.

This data representation enables the approximation of trajectory distribution in the dataset
to be made private. Most of the solutions in the literature adopt a hierarchical decomposition
approach, which recursively splits the trajectories into groups based on a similarity func-
tion and computes a noisy trajectory count for each group, until all noisy counts are less
than a certain threshold. One of the first works based on this methodology is [14] that uses
a prefix tree to represent the trajectory data with a hierarchical structure grouping trajec-
tories having common prefix of location subsequences. The proposed method exploits a
location taxonomy and the Laplace mechanism for efficiently constructing a noisy private
prefix tree that considers multiple levels of spatial generalization. In particular, in each it-
eration, this approach first creates children nodes of the leaves of the previous iterations.
These children correspond to the highest level of generalization of each potential location.
Then, it adds Laplacian noise to the count of trajectories associated to each generalized
node. Each node with a noisy count below a threshold is not expanded, while nodes with
noisy counts above the threshold are expanded with nodes for all locations using the lower
level of generalization. This process is repeated until a user-defined tree height is reached.
Then the prefix tree is pruned for preserving only nodes representing the lowest level of
generalization and the noisy counts of each node are made consistent across the levels, in
order to guarantee that the count of each node is not less than the sum of counts of its
children. As final step the resulting prefix tree is used to generate the differentially pri-
vate trajectories. This approach is especially designed for sequence data, so sequence of
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locations without any temporal information. However, the authors also describe how it
is possible to extend the approach to trajectory data, where each trajectory is a sequence
of pairs composed of (location, time). In this case, each node corresponds to a pair (loci,
ti) and then, for expanding such node in the prefix tree the combinations of all locations
and the timestamps greater than ti should be taken into consideration. Unfortunately, the
existence of the temporal dimension makes the algorithm not efficient due to the high-
dimensionality and sparseness of data. This problem is addressed by Al-Hussaeni et al. [3]
that propose an efficient and scalable differential private algorithm, called SafePath. As [14],
they models trajectories in a prefix tree structure but use two different tree taxonomies: one
for the location generalization and one for the time generalization. This is useful because
helps in identifying empty nodes (i.e., nodes which are not representing any trajectory) so
that they can filtered out as early as possible, for preventing false trajectories from being
constructed. SafePath significantly reduces the runtime with its pruning strategy while data
utility is greatly boosted.

A different tree structure is used by Chen et al. in [13] where first trajectory data are
represented by n − grams model corresponding to a Markov model of order (n − 1). In
other words, each trajectory is described as transition probabilities based on a past history
of (n − 1) locations. Based on the derived n − gram representation of the trajectories the
authors apply a tree construction procedure similar to that on described in [14], but without
using any location taxonomy, so without any generalization level. In this case the Laplacian
noise is added to the counts associated to the n− grams.

The limitation of these approaches is that they require a limit to the recursion depth in
the splitting operation and that the noise to be added to counts has to be proportional to
recursion depth. The choice of this parameter is problematic because it affects the noise and
so, the data utility. To overcome this limitation Zhang et al. [119] propose an algorithm that
also adopts the hierarchical approach but completely eliminates the dependency on a pre-
defined recursion depth. The algorithm, called PrivTree, exploits a particular version of the
Laplace mechanism which enables the use of only a constant amount of noise when decides
whether a sub-domain should be split, without worrying about the recursion depth. The
noise addition bound is possible because, as proved by Zhang et al., to publish a sequence
one can add a noise amount that is not proportional to the sensitivity of that sequence.

The above approaches are based on the assumption that trajectories have a uniform speed
over the time. Since, this assumption is not realistic, He et al. [42] propose an approach
that exploits a set of hierarchically organized reference systems, derived by spatial dis-
cretization at different resolutions, to capture the fact that movements at slow speeds can
be summarized using a fine granularity reference system, while movements with higher
speeds are summarized using coarser granularity reference systems. The authors construct
for each reference system a prefix tree that are perturbed by using the Laplace mechanism
on the node counts. The standard process is followed with the only difference that the
trajectories are synthetically generated by using a strategy that preserves the correct direc-
tionality in the output trajectories.

A prefix tree structure combined with the Laplace mechanism is also used in [120]. The
main difference with respect to the previous works is that no spatial or temporal hierarchy
is used and each node in the prefix tree represents the information about a segment of
the trajectories and not a location. The approach takes into account also the presence of
contextual information that could be used by an attacker and the differential privacy is
used to randomize statistics like frequency and count of the segments.
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5.2.2 Approaches exploiting the Exponential Mechanism

Although most of the approaches for privacy-preserving trajectory publication are based
only on the Laplace mechanism, there exist different methods that also exploits the Expo-
nential one [66].

