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Abstract. A popular technique for preserving privacy of individuals contained in any released data
is to first sanitize the data according to the t-closeness principle. This principle requires partitioning
rows of the original data into equivalence classes, in a way that the distribution of sensitive val-
ues in any class is sufficiently close, within a given threshold t, to their distribution in the original
data. Most existing methods for constructing t-close equivalence classes consider just one sensitive
attribute in the data, which is insufficient as many real-life datasets contain multiple sensitive at-
tributes; partitioning attempts for multiple sensitive attributes have thus far been unsatisfactory. We
present a method for generating t-close equivalence classes in the presence of multiple numerical
sensitive attributes, where each such attribute has its own privacy threshold. The equivalence classes
are generated in a way that minimizes information loss caused later by generalizing quasi identifier
values within each class. While finding an optimal solution for this problem is known to be NP-hard,
we show that our approach results in an acceptable solution in polynomial time.
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1 Introduction

The increasing sophistication of available data mining techniques beckons many businesses
to get their data sets mined, for extracting useful hidden information, by releasing their
data to third-party miners. Certain organizations, such as licensed medical centers and
hospitals, also have a need for a release of data in order to simply comply with govern-
mental regulations. The data to be released often contains uniquely identifying as well as
sensitive information about individuals. In order to maintain privacy of those individuals,
each individual’s identifying characteristics need to be dissociated, in the released data,
from their sensitive information. This dissociation is achieved by adequately sanitizing the
data prior to its release.

Consider a typical relational database table, with rows and columns, that needs to be
publicly released by its owner, for reasons such as third-party analysis or compliance with
legal mandates. The rows in the table may correspond to individuals, such as patients in a
hospital or customers of a retail store. The columns are attributes of those individuals, of
which there are three relevant kinds, namely explicitly identifying, quasi identifiers, and
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sensitive attributes. In order to publicly release the table, while still maintaining privacy of
its individuals, it is standard practice to first remove all its explicitly identifying columns,
like Name and Social Security Number. Removal of such columns is necessary to achieve
individual privacy, but not sufficient.

While any quasi identifier, like Age or Race, by itself does not uniquely identify an indi-
vidual, their combinations can come very close to that. In a well-known study, Sweeney [15]
showed that over 87% of the U.S. population is uniquely identifiable from just their Gender,
Birthdate, and Zip Code of residence. Although a more recent study by Golle [4] corrected
that figure to 61-63%, that is still a very high proportion. Removal of such columns is not
desirable, because that renders the data useless for mining purposes, thereby defeating the
sole purpose of its release. The table, therefore, needs to be sanitized in a different way.

A widely employed sanitization approach is to first horizontally partition the table into
groups of rows, called equivalence classes, and then generalize quasi identifiers of each row
just enough to ensure that the generalized quasi identifier values of all rows within an
equivalence class become identical. This way, even if the combination of an individual’s
quasi identifier values is in fact unique in the entire raw table, and an adversary knows
those values, they can at best only place that individual in its equivalence class, without
being able to further pinpoint their row in the publicly released sanitized table, with an
aim to unearth their exact sensitive attribute values, like Annual Salary or Blood Pressure.

Different sanitization techniques based on this approach vary essentially in the charac-
teristics of the constructed equivalence classes. For example, the k-anonymity technique
of Sweeney [16] requires each equivalence class to be of at least a certain size, and the l-
diversity technique of Machanavajjhala et al. [8] requires a sensitive attribute column of
all rows in any equivalence class to have at least a certain number of ”well-represented”
values. Our focus in this paper is on the popular t-closeness technique of Li et al. [6], which
was demonstrated by the authors to be an improvement over the aforementioned ones.
This technique requires the probability distribution of all sensitive attribute values in each
equivalence class to be sufficiently close, i.e. within a given privacy budget parameter t,
to that in the entire raw table, thereby limiting probabilistic inference of any individual’s
sensitive attribute values, despite that individual’s equivalence class being apparent.

1.1 Related Work

Although Li et al. [6] proposed this desirable property of equivalence classes, they did not
give any method to construct such classes. Soria-Comas et al. [14] developed a method for
the small class of tables in which no two distinct rows share the same sensitive attribute
value. While an earlier method of Cao et al. [2] does not suffer from this severe restriction,
their method still works only for tables with just one sensitive attribute.

It has long been noted that a method for achieving t-closeness over multiple sensitive
attributes is needed, because many real-life applications contain multiple such attributes.
As an example, even an ordinary blood test contains numerous sensitive readings, like LDL
and HDL cholesterol levels, hemoglobin count, calcium, potassium, and sodium levels, etc.
To date, there have been very few attempts at developing methods for creating equivalence
classes that satisfy t-closeness, in the presence of multiple such attributes.

Fang et al. [3] employ one privacy budget parameter t for all sensitive attributes. Subject-
ing all sensitive attributes to the same t is unrealistic, because in real-life, different sensitive
attributes are often sensitive to a different degree, requiring a different privacy parameter
for each. As an example, people are more concerned about keeping their medical condi-
tion private, than their salary. Moreover, their method partitions the set of all sensitive
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attributes into mutually disjoint subsets, and a separate t-close sub-table is published for
each such subset. This loses important associations among sensitive attributes that belong
to different published sub-tables.

The method of Wang et al. [17] also employs just one privacy budget parameter t, for a
composite sensitive value obtained by performing Principle Component Analysis, a method
developed in 1901 by Pearson [10], on all sensitive attribute values. Again, all sensitive
attributes are unrealistically subjected to just one privacy parameter, and reducing mul-
tiple sensitive attribute values to a single composite one introduces inaccuracies in the t-
closeness requirement over the constructed equivalence classes.

Recently, Sei et al. [12] developed a method for multiple attributes that simultaneously
behave as quasi identifiers as well as sensitive attributes. However, their method involves
insertion of some random rows to the original table, and modification of some existing
ones, thereby adversely affecting mining utility.

1.2 Our Contribution and Paper Organization

In this paper, we develop a method for partitioning rows of a given relational table that
contains multiple numerical sensitive attributes, each with its own given privacy budget
parameter, into equivalence classes that satisfy t-closeness with respect to all given privacy
parameters. Our method is based upon fragmenting the multi-dimensional space of all
sensitive attribute values in such a way that even a random dispersion of a predetermined
number of rows from each created fragment to equivalence classes results in formation of
acceptable classes. We then exploit the flexibility provided by the random choices made
available to us to lower the information loss incurred later due to generalizing the quasi
identifier values in each class. The resulting sanitized table thereby possesses higher utility
for mining.