As an example, Jiang et al. [49] present an algorithm that randomizes an input trajectory
by sampling a suitable distance and direction at each position to publish the next possible
position of the trajectory. These distance and direction values are sampled from exponen-
tial distributions guaranteeing strong differential privacy while maintaining a good quality
of the trajectory data. Given a trajectory, this approach does not randomize the starting and
ending point. Other approaches combine Laplace and Exponential mechanisms to gener-
ate synthetic private trajectories. Mir et al. [68], for instance, propose DP-WHERE which
is based on a previous algorithm called WHERE [48], which is able to produce models
describing how populations move within a metropolitan area. WHERE, starting from ag-
gregations computed on human trajectory data, reproduces populations density over the
time in a region. DP-WHERE can be seen as a variant of this algorithm that generates mo-
bility traces from perturbed distributions of the extracted mobility features by mainly using
the Laplace mechanism. The approach extracts and perturbs mobility features such as the
probability distribution of Home cell over the grid cells of the territory, the probability dis-
tribution of Work cell over the grid cells, the Commute Distance distribution, i.e., distance
between home and work, etc. While most of the features are perturbed by the Laplace
noise, for making the Commute Distance distribution differentially private the authors pro-
pose a strategy that first, constructs the distribution by histogram bins guaranteeing dif-
ferential privacy following the strategy already used in [20], that exploits the Exponential
mechanism; and then, the histogram counts are perturbed by adding a Laplace noise.

Gursoy et al. [40] also combine the two mechanisms for achieving differential privacy
with a completely different approach. They propose DP-STAR that is based on five main
steps: one dedicated to pre-processing, four dedicated to preserve different types of spatial
utility in trajectory data and one dedicated to the synthetic and private trajectory gener-
ation. In the pre-processing phase, DP-STAR represents each trajectory by its most repre-
sentative points, that are able to summarize and characterize the overall movement. In the
second step, the algorithm partitions the territory by using a density-aware adaptive grid
structure, which is able to obtain small cells in high density regions and coarser cells in low
density areas. The third phase is dedicated to the extraction of a trip distribution from the
trajectory data; the forth step constructs a mobility model based on a first-order Markov
model to have synthetic trajectories able to mimic the mobility patterns of actual trajecto-
ries; and the fifth phase tries to estimate the route length by using only the representative
points contained in each trajectory. Finally, the last step generates the synthetic trajectory
exploiting the features extracted in the previous steps. In order to guarantee the differen-
tial privacy DP-STAR uses the Laplace mechanism for the steps 2-4 while the Exponential
mechanism is used for the route length estimation because it requires to compute the me-
dian length of the trajectories that start in a cell ci and end in a cell cj . For computing this
value Gursoy et al. propose a variant of the approach presented in [20].

A completely different schema for privacy-preserving trajectory publishing is presented
in the works of Hua et al. and Li et al. [45, 58], where two differentially private algorithms
are used: a differentially private k-means clustering is used for spatial generalization ex-
ploiting the exponential mechanism for sampling a clustering partition from an exponential
distribution; and an algorithm for the trajectory publication based on random selection of
generalized trajectories with locations drawn from generalized space and the addition of a
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Laplace noise to the numbers of those trajectories.

5.2.3 Personalized Differential Privacy

Most of the privacy-preserving approaches developed for trajectory data assume that indi-
viduals have the same privacy expectation and thus, the algorithms are designed to guar-
antee the same level of privacy protection for all individuals. This assumption can lead
to a situation where some individuals receive insufficient privacy and while other have an
excess of privacy protection. To overcome this problem, in 2015 Jorgensen et al. [51] pro-
pose a new privacy model called Personalized Differential Privacy (PDP), which enables
the specification of the privacy requirements at individual level. In the context of trajectory
data only few works adopted this personalized approach even if it is promising especially
from the utility viewpoint [105, 22, 23, 17] .

Tian et al. [105] assume that in the dataset there is a trajectory for each user who has the
own individual privacy preference for the whole trajectory. In order to guarantee the pri-
vacy protection required by each individual they propose an approach based on two main
steps: trajectories generalization and PDP trajectories generation. The trajectory general-
ization is obtained by applying a Hilbert Curve based location clustering approach and
using the clustering result for the spatial generalization of each timestamp. Since we are
in a setting where each user has a different privacy requirement then, the centroid cannot
be used to represent the locations belonging to the same location cluster. Thus, the authors
propose an approach to compute the representative element of a cluster on the basis of the
contribution of the different users which varies with their privacy expectation. The pro-
posed strategy assures that the location belonging to the conservative user will contribute
less in the final representative element than the location belonging to the more liberal user.
The location generalization leads to have a decrease of the distinguished locations at each
timestamp and thus, it will help the compact representation of the trajectory data by using
a prefix tree structure that assumes common prefixes of the trajectories under analysis. The
prefix tree is made differentially private by adding Laplacian noise to the different nodes
and it is used for the trajectory generation.