The rest of this paper is organized as follows. Section 2 presents our mathematical frame-
work and notations used later. Some important notions presented in this section are repre-
senting equivalence classes as matrices, the earth mover’s distance, left-heavy probability
distributions, the t-closeness principle, and the complete lattice of all fragmentations of the
multi-dimensional sensitive attribute value space. Section 3 develops the two main phases
of our method, namely of finding a desirable fragmentation of the sensitive attribute value
space, and generating equivalence classes with low information loss. It also contains a
complexity analysis of these phases, and shows that they can be performed in polynomial
time. In most of the paper, our method is developed and explained for tables with exactly
two sensitive attributes. However, our method can be generalized in a straightforward
way for tables containing any arbitrary number of sensitive attributes. This section also
outlines how that generalization can be carried out. Finally, Section 4 concludes our work
and suggests some directions for future work.

2 Mathematical Preliminaries

In this section, we develop the necessary mathematical framework and notations used in
the rest of the paper. Even though our method is for any number of sensitive attributes
in a table, for ease of understanding, we develop it for tables with exactly two sensi-
tive attributes. Generalization of our method for a larger number of sensitive attributes
is straightforward, and outlined in Section 3.4.
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2.1 Multiplicity Matrix and Equivalence Class Matrices

Let X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} be the domains of all values that may
appear in the two sensitive attribute columns of the given table. We assume indices are
assigned in ascending order of values in these domains, i.e. x1 < x2 < · · · < xm and
y1 < y2 < · · · < yn. Note that not every combination of these values necessarily appears in
the table, while some combinations may appear in more than one row.

LetM be the m×n multiplicity matrix of values in X ×Y , i.e. for any i and j,M[i, j] is the
number of rows of the given table the sensitive value pair (xi, yj) appears in. We will be
primarily interested in the dispersion of these value pairs among the equivalence classes
constructed by our method. To that end, we define a possible equivalence class E to be any
m × n matrix, all whose values are within corresponding values ofM, i.e. for any i and j,
0 ≤ E [i, j] ≤M[i, j]. As expected,M itself is a possible equivalence class.

For any p×q matrixA, let |A| denote the sum of all its values, i.e. |A| =
∑p
i=1

∑q
j=1A[i, j].

If the given table contains T rows, then clearly, |M| = T , and for any equivalence class E ,
we have that 0 ≤ |E| ≤ T .

In order to be able to work with probability distributions, we letA denote the normalized
version of any matrix A, i.e. for any i and j, A[i, j] = A[i, j]/|A|. Clearly, |A| = 1, for any
A.

Row- and column-sums of matrices, as defined below, will be useful.

Definition 1 (Row- and Column-Sums). Let A be any p × q matrix. Then RA denotes the
p-vector of the row-sums of A, given by:

RA[i] =

q∑
j=1

A[i, j], for all 1 ≤ i ≤ p.

Also, CA denotes the q-vector of the column-sums of A, given by:

CA[j] =

p∑
i=1

A[i, j], for all 1 ≤ j ≤ q.

RM[i], for example, is thus the number of rows of the given table that contain the value
xi, andRM[i] is the fraction of rows containing that value. Other vectors, like CM, CM,RE ,
RE , etc. have similar intuitive meanings.

Figure 1 shows an example multiplicity matrixM for a table with 300 rows, m = 4, and
n = 3. Also shown in the figure is a sample equivalence class E with 20 rows, and the
normalized versions of these matrices, namely M and E . Vectors RM and CM shown in
the figure are the probability distributions of sensitive values in X and Y , respectively, in
the entire table. Similarly, RE and CE are their respective probability distributions in the
equivalence class E .

The t-closeness principle, to be defined precisely later in the paper, essentially requires
RE , for any equivalence class E , to be a close approximation of RM, and CE to be a close
approximation of CM.

2.2 The Earth Mover’s Distance

A popular measure of closeness between probability distributions over some totally or-
dered domain, such as the numerical values of a sensitive attribute in our context, is the
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y1 y2 y3 

x1 15 75 0 90 

x2 15 0 15 30 

x3 30 30 45 105 

x4 15 30 30 75 

75 135 90 300 

y1 y2 y3 

x1 .05 .25 0 .3 

x2 .05 0 .05 .1 

x3 .1 .1 .15 .35 

x4 .05 .1 .1 .25 

.25 .45 .3 1 

y1 y2 y3 

x1 3 3 0 6 

x2 1 0 4 5 

x3 0 4 0 4 

x4 1 1 3 5 

5 8 7 20 

y1 y2 y3 

x1 .15 .15 0 .3 

x2 .05 0 .2 .25 

x3 0 .2 0 .2 

x4 .05 .05 .15 .25 

.25 .4 .35 1 

|    | |   | 

Figure 1: Examples of a multiplicity matrix and an equivalence class, along with their nor-
malized matrices, and their row- and column-sums vectors.

earth mover’s distance between them. This metric was originally proposed back in 1781 by
Monge [9], but popularized recently by Rubner et al. [11].

For any integer k > 0 and real α > 0, let Sk,α be the set of all k-vectors of non-negative
real values with sum α, i.e.:

Sk,α = {〈p1, p2, . . . , pk〉 : each pi ≥ 0, and
k∑
i=1

pi = α}.

Definition 2 (Earth Mover’s Distance). For any P,Q ∈ Sk,α, where P = 〈p1, p2, . . . , pk〉 and
Q = 〈q1, q2, . . . , qk〉, the earth mover’s distance between P and Q, denoted δ(P,Q), is given
by:

δ(P,Q) =

{
0 if k = 1,
1

k−1
∑k−1
i=1

∣∣∣∑i
j=1(pj − qj)

∣∣∣ otherwise.

The earth mover’s distance can be thought of as the sum total of the portions of the pi
values that need to be moved to other indices in P , each portion scaled by the normalized
distance of its movement within the k-tuple, to turn P into Q. Its formula can be appreci-
ated by this simple iterative algorithm:

Start with p1. If p1 ≥ q1, move the surplus amount, (p1 − q1), from p1 to p2.
Otherwise, move the deficit, (q1 − p1), from p2 to p1. In either case, the amount
moved, normalized by the maximum distance, is |(p1 − q1)|/(k − 1), and now
p1 = q1. Moving to p2, whose value has now become (p1 − q1) + p2, would
add |(p1 − q1) + (p2 − q2)|/(k − 1) to the δ(P,Q) being computed. The iteration
ends upon making pk−1 = qk−1 when, due to the original vector sums being
identical, P has been turned into Q.
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As an example, consider probability distributions P = 〈0.2, 0.1, 0.7〉, Q = 〈0.3, 0, 0.7〉, and
R = 〈0.1, 0, 0.9〉. Then, δ(P,Q) = 0.1(1/2) = 0.05, because in order to turn P into Q,
0.1 amount needs to be moved from p2 to p1, which is 1 index away, out of a maximum
of 2 (as k − 1 = 2 is the farthest movement distance in this tuple). Similarly, δ(Q,R) =
0.2(2/2) = 0.2, and δ(P,R) = 0.1(2/2) + 0.1(1/2) = 0.15. It is worth noting that scaling by
the movement distance is necessitated by the total order that exists on the underlying set,
as is the case with the numerical domains of our sensitive attribute values. The following
proposition is immediate.