This approach assumes the same privacy requirement for each location. Deldar and Abadi
[22] propose an approach to construct a personalized noisy trajectory tree based on the un-
derlying trajectory database and different privacy protection requirements of the involved
locations. Each node in the tree represents a sub-trajectory and a personalized noise is
added to its count. In this work the privacy requirement does not depend on the user
expectation but on the location itself. After the construction of the noisy trajectory tree,
Deldar and Abadi enforce some consistency constraints to guarantee that the noisy count
of each non-leaf node should be equal to the sum of its children’s noisy counts. The same
authors address also the problem to satisfy personalized differential privacy of trajectory
data in case it is enriched with sensitive non-spatiotemporal attributes [23]. To solve the
problem they consider for each node of the tree representing a subtrajectory also a taxon-
omy tree for the generalization of the sensitive attribute to be generalized according to the
privacy requirement expressed by the trajectory’s user.

The above works set different privacy level for different users or different locations, but
they cannot achieve privacy protection on both user and location level. Moreover, they
require to set the privacy requirement as input. These two issues have been recently ad-
dressed by Cheng et al. [17] that propose an approach that is able to assign to each user
location neither the privacy requirement derived in a data-drive fashion or defined by the
user. For automatically deriving the privacy needs, the approach takes into consideration
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Table 5: Summary of methods based on Generative Models.
Name Authors & Reference Year Generative Model Data

Real Synthetic
- Kulkarni et al. [55] 2018 SGAN,RGAN, RNN-LSTM !

TrajGAN Liu et al. [60] 2018 GAN
- Yin and Yang in [115] 2018 GAN !

LSTM-TrajGAN Rao et al. [91] 2021 LSTM-GAN !

LSTM-PAE Zhan et al [118] 2022 LSTM Auto-Encoder !

the type of user location and assigns a different protection need for example to a loca-
tion that is a stay-point of a frequent sub-trajectory with respect to a location that is stay-
point of an infrequent sub-trajectory. In particular, Cheng et al. propose an approach that
first builds a probabilistic mobility model for trajectories, i.e., a time-dependent first-order
Markov chain on the set of locations. Second, it applies a clustering of the locations on dif-
ferent trajectories based on the mobility model and a semantic similarity function, and get
the best semantic location matching results between different trajectories and the seman-
tic similarity under this matching. Given the result of this matching, it extracts the most
representative template trajectories according to the semantic similarity. The template tra-
jectories receive a privacy level that depend on their type of locations. Finally, according to
the matching results of template trajectory and other trajectories, the privacy levels of all
trajectory locations are obtained. Once defined the privacy level of all trajectory based on
their similarity with specific templates, the corresponding privacy budget is allocated and
the final publishable trajectory data is obtained.

5.3 Privacy by generating synthetic trajectories

One of the main issues that we need to address during the design and the application of any
privacy-preserving technique on trajectory data as well as on any other type of data is the
trade-off between protection and data utility. This aspect is really hard to control: a very
good approach may obscure the trajectory data perfectly protecting the spatio-temporal
privacy of users, but cannot ensure the data quality. This is a great issue because data
becomes useless from the analytical viewpoint.

As alternative to the classical approaches for guaranteeing privacy, some researchers pro-
pose to exploit the advancements in machine learning to develop a new family of privacy
protection techniques for trajectory data using generative models based on deep learning
[115, 55, 60, 91, 118]. In particular, most of them suggest to use generative model based on
Generative Adversarial Networks (GANs [36]), i.e., neural network models able to generate
high-quality synthetic data which follow the same distribution of training data. Typically,
a GAN is composed of two neural networks: a generator and a discriminator. Their com-
bination is able to learn the original data distribution by playing a minimax game. The
trajectory discriminator has the goal to understand whether the trajectory samples is a real
trajectory or is synthetically generated. Thus, the goal of the trajectory generator is to gen-
erate high-quality synthetic trajectories that can fool the trajectory discriminator.

Kulkarni et al. [55] presents the first experimental analysis on the use of different deep
learning models for synthetically generating trajectory data. The experiments evaluate dif-
ferent factors such as the time required by each model, and more important the privacy-
quality trade-off of the generated trajectories. To asses the privacy this work considers a
location-sequence attack [95], and a membership interference attack [90]. This work com-
pares different network architectures based on recurrent neural networks, such as Char-
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RNN [39], RNN-LSTM [44], and recurrent highway networks [123], and two based on
GANs: SGAN [116] and RGAN [31].

An experimental analysis of the privacy guarantee of generative models is also presented
by Yin and Yang in [115]. They propose to use a GAN to generate a synthetic location
density matrix with a better privacy-reality trade-off than that of the existing noise based
approaches for differential privacy [5]. Note that, a location density matrix is an aggregate
version of mobility data that is used instead of individual trajectories. The idea of using a
GAN for protecting privacy is based on the fact that the generator introduces some noise
during the generation, thus it is possible to use that noise instead of a differential privacy
approach. Clearly, the privacy protection directly depends on the training goodness: a
better data generation implies lower privacy. As a consequence, one should determine the
appropriate number for the training iterations to balance this privacy-quality trade-off.

Liu et al. [60] propose TrajGAN, a theoretical framework based on a GAN model for
synthetically generating human trajectories and discusses the possible challenges that can
derive from using this kind of approach. For example, possible drawbacks could be the
loss of occasional travels of people or privacy violation in case of overfitting of the model
which thus is not able to generalize high-level patterns in trajectories. Rao et al. [91],
inspired by the vision of the TrajGANs [60], propose an implementation of that theoretical
framework called LSTM-TrajGAN. This approach consists of three main components: (i) a
Trajectory Encoding Model, which encodes location coordinates, temporal attributes, and
other attributes such as point of interest (POI) category; (ii) a Trajectory Generator, which
takes random noise and original trajectories as inputs to generate synthetic trajectories; and
(iii) a Trajectory Discriminator, which takes trajectories as inputs and determines them as
real or synthetic. Both the Trajectory Generator and Discriminator are based on the Long
Short-Term Memory model suitable for data with sequential nature.

Recently, Zhan et al. [118] proposed an alternative to the use of GANs for guaranteeing
privacy in trajectory data. In particular, the proposed approach exploits the adversarial
learning to better balance the potential trade-off between privacy and utility. It is based
on an LSTM auto-encoder with three main components: (i) a Mobility Prediction Unit that
takes as input the trajectory data and optimizes the prediction task representing the means
for measuring utility; (ii) a User Re-identification Risk Unit, which is a neural network that
solves the task to re-identifying the user of a trajectory; (iii) Data Reconstruction Risk Unit
which evaluate the differences between the reconstructed trajectory and the original input
trajectory.

6 Conclusion

Privacy issues in mobility and location data are recognized as an important and challeng-
ing problem from both the scientific and legal standpoint. Given the widespread devel-
opment and adoption of location-based applications and technologies, the research con-
cerning techniques for an empirical assessment and mitigation of privacy risk is of the
utmost importance. This survey discussed the advancement of the scientific literature in
privacy-preserving mobility data publication, focusing on adversary attacks, privacy mod-
els, privacy risk assessment techniques and privacy protection and mitigation algorithms.
There are several interesting open directions for future research in this area. All the privacy-
preserving techniques reviewed in this survey in the design of the mitigation strategy as-
sume a worst-case scenario for the adversary attack models. This often leads to the very
hard challenge to maintain under control the utility of the mobility data under analysis.
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Unfortunately, most of the time the theoretical attack model is not realistic because assumes
for example a knowledge in posses of the attacker that is very hard to collect. This problem
has been highlighted in [84] that proved that by considering an adversary who moves on
the territory to collect the information for attacking the target respecting spatio-temporal
environmental constraints, the risk caused by such adversary is lower than the theoret-
ical worst-case adversary model. This considerations suggest that, in order to improve
the trade-off between privacy and data utility, it would be interesting to design mitigation
strategies that take into consideration more realistic adversarial attacks and that use the
information about the empirical risk evaluation that can be provided by privacy risk as-
sessment frameworks. An approach that focus on mitigating the actual privacy risk could
be beneficial for the data quality while assuring privacy protection.