Proposition 3. For any P,Q ∈ Sk,α, δ(P,Q) ≤ α.

Two more properties of the earth mover’s distance will also be useful in the development
of our method. Before presenting each, we refresh some standard notation on vectors.

Definition 4 (Vector Sum). For any P = 〈p1, p2, . . . , pk〉 ∈ Sk,α and Q = 〈q1, q2, . . . , qk〉 ∈
Sk,β , the sum of P and Q, denoted P +Q, is the k-vector:

〈p1 + q1, p2 + q2, . . . , pk + qk〉 ∈ Sk,α+β .

Proposition 5. For any P1, Q1 ∈ Sk,α and P2, Q2 ∈ Sk,β , δ(P1 + P2, Q1 +Q2) ≤ δ(P1, Q1) +
δ(P2, Q2).

Proof. One way to turn P1 +P2 intoQ1 +Q2 is to first move the P1 portions (of P1 +P2) into
Q1 portions (of Q1 +Q2), with cost δ(P1, Q1), and then move the remaining P2 portions (of
P1 +P2) into the remaining Q2 portions (of Q1 +Q2), with additional cost δ(P2, Q2). While
there may be other ways with lower costs, δ(P1, Q1) + δ(P2, Q2) is clearly an upper bound
of δ(P1 + P2, Q1 +Q2).

Definition 6 (Vector Concatenation). For any vectors P = 〈p1, p2, . . . , pk〉 ∈ Sk,α and Q =
〈q1, q2, . . . , ql〉 ∈ Sl,β , the concatenation of P and Q, denoted PQ, is the (k + l)-vector:

〈p1, p2, . . . , pk, q1, q2, . . . , ql〉 ∈ Sk+l,α+β .

Proposition 7. For any P1, Q1 ∈ Sk,α and P2, Q2 ∈ Sl,β , δ(P1P2, Q1Q2) ≤ δ(P1, Q1) +
δ(P2, Q2).

Proof. Let 0j denote the j-vector of all zero values. Clearly, P1P2 = P10
l + 0kP2, and

Q1Q2 = Q10
l + 0kQ2. The result follows from Proposition 5, and that δ is invariant if

both its arguments are extended, on the same side, by equal-length vectors with only zero
values.

2.3 The Simplex of Vectors

As illustrated in Figure 2, the space Sk,α is a simplex, i.e. the polytope forming the convex
hull of the k vertices of Sk,α, namely V (1) = 〈α, 0, . . . , 0〉, V (2) = 〈0, α, . . . , 0〉, . . ., V (k) =
〈0, 0, . . . , α〉. Each element of Sk,α is a unique convex combination of these vertices. It is
also well-known that Sk,α forms a metric space under δ. Rubner et al. [11] contains a proof
for this, under the assumption that the ground distance between domain values at indices
i and j is a metric. In our context, the ground distance is |i − j|/(k − 1), which is clearly a
metric, as also stated in Li et al. [6].

Two of the k vertices of this simplex, namely V (k) and V (1), are especially important to our
method, for the classes of vectors that are left-heavy and otherwise, respectively, as defined
below.
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𝑉(2) =  0, 𝛼, 0  

x 

y 

z 

𝑉(1) =  𝛼, 0, 0  
𝑉(3) =  0, 0, 𝛼  

 3,𝛼 

Figure 2: The simplex S3,α.

Definition 8 (Center of Gravity and Left-Heavy). For any P = 〈p1, p2, . . . , pk〉 ∈ Sk,α, the
center of gravity of P , denoted gP , is a real value between 1 and k, such that:∑

i<gP

pi(gP − i) =
∑
i≥gP

pi(i− gP ).

Moreover, P is called left-heavy if gP < k+1
2 .

It should be noted that gP is usually not an integer value. It is that point, somewhere
between the extreme index values 1 and k, about which the sum of torques generated by
all pi values vanishes. And k+1

2 , simply the mid-point between 1 and k, is also not always
an integer value.

Our method is based upon a crucial observation that if P is left-heavy, then among all
vectors in Sk,α, V (k) is at the farthest earth mover’s distance from P . Otherwise, V (1) is the
farthest from P . In order to prove this, we first establish the following lemma.

Lemma 9. Let P = 〈p1, p2, . . . , pk〉 ∈ Sk,α be left-heavy. Suppose for some Q ∈ Sk,α, there is an
index v ≥ k+1

2 , such that some non-zero portion λ of pv moves backward, during the computation
of δ(P,Q) to fulfill a deficit at some lower index. Then there exist indices u1, u2, . . . , us, where each
ui < gP , such that the combined cost contribution of λ and certain non-zero portions of all pui to
δ(P,Q) is no more than their combined contribution to δ(P, V (k)).

Proof. Let v and λ be as stated. Since gP is the center of gravity, and gP < v, there must
exist indices u1, u2, . . . , us, where each ui < gP , as well as non-zero portions θi of each pui

,
such that:

s∑
i=1

θi(gP − ui) = λ(v − gP ). (1)

In other words, all θi collectively balance λ about gP . For each i, let θ−i be that (possibly
zero) portion of θi, which moves backward during the computation of δ(P,Q) to fulfill a
deficit at some lower index. And let λ− be their balancing counterpart in λ, i.e.

∑
θ−i (gP −

ui) = λ−(v − gP ). Finally, let θ+i = θi − θ−i , and λ+ = λ − λ−. Clearly, we also have that∑
θ+i (gP − ui) = λ+(v − gP ). Figure 3 depicts these values in a histogram view of P .

We now prove the lemma in two parts. First, consider the combined maximum cost con-
tribution of λ− and all θ−i to δ(P,Q), i.e. λ−(v − 1) +

∑
θ−i (ui − 1). Due to the relation-

ship between λ− and all θ−i , similar to Equation (1), this expression can be simplified to
λ−(gP−1)+

∑
θ−i (gP−1), which is bounded above by λ−(k−v)+λ−(v−gP )+

∑
θ−i (gP−1),

TRANSACTIONS ON DATA PRIVACY 16 (2023)



198 Rajiv Bagai, Eric Weber, Vikas Thammanna Gowda

𝑘 + 1

2
 

𝑘 𝑣 𝑔𝑃 1 𝑢1 𝑢2 𝑢𝑠 ⋯ 

λ 
λ+ 

λ− 

θ𝑠 θ𝑠
+ 

θ𝑠
− 

θ2 
θ2
+ 
θ2
− 

θ1 θ1
+ 
θ1
− 

𝑣 − 𝑓 

Figure 3: A histogram view of P .

since gP − 1 ≤ k − gP , due to P being left-heavy. This bound simplifies to λ−(k − v) +∑
θ−i (2gP −ui− 1). As 2gP − 1 < k, this in turn is at most λ−(k− v) +

∑
θ−i (k−ui), which

is their combined contribution to δ(P, V (k)).
Now consider the combined maximum contribution of λ+ and all θ+i to δ(P,Q). As shown

in Figure 3, if λ moves from index v to v − f , for some f ≥ 0, then v − f must be the
rightmost destination of any θ+i . The combined contribution of λ+ and all θ+i is thus at
most λ+f +

∑
θ+i (v − f − ui). As before, due to the relationship between λ+ and all θ+i ,

similar to Equation (1), this expression can be simplified to
∑
θ+i [ 2gP−ui−v

v−gP f + v − ui]. As
2gP < k, due to P being left-heavy, this value is under

∑
θ+i [ k−vv−gP f + v − ui], which since

f ≤ v − ui, for each i, is in turn bounded above by
∑
θ+i [ k−vv−gP (v − ui) + v − ui]. Further

algebraic simplification reduces this to λ+(k − v) +
∑
θ+i (k − ui), which is their combined

contribution to δ(P, V (k)).

We now establish a key result.

Theorem 10. For any P,Q ∈ Sk,α,

(1) if P is left-heavy, then δ(P,Q) ≤ δ(P, V (k)); and

(2) otherwise, δ(P,Q) ≤ δ(P, V (1)).

Proof. We prove here only (1), as the proof of (2) is symmetric. Suppose P is left-heavy.
If there is any index v ≥ k+1

2 , such that some non-zero portion λ of pv moves backward,
during the computation of δ(P,Q) to fulfill a deficit at some lower index, then by Lemma 9,
there exist indices u1, u2, . . . , us, such that the combined cost contribution of λ and cer-
tain non-zero portions of all pui to δ(P,Q) is no more than their combined contribution to
δ(P, V (k)). We first remove from P all these non-zero portions of pv and all pui . We then
repeat this removal process for each such index v, until no more are left. Let P ′ denote the
resulting vector.

Any backward moving portion of any particular value of P ′ must be at an index smaller
than the midpoint k+1

2 , thus contributing no more cost to δ(P,Q) than it does to δ(P, V (k)).
Moreover, any forward moving portion of any particular value of P ′ could have moved no
more for δ(P,Q) than it does for δ(P, V (k)).

In light of the above result, we let ∆ : Sk,α → [0, α] give, for any P ∈ Sk,α, the maximum
earth mover’s distance from P to any vertex of Sk,α, i.e.:

∆(P ) =

{
δ(P, V (k)) if P is left-heavy,
δ(P, V (1)) otherwise.
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2.4 The t-Closeness Principle

The fundamental intent behind the t-closeness data sanitization strategy is to limit an ad-
versary’s probabilistic inference of any individual’s sensitive attribute value(s) solely from
the knowledge of the equivalence class that individual is made by the data owner to reside
in. This can be achieved by the data owner by ensuring that the probability distribution of
sensitive attribute value(s) in each equivalence class constructed to sanitize the data is suf-
ficiently close, i.e. within some affordable privacy budget parameter t, to their probability
distribution in the original raw table.

A naı̈ve test of acceptability of an equivalence class E , in the presence of sensitive at-
tributes X and Y , is to check if δ(M, E) < t, for a given privacy parameter t. This rigid
approach essentially treats the attribute pair as a single attribute, whose values are pairs of
the form (xi, yj), under the lexicographic ordering, thereby simultaneously subjecting both
attributes to the same constraint t. Often, different sensitive attributes have different de-
grees of sensitivity. For example, while maintaining privacy of a patient’s cancer diagnosis
as well as that patient’s body mass index (BMI) are both desirable, the latter goal is not as
critical as the former. We therefore allow for independent, positive privacy budget param-
eters for each sensitive attribute, namely tX and tY , leading to the following requirement
on acceptable equivalence classes.

Definition 11 ((tX , tY )-Closeness). An equivalence class E is (tX , tY )-close if δ(RM,RE) ≤
tX and δ(CM, CE) ≤ tY .

The overall task can now be summarized as follows:

Given a multiplicity matrixM of a table, and privacy parameters tX and tY , to
construct a partition {E1, E2, . . . , Ee} ofM into equivalence classes, i.e.

∑e
i=1 Ei =

M, such that each class Ei is (tX , tY )-close.

Equivalence classes in a partition may be intuitively viewed as M sliced into “layers”,
which when superimposed as a stack, add up toM, as expected.

Existence of a partition in which each equivalence class is (tX , tY )-close is guaranteed.
The smallest partition {M} trivially satisfies this requirement, for any given tX and tY , as
M is (0, 0)-close to itself. However, this solution, if adopted for sanitization of the table,
would incur the maximum possible information loss, as the quasi identifier values of all
rows in the table would need to be generalized to a common generalized value. In or-
der for the sanitized table to be of high utility, it is thus desirable to construct a partition
with the largest number of equivalence classes or, equivalently, with the smallest sizes of
equivalence classes, under the constraint that each of them is (tX , tY )-close.

2.5 Fragmentations ofM
Our method for constructing the desired partition of M will be based upon certain con-
tiguous sub-matrices of M. The entire matrix M will be fragmented in such a way that
equivalence classes conforming to that fragmentation, in a sense made precise later, pos-
sess the desired property.

Definition 12 (Fragments). For any m × n matrix A, and indices a, b, c, d, such that 1 ≤
a ≤ b ≤ m, and 1 ≤ c ≤ d ≤ n, the fragment of A bounded by these indices, denoted
A〈〈a↔b; c↔d〉〉, is the continuous sub-matrix of Awithin these index limits, given by:

A〈〈a↔b; c↔d〉〉[i, j] = A[i+ a− 1, j + c− 1].
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y1 y2 y3 

x1 .05 .25 0 

x2 .05 0 .05 

x3 .1 .1 .15 

x4 .05 .1 .1 

   ⟪1↔3; 1↔2⟫ 

   ⟪3↔4; 2↔3⟫ 

Figure 4: Examples of fragments in matrixM of Figure 1.

Figure 4 shows two sample fragments of the example matrixM of Figure 1.
As fragments are continuous sub-matrices, a union of two fragments into another one is

possible only if the fragments are either horizontally adjacent and share the same x-indices,
or vertically adjacent and share the same y-indices.

Definition 13 (Union). Any fragments F = A〈〈a↔b; c↔d〉〉 and G = A〈〈p↔q; r↔s〉〉may
be combined into their union fragment, denoted F tG, if one of the following conditions is
satisfied:

(a) (Horizontally adjacent) a = p and b = q and min(d, s) + 1 = max(c, r). In this case,
F tG = A〈〈a↔b; min(c, r)↔max(d, s)〉〉.