The combined use of privacy risk assessment and mitigation strategies could also help the
research on personalized privacy. Current research works assume that the privacy prefer-
ences are defined by the individuals through a specific function, on the basis of the type of
locations or by patterns matching some templates recognized as risky. The use of privacy
risk assessment tools could help in identifying with a data-driven approach the actual risky
locations for an individual, assigning to each location or sub-trajectory the corresponding
risk. In other words, the personalization of the privacy preferences could be determined
looking at the actual risk. Analyzing the literature it is evident that the study of personal-
ized privacy in the context of mobility data is an open and very promising field. Most of the
works are based on the personalized differential privacy and only very few works consider
the personalization principle for other privacy models. Although determining the privacy
budget is recognized as a hard task even for privacy experts, none of these works addresses
the problem of how individuals can express the privacy budget corresponding to the their
privacy expectation with some level of awareness. This particular aspects represents a gap
of fundamental importance for giving to individuals the ability to share their data with
awareness and control. Finally, even though research proposing the use of synthetic tra-
jectories for privacy protection is promising and interesting, the current approaches are
mostly based on empirical evidence on the privacy guaranteed. Future research in this
context should focus also on the development of strategies that by design incorporate a
privacy mechanism more controllable from the onset and formally provable.
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[68] D. J. Mir, S. Isaacman, R. Cáceres, M. Martonosi, and R. N. Wright. DP-WHERE: differentially
private modeling of human mobility. In IEEE BigData, pages 580–588. IEEE Computer Society,
2013.

[69] N. Mohammed, B. C. M. Fung, and M. Debbabi. Walking in the crowd: anonymizing trajectory
data for pattern analysis. In CIKM, pages 1441–1444. ACM, 2009.

[70] A. Monreale, G. L. Andrienko, N. V. Andrienko, F. Giannotti, D. Pedreschi, S. Rinzivillo, and
S. Wrobel. Movement data anonymity through generalization. Trans. Data Priv., 3(2):91–121,
2010.

[71] A. Monreale, D. Pedreschi, R. G. Pensa, and F. Pinelli. Anonymity preserving sequential pat-
tern mining. Artif. Intell. Law, 22(2):141–173, 2014.

[72] A. Monreale, R. Trasarti, D. Pedreschi, C. Renso, and V. Bogorny. C-safety: a framework for
the anonymization of semantic trajectories. Trans. Data Priv., 4(2):73–101, 2011.

[73] E. Murati and M. Henkoja. Location data privacy on maas under gdpr. Eur. J. Privacy L. &
Tech., page 115, 2019.

[74] M. Nanni, G. L. Andrienko, A. Barabási, C. Boldrini, F. Bonchi, C. Cattuto, F. Chiaromonte,
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generalization-based approach. Trans. Data Priv., 2(1):47–75, 2009.

[78] M. Nyhan, I. Kloog, R. Britter, C. Ratti, and P. Koutrakis. Quantifying population exposure to
air pollution using individual mobility patterns inferred from mobile phone data. Journal of
exposure science & environmental epidemiology, 29(2):238–247, 2019.

[79] OWASP. Risk rating methodology. url=http://ec.europa.eu/justice/data-protection/article-
29/documentation/opinion-recommendation/files/2014/wp216 en.pdf.

[80] L. Pappalardo, F. Simini, S. Rinzivillo, D. Pedreschi, F. Giannotti, and A.-L. Barabási. Returners

TRANSACTIONS ON DATA PRIVACY 16 (2023)



80 Anna Monreale, Roberto Pellungrini

and explorers dichotomy in human mobility. Nature communications, 6(1):1–8, 2015.

[81] L. Pappalardo, M. Vanhoof, L. Gabrielli, Z. Smoreda, D. Pedreschi, and F. Giannotti. An an-
alytical framework to nowcast well-being using mobile phone data. Int. J. Data Sci. Anal.,
2(1-2):75–92, 2016.

[82] E. Parliament. General data protection regulation. url=http://data.europa.eu/eli/reg/2016/679/oj.

[83] R. Pellungrini, L. Pappalardo, F. Pratesi, and A. Monreale. A data mining approach to assess
privacy risk in human mobility data. ACM Trans. Intell. Syst. Technol., 9(3), dec 2017.

[84] R. Pellungrini, L. Pappalardo, F. Simini, and A. Monreale. Modeling adversarial behavior
against mobility data privacy. IEEE Trans. Intell. Transp. Syst., 23(2):1145–1158, 2022.

[85] G. Poulis, S. Skiadopoulos, G. Loukides, and A. Gkoulalas-Divanis. Apriori-based algorithms
for km-anonymizing trajectory data. Trans. Data Priv., 7(2):165–194, 2014.

[86] F. Prasser, J. Eicher, H. Spengler, R. Bild, and K. A. Kuhn. Flexible data anonymization using
arx—current status and challenges ahead. Software: Practice and Experience, 50:1277 – 1304,
2020.
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