(b) (Vertically adjacent) c = r and d = s and min(b, q) + 1 = max(a, p). In this case,
F tG = A〈〈min(a, p)↔max(b, q); c↔d〉〉.

We are particulary interested in sets of fragments, on which we first define the following
binary relations.

Definition 14 (Binary relations⇒ and ?⇒). Let F and G be any sets of fragments on some
matrix. Then F splits into G, denoted F ⇒ G, if F = {H1 t H2, H3, H4, . . . ,Hk} and
G = {H1, H2, H3, H4, . . . ,Hk}, for some fragments H1, H2, . . . ,Hk of that matrix. We also
let ?⇒ denote the reflexive and transitive closure of⇒.

Intuitively, F ⇒ G, if G can be obtained by splitting exactly one fragment in F , either
horizontally or vertically. And F ?⇒ G, if G can be obtained from F by zero or more such
steps, i.e. there exist sets of fragmentsH0,H1, . . . ,Hh, for some h ≥ 0, such that F = H0 ⇒
H1 ⇒ . . .⇒ Hh = G. It is easy to see that ?⇒ is a partial order on the collection of all sets of
fragments of any matrix.

We now define the important space of fragmentations of the entire matrixM. From this
space, our method, described later, will pick one that leads to the desired partition ofM.

Definition 15 (Fragmentations ofM). The space M of all fragmentations ofM is the smallest
collection of sets of fragments ofM that satisfies both of the following properties:

(1) {M〈〈1↔m; 1↔n〉〉 } ∈M; and

(2) If F ∈M and F ⇒ G, then G ∈M.

The space M is essentially the collection of all sets of pairwise non-overlapping fragments
that together coverM. It is easily seen that M is finite and, under the partial order ?⇒, it
forms a complete lattice, as any subcollection of M has a least upper bound and a greatest
lower bound. Any layer i of this complete lattice, where 1 ≤ i ≤ mn, contains all frag-
mentations ofM with exactly i fragments. The unique top and bottom elements of M are,
respectively:
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• > = {M〈〈1↔m; 1↔n〉〉 }, the only fragmentation ofMwith one fragment; and

• ⊥ = {M〈〈i↔ i; j↔j〉〉 | 1 ≤ i ≤ m, 1 ≤ j ≤ n}, the only fragmentation ofM with mn
fragments.

Figure 5(a) shows an example fragmentation ofM with three fragments, and the space M
of all fragmentations ofM is depicted in Figure 5(b).

Layer 1 

Layer 2 

Layer 𝑖 

Layer 𝑖 + 1 

Layer 𝑚𝑛 

⊤ 

⊥ 

y1 y2 y3 

x1 .05 .25 0 

x2 .05 0 .05 

x3 .1 .1 .15 

x4 .05 .1 .1 

(a) 
(b) 

Figure 5: (a) An example fragmentation ofMwith three fragments; (b) the complete lattice
M of all fragmentations ofM.

3 Our Method

We now present our method for constructing a partition of the given table into equivalence
classes that are (tX , tY )-close. The first step of the method is to find a fragmentation in M,
for which any equivalence class that, in a sense to be made precise soon, “conforms” to it is
(tX , tY )-close. Generation of equivalence classes then focuses on minimizing information
loss caused by generalization, while limiting the generation to classes that conform.

Definition 16 (Conformance to a Fragment). Let E be any equivalence class, and F =
M〈〈a↔b; c↔d〉〉 be any fragment ofM. We say that E conforms to F if

|F | = |G|,

where G is the corresponding fragment of E , i.e. G = E〈〈a↔b; c↔d〉〉.

Conformance of E to a fragment F ofM essentially means that, while the sizes of E and
M may be different, they both contain the same proportion of X-Y value-pairs from the
fragment F . Figure 6 shows two example fragments ofM, and corresponding fragments
of E , for the underlying equivalence class E of Figure 1. It can be seen that E conforms to
the fragmentM〈〈1↔3; 1↔2〉〉, because the sum of all values of this fragment, namely 0.55,
coincides with that of the corresponding fragment in E . However, E does not conform to
the other fragment ofM shown in the figure, namelyM〈〈3↔ 4; 2↔ 3〉〉. Sum of values of
one of the fragments in question is 0.45, while that of the other is 0.4, a different value.

We extend this concept of conformance of E to an entire fragmentation ofM, which ends
up placing a very useful constraint on the closeness of E .

Definition 17 (Conformance to a Fragmentation). Let E be any equivalence class, and F be
any fragmentation ofM, i.e. F ∈M. Then E conforms to F , if E conforms to each fragment
in F .
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y1 y2 y3 

x1 .05 .25 0 

x2 .05 0 .05 

x3 .1 .1 .15 

x4 .05 .1 .1 

y1 y2 y3 

x1 .15 .15 0 

x2 .05 0 .2 

x3 0 .2 0 

x4 .05 .05 .15 

   ⟪1↔3; 1↔2⟫    ⟪3↔4; 2↔3⟫    ⟪1↔3; 1↔2⟫    ⟪3↔4; 2↔3⟫ 

Figure 6: An equivalence class E conforming to one fragment ofM, but not to the other.

Proposition 18. Let F = {F1, F2, . . . , Fk} ∈M. If an equivalence class E conforms to F , where
E1, E2, . . . , Ek are the corresponding fragments of E , then:

δ(RM,RE) ≤
∑k
i=1 δ(RFi

,REi
), and

δ(CM, CE) ≤
∑k
i=1 δ(CFi

, CEi
).

Proof. (By induction via⇒) In the base case, every equivalence class E conforms to the top-
most element > of the lattice M, because in this case, k = 1, F1 = M, E1 = E , and |M| =
|E| = 1. The above inequalities are in fact strict equalities.

For the inductive case, suppose the proposition holds for fragmentation F ′ = {F1 t
F2, F3, F4, . . . , Fk}. Since E conforms to F , we have that |Fi| = |Ei|, for all i. It follows
that |F1 t F2| = |E1 t E2|, thus E also conforms to F ′. By the inductive hypothesis, we
have:

δ(RM,RE) ≤ δ(RF1tF2
,RE1tE2

) +∑k
i=3 δ(RFi ,REi).

We now have two possible cases:

(a) (F1 and F2 are horizontally adjacent) In this case, RF1tF2
= RF1

+RF2
and RE1tE2

=
RE1

+RE2
. By Proposition 5, δ(RF1tF2

,RE1tE2
) ≤ δ(RF1

,RE1
) + δ(RF2

,RE2
).

(b) (F1 and F2 are vertically adjacent) In this case, RF1tF2 = RF1RF2 and RE1tE2 =
RE1RE2 . By Proposition 7, δ(RF1tF2 ,RE1tE2) ≤ δ(RF1 ,RE1) + δ(RF2 ,RE2).

Thus, in both cases, δ(RM,RE) ≤
∑k
i=1 δ(RFi

,REi
). By a similar argument, δ(CM, CE) ≤∑k

i=1 δ(CFi , CEi).

By Theorem 10, we already know that each term on the right-hand sides of the above
result, such as δ(RFi

,REi
), is in turn bounded above by ∆(RFi

). Aggregate row and col-
umn earth mover’s distance bounds for an entire fragmentation ofM can thus be given as
follows.

Definition 19 (Aggregate Bounds). For any fragmentation F = {F1, F2, . . . , Fk} ∈ M, the
aggregate row and column earth mover’s distance bounds of F are given, respectively, by:

R̂F =

k∑
i=1

∆(RFi
), and ĈF =

k∑
i=1

∆(CFi
).

TRANSACTIONS ON DATA PRIVACY 16 (2023)



t-Closeness over Multiple Numerical Sensitive Attributes 203

We now state the following key result.

Theorem 20. If E conforms to a fragmentation F ∈M, then E is (R̂F , ĈF )-close.

Proof. Immediate from Proposition 18, definition of aggregate bounds, and Theorem 10.

Recall that our overall task is to construct a partition of the given M into equivalence
classes, such that each class in the partition is (tX , tY )-close, for some given tX and tY
values. In light of the above theorem, our method will first focus on finding an appropriate
fragmentation F ∈ M, i.e. one for which R̂F ≤ tX and ĈF ≤ tY . We will then limit our
search for equivalence classes to just the ones that conform to the chosen F . Theorem 20
guarantees all such classes to satisfy the closeness requirement.

3.1 Fragmentation Search

Finding a fragmentationF ∈M with desired aggregate bounds, i.e. one for which R̂F ≤ tX
and ĈF ≤ tY , is not difficult due to the fact that fragmentations in M are, in a somewhat
weak sense, ”ordered” by their aggregate bounds, as shown by the following proposition.

Proposition 21. For any F ,G ∈M, if F ⇒ G, then either R̂F ≥ R̂G or ĈF ≥ ĈG .

Proof. As G is obtained by splitting exactly one fragment in F , it suffices to show that for
any fragments P and Q ofM that may be combined into their union fragment P t Q, we
have that if P and Q are vertically adjacent, then ∆(RPtQ) ≥ ∆(RP ) + ∆(RQ). Otherwise,
∆(CPtQ) ≥ ∆(CP ) + ∆(CQ). We show here the first case, as the second case can be proved
in a similar manner.

Suppose P and Q are vertically adjacent, i.e. RPtQ = RPRQ. Let RP ∈ Sk,α, RQ ∈ Sl,β ,
and T be the set of vectors given by:

T = {〈p1, p2, . . . , pk, q1, q2, . . . , ql〉 :∑k
i=1 pi = α and

∑l
i=1 qi = β}.

Note that RPRQ ∈ T . Since T ⊆ Sk+l,α+β , it follows that ∆(RPtQ) = max{δ(RPRQ, S) :
S ∈ Sk+l,α+β} ≥ max{δ(RPRQ, T ) : T ∈ T } = ∆(RP ) + ∆(RQ).

This ordering of aggregate bounds of fragmentations in M, suggests that a simple scan
along any arbitrary path starting at its topmost fragmentation > and ending at its bot-
tommost fragmentation ⊥, may be performed until an acceptable fragmentation is found,
i.e. one whose aggregate bounds are within the given privacy budget parameters tX and
tY . The nondeterministic function FIND-FRAGMENTATION given below performs such a
scan.

FIND-FRAGMENTATION(tX , tY)

1 F ← >
2 while R̂F > tX or ĈF > tY
3 pick a fragmentation G, such that F ⇒ G
4 F ← G
5 return F
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It should be noted that the ordering established by Proposition 21 is weak, because only
one of the aggregate bounds is guaranteed to not increase at each step of the scan, and
sometimes the other aggregate bound may increase. As an example of this phenomenon,
consider the portion of a lattice M shown in Figure 7. It is easily verified that while> ⇒ F ,

y1 y2 

x1 .2 .3 

x2 .1 .4 
y1 y2 

x1 .2 .3 

x2 .1 .4 
= 0.5;       = 0.7    ⊤     ⊤ 

⊤ 

      = 0.6;       = 0         

Figure 7: Example of an increase in the aggregate row earth mover’s distance bound.

R̂> = 0.5 < R̂F = 0.6. Despite this phenomenon, however, a downward scan along any
path of M is guaranteed to terminate with success within mn iterations because, firstly, the
lattice M is finite and, secondly, the aggregate bounds of ⊥ are zero, as shown below.

Proposition 22. For any F ∈M, R̂F ∈ [0, 1] and ĈF ∈ [0, 1]. Also, R̂⊥ = Ĉ⊥ = 0.

Proof. The row-sum vector, RF , of any fragment F ofM, is clearly a k-vector in Sk,|F |, for
some k, 1 ≤ k ≤ m, where k is the number of rows in F . It follows from the definition of
∆ and Proposition 3 that ∆(RF ) ∈ [0, |F |]. As

∑
F∈F |F | = 1, we have that R̂F ∈ [0, 1].

Similarly, ĈF ∈ [0, 1]. Moreover, each fragment F ∈ ⊥ contains just one row and one
column, thus RF and CF are 1-vectors in S1,|F |, and ∆(RF ) = ∆(CF ) = 0. Therefore,
R̂⊥ = Ĉ⊥ = 0.

While any choice of fragmentation G on Line 3 of the function FIND-FRAGMENTATION
will lead to a somewhat usable return value of the function, upon closer inspection of M,
it can be seen that not all choices lead to results of equal utility. This is due to acceptable
fragmentations on some downward paths being encountered earlier, i.e. in a higher layer
of M, than on other paths. Figure 8 shows an example of this phenomenon for privacy
budgets tX = 0.5 and tY = 0.6. For these budget values, from the portion of M shown in
the figure, fragmentations > and G are not acceptable, but F and H are, because their row
as well as column aggregate bounds are within their corresponding budgets. However, a
downward scan from > will encounter F in Layer 1 of M, whereas H will be encountered
only in Layer 2. An acceptable fragmentation in a higher layer is preferable, because more
equivalence classes conform to it.

Figure 9 depicts the two regions of M, namely the possibly empty upper region contain-
ing fragmentations whose at least one aggregate bound exceeds its corresponding privacy
budget, and the always nonempty lower region containing fragmentations both of whose
aggregate bounds are within their corresponding privacy budgets. As the boundary be-
tween these regions is irregular, thereby causing some downward paths to lead to an ac-
ceptable fragmentation earlier than others, an ideal strategy for picking fragmentation G
on Line 3 of the FIND-FRAGMENTATION function is one that terminates the iteration in the
smallest number of steps. This would result in a fragmentation F returned by the function
belonging to the highest layer of M, i.e. one with the fewest fragments over all acceptable
fragmentations, and one that thus has most equivalence classes conforming to it.
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y1 y2 y3 

x1 .05 0 .1 

x2 .03 .31 .12 

x3 .22 .16 .01 

⊤ 

y1 y2 y3 

x1 .05 0 .1 

x2 .03 .31 .12 

x3 .22 .16 .01 

y1 y2 y3 

x1 .05 0 .1 

x2 .03 .31 .12 

x3 .22 .16 .01 
y1 y2 y3 

x1 .05 0 .1 

x2 .03 .31 .12 

x3 .22 .16 .01 

      = 0.46;       = 0.585               = 0.62;       = 0.47         

      = 0.435;       = 0.47         

      = 0.62;       = 0.535    ⊤     ⊤ 

Figure 8: Fragmentations, F and H are acceptable for tX = 0.5 and tY = 0.6, but lie in
different layers of M.

⊥ 

Fragmentations with 

aggregate bounds within 

privacy budgets 𝑡𝑋 and 𝑡𝑌  

Figure 9: Fragmentations of M with acceptable aggregate bounds.

An exhaustive strategy for searching for the optimum acceptable fragmentation becomes
impractical for large values ofm and n, as M hasmn layers and, as explained in Section 3.3,
each fragmentation F ∈M has O(mn) fragmentations G, such that F ⇒ G. Several differ-
ent greedy strategies may be employed at Line 3 of the FIND-FRAGMENTATION function to
arrive at a reasonably promising G. One strategy is to pick the G whose aggregate bounds
are the closest to their corresponding budgets, if not already within them. This can be
achieved by selecting the G that minimizes ΨG , given by:

ΨG = max(R̂G − tX , 0) + max(ĈG − tY , 0).

By employing the max function, ΨG essentially considers for comparison only those aggre-
gate bounds that are not yet within their corresponding budgets. Picking the G for which
ΨG is the smallest value, while breaking ties arbitrarily, is a greedy approach, with a hope
to terminate the iteration in the FIND-FRAGMENTATION function in the smallest number of
steps.

In the example M of Figure 8, where tX = 0.5 and tY = 0.6, the fragmentation > is
unacceptable, because R̂> > tX . Now, since ΨF = 0, F will be picked over G (or any other
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child of >), and the iteration will terminate with F as the found acceptable fragmentation.
The fragmentation H, although also acceptable, is never reached, because it lies in a lower
layer.

3.2 Generating Equivalence Classes

LetF = {F1, F2, . . . , Fk} ∈M be the fragmentation returned by the FIND-FRAGMENTATION
function of Section 3.1. We now confine ourselves to partitioning the given table into equiv-
alence classes that conform to F , thereby achieving (tX , tY )-closeness.

With an aim to minimize information loss caused by generalization of quasi identifier
values of rows contained in an equivalence class, it is desirable to generate classes with
as few rows in them as possible. It is easily seen that the smallest number of rows in any
equivalence class conforming to F is the smallest integer r, such that r.|Fi| is an integer, for
each i. As the given table has |M| rows, we now give a procedure that generates c = |M|/r
classes, each containing r rows. The values c and r can be determined easily by observing
that c is simply the greatest common divisor of all values in the set {|M|.|Fi| : 1 ≤ i ≤ k},
and r = |M|/c.

Of the r rows placed in any equivalence class, the conformity condition enforces placing
exactly r.|Fi| rows from fragment Fi, for each i. Under this constraint, within each class,
information loss due to generalization can be curtailed by placing those r rows in it whose
quasi identifier values are, in a sense, close to each other.

Closeness between rows of the table depend upon the underlying distance metric over
them, which can vary from one application to another. As an example, if all quasi identifier
attributes take numeric values, the rows may be treated as points in a Euclidean space with
as many dimensions as the number of such attributes. The distance between any two rows
is then just the common Euclidean distance between them.

The general procedure given below for generating equivalence classes from the chosen
fragmentation is based upon the above analysis, and is independent of the underlying
distance metric.

GENERATE-CLASSES

1 for j ← 1 to c
2 pick a row w of the table, which is from

some fragment Fi ∈ F , such that |Fi| > 0
3 Ej ← {w}
4 add to Ej , (r.|Fi| − 1) other rows from Fi

that are closest to w
5 from each other fragment Fl ∈ F , add to

Ej , r.|Fl| rows that are closest to w
6 remove each row in Ej from the table
7 return classes E1, E2, . . . , Ec

As each equivalence class generated by the above procedure conforms to F , the created
partition of the table is thus (tX , tY )-close.

3.3 Complexity of Our Method

Liang and Yuan [7] showed that, even for one sensitive attribute, it is NP-hard to find
an optimal t-close partition of a given table into equivalence classes. At the expense of
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optimality, our greedy approach results in an acceptable solution in polynomial time, as
shown below.

For any fragment F , computation of ∆(RF ) is clearly an O(m) operation, and that of
∆(CF ) isO(n). The initial computations of R̂> and Ĉ> in FIND-FRAGMENTATION thus take
O(m+n) time. Any fragmentationF hasO(mn) fragmentations G, such thatF ⇒ G, as can
be seen by a worst-case of F containing one fragment for each of the m rows ofM. Any
such G is obtained by splitting exactly one fragment contained in F into two fragments.
As all other fragments in F and G are the same, R̂G and ĈG can be obtained from R̂F
and ĈF , respectively, in O(m + n) time. Picking a G, within any iteration, that minimizes
ΨG , is thus an O((m + n)mn) operation. Finally, as M contains exactly mn layers, which
is an upper bound on the number of iterations in that function, the complexity of FIND-
FRAGMENTATION is O((m+ n)m2n2).
Computation of c, the number of equivalence classes to be generated, requires computa-

tion of the greatest common divisor of at most mn integers, each of which is between 1 and
|M|. While faster quasi-linear algorithms now exist for two integers, the classical Euclidean
method determines that value in O(log2 |M|) time (see Knuth [5] and Sorenson [13]). A
straightforward iteration of this method, for mn integers, results in the complexity of de-
termining c to be O(mn log2 |M|).

Distances between rows of the table can be pre-computed for the function GENERATE-
CLASSES in |M|2 time. With these pre-computed distances, each iteration of the function
can be seen to take O(|M|) time. As c ≤ |M|, which is the number of iterations, the com-
plexity of GENERATE-CLASSES is thus O(|M|2).

3.4 Generalization to Arbitrary Number of Sensitive Attributes

We presented our method for tables with exactly two sensitive attributes only because that
restriction makes understanding it significantly easier. However, our method is applicable
to tables with any arbitrary number of sensitive attributes, and this section outlines how it
can be generalized, in a straightforward way, from exactly two to n sensitive attributes, for
any n ≥ 2.

Instead of having domains, X and Y , for just two sensitive attributes, we now have n
domains, X1, X2, . . . , Xn, of values that may appear, respectively, in each of the n sensitive
attribute columns of the given table. For any i,

Xi = {x(i,1), x(i,2), . . . , x(i,mi)}.

As before, we assume that x(i,1) < x(i,2) < · · · < x(i,mi), for all i.
The multiplicity matrix is now the n-dimensional matrix M =

∏n
i=1Xi, and any cell of

this matrix,M[k1, k2, . . . , kn], is the number of rows of the given table the sensitive value
tuple (x(1,k1), x(2,k2), . . . , x(n,kn)) appears in. Any equivalence class E is also now an n-
dimensional matrix and, as before, any of its cells, E [k1, k2, . . . , kn], is a non-negative integer
no larger than the corresponding cell ofM. |M| and |E| still denote the sum of all values in
matricesM and E , respectively, andM = M/|M| and E = E/|E| are still the normalized
versions of these matrices.

As we no longer have only two sensitive attributes, we do away with row- and column-
sum vectors, but instead now just have a slice-sum vector, within any matrix, for each
sensitive attribute. For example, for any sensitive attribute i, the slice-sum vector R(M,i)

is an mi-vector, where R(M,i)[j] is the number of rows of the given table that contain the
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value x(i,j) for the sensitive attribute i. Slice-sum vectors of other matrices, R(M,i), R(E,i),
andR(E,i), have similar intuitive meanings.

The given privacy parameters, tX and tY , are now replaced by one for each sensitive
attribute, t1, t2, . . . , tn. An equivalence class E is (t1, t2, . . . , tn)-close if δ(R(M,i),R(E,i)) ≤ ti,
for each sensitive attribute i, 1 ≤ i ≤ n.

A fragment of any matrix A now needs to have not just two, but n dimensions:

A〈〈a1↔b1; a2↔b2; · · · ; an↔bn〉〉,

where for each i, it must be the case that 1 ≤ ai ≤ bi ≤ mi. And a union of two fragments
A〈〈a1 ↔ b1; a2 ↔ b2; · · · ; an ↔ bn〉〉 and A〈〈p1 ↔ q1; p2 ↔ q2; · · · ; pn ↔ qn〉〉 is possible not
when the fragments are either simply horizontally or vertically adjacent, but adjacent in
the dimension of some sensitive attribute s, i.e. when:

• ai = pi and bi = qi, for all i 6= s; and

• min(bs, qs) + 1 = max(as, ps).

M, >, and ⊥ are now similar generalizations to n dimensions.
For any fragmentation F = {F1, F2, . . . , Fk} ∈ M, instead of aggregate row and column

earth mover’s distance bounds of F , we now have an aggregate earth mover’s distance
bound for each sensitive attribute i, given by:

R̂(F,i) =

k∑
j=1

∆(R(Fj ,i)).

As before, if an equivalence class E conforms to a fragmentation F ∈M, then:

E is (R̂(F,1), R̂(F,2), . . . , R̂(F,n))-close.

An acceptable fragmentation can be found by the generalized function below.

FIND-FRAGMENTATION-GENERALIZED(t1, t2, . . . , tn)

1 F ← >
2 while there exists a sensitive attribute i, such that R̂(F,i) > ti
3 pick a fragmentation G, such that F ⇒ G
4 F ← G
5 return F

Line 2 in the above function was the only place where a modification from the previous
version, FIND-FRAGMENTATION, was necessary, as we now enforce t-closeness for all n
sensitive attributes, instead of just two. A complexity analysis similar to the one before
shows that FIND-FRAGMENTATION-GENERALIZED runs in O((

∑n
i=1mi)(

∏n
i=1m

2
i )) time,

still polynomial in the given mi values.
The above are the only generalizations to our method needed to accommodate an ar-

bitrary number of sensitive attributes. The GENERATE-CLASSES procedure remains un-
changed, as it does not depend upon the number of sensitive attributes.
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4 Conclusions

A well-known technique for preserving privacy of individuals in a publicly released re-
lational table is to sanitize the table prior to its release according to the t-closeness prin-
ciple. Widely recognized, as in Aggarwal and Yu [1], for numeric attributes, t-closeness
anonymization is more effective than many other privacy-preserving data mining meth-
ods. Arriving at a method for obtaining t-closeness, however, especially in the presence of
multiple sensitive attributes, has thus far been challenging. In this paper, we developed a
method for that task.

We presented a method for partitioning rows of a relational table containing multiple
numerical sensitive attributes into equivalence classes, such that the distribution of values
of each sensitive attribute X in the given table is tX -close, for any given privacy budget
parameter 0 ≤ tX ≤ 1, to the distribution of those values in any class. As different sensitive
attributes are often sensitive to a different extent, our method allows each such attribute to
have its own privacy budget. Although finding an optimal solution to this problem is
known to be NP-hard, our method employs a greedy approach to provide an acceptable
result in polynomial time.

We first showed that the multi-dimensional space of all sensitive attribute values can be
fragmented in such a way that a certain predetermined number of rows can even be dis-
persed randomly from each fragment to create t-close equivalence classes. Our method
thus proceeds by first greedily finding one such fragmentation. While generating equiv-
alence classes, it then exploits the flexibility provided by the available random choices to
lower the information loss incurred later due to generalizing the quasi identifier values in
each class. The resulting sanitized table thereby possesses higher utility for mining.

For ease of understanding, we presented our method for tables with exactly two sensitive
attributes, but it is straightforward to generalize our method to any number of sensitive
attributes. We also explained how this generalization to an arbitrary number of sensitive
attributes can be performed.

We restricted the domains of sensitive attributes to contain only numerical values. This
is enough for many real-life applications, such as a standard blood test, which results in
several numerical sensitive values, like white and red blood cell counts, LDL and HDL
cholesterol levels, hemoglobin measure, etc. The values in the domains of these attributes
are discrete and possess a total order among them. Moreover, the ground distance between
any two values in a domain is simply the absolute difference between them.

An easy way to generalize our method for continuous domains, like all real values in the
range (0, 1], is to partition the range into discrete subranges, e.g. the 10 subranges contained
in the partition {(0.1k, 0.1(k + 1)] : 0 ≤ k < 10}, with the absolute difference between the
k values of any two subranges as the ground distance between those subranges. The gran-
ularity of the partition can be adjusted, as needed, according to the nature of the attribute
values.

Many applications contain non-numerical sensitive attributes, like the disease a patient is
diagnosed with. Although such domains are discrete, the ground distance between their
values needs to take semantic “closeness” of values into account. For example, while arthri-
tis and osteoporosis are different bone-related medical conditions, in a sense they are closer
to each other than any of them is to AIDS, which is an immune system disease. We are cur-
rently working to generalize our method for such domains, whose values can be naturally
arranged in certain categories.
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