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Abstract. In the last decade, different countries adopted data protection legislation to govern the col-
lection and processing of personal data. Most of these legislative frameworks recognize that data can
either be personal or non-personal. However, there is a lack of definitive criteria for when personal
data has become non-personal data, as well as an understanding of the consequences of applying
such criteria to the usefulness of personal data. This uncertainty creates confusion as to whether or-
ganizations can comply with privacy laws while retaining the usefulness of personal data. To address
this problem, we use the existing data privacy literature to provide reasonable interpretations of legal
anonymization criteria for location data under the GDPR. We apply these criteria to two reasonable
anonymization solutions that produce protected person-level data. Using location data of COVID-19
patients in South Korea, we find that these solutions can produce legally anonymous location data
or useful data, but not both. Further, we highlight examples of developing more sophisticated data
protection solutions to better balance the tradeoff between privacy and usefulness for contextual data
sets.
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1 Introduction

The current privacy legislative landscape is complex and disjointed. In the past decade, a
legal evolution placing an increasing emphasis on data protection has matched the growing
reliance on data within the global economy. Within this evolution, the European Union
(EU) led the charge with the adoption of the General Data Protection Regulation (GDPR)
in 2016 [22]. Since then, many regions have followed suit with similar, and sometimes
dissimilar, privacy-oriented laws.1

1See, eg, Brazil’s Lei Geral de Proteçao de Dados (LGPD), Law No 13,709, of 14 August 2018, amending Law
No 12,965, of 23 April 2014 [8]; Japan’s Act on the Protection of Personal Information, Act No 57 of 2003, as
amended in 2016 [32]; see also [43], pp. 431–48, discussing the impact of the GDPR across numerous regions on
the world, and [33].
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Generally, under each privacy law exists a concept of personal data or personally identi-
fiable information. Personal data encompasses data that directly identifies the individual,
or direct identifiers (e.g., name, address, social security number), and data that indirectly
identifies the individual, or indirect identifiers (e.g., gender, date of birth, physical char-
acteristics) (GDPR Art. 4(1) [22]; California Consumer Privacy Act (CCPA), 1798.140(o)(1)
[9]). These laws recognize that data exists on a spectrum, ranging from data that is clearly
personal, to data that is reasonably likely to identify an individual, to data that is non-
personal, i.e., non-identifiable to the individual who is related to the data collected.2 The
distinction between personal and non-personal data ultimately depends on reasonableness
(or proportionality): whether the identifiers provided are reasonably likely to identify an
individual (e.g., GDPR Recital 26 [22]). These identifiers can be considered personal data
on their own or in combination with other identifiers, and often relate to inferences that
can be made from the data.

Privacy laws also recognize that techniques exist to convert personal data to non-personal
data. Thus, data controllers and processors are presented with two options for complying
with regional privacy laws: implement the required privacy and security controls for per-
sonal data (and bear the risks of that personal data), or attempt to convert personal data
into non-personal data. We focus on the latter approach and assume that personal data
will eventually be breached; preemptively converting personal data to non-personal data
would reduce the damage from such a breach. The question is whether the conversion
process maintains the usefulness of the data.

There are substantial benefits from converting personal data to non-personal data, also
known as anonymized data. For example, none of the requirements within the GDPR apply
to anonymized data (GDPR, Recital 26 [22] and [3, 31]). Anonymized data can be stored
indefinitely, does not require user consent to processing, and can be used for any purpose
and transported across borders. Further, data subjects are not required to be notified in the
event that anonymized data is breached and any fines imposed under the GDPR would not
apply.

Unfortunately, data privacy laws use numerous terms with various definitions to distin-
guish personal from non-personal data, creating confusion and potential conflict between
legal frameworks. A growing challenge exists within the backdrop of abstract legal defi-
nitions of personal data: the lack of definitive criteria for when personal data has become
non-personal, and an understanding of the practical consequences of applying such crite-
ria. This creates uncertainty as to whether organizations are truly compliant with privacy
law, and can make drawing the line between personal data and non-personal data a diffi-
cult endeavor.

For example, in Case 582/14 – Patrick Breyer v Germany ([12]), the European Court of
Justice (ECJ) held that Internet Protocol (“IP”) addresses, in certain circumstances, are con-
sidered personal data.3 The ECJ determined that whether data is identifiable is context
specific to the parties involved and the information available to those parties. For the
website owner, it held that dynamic IP addresses were not personal data “since such an
address does not directly reveal the identity of the natural person who owns the com-
puter from which a website was accessed, or that of another person who might use that

2See GDPR, Recital 26 [22]; see also the California Consumer Privacy Act of 2018 (“CCPA”), § 1798.140(O(3)
[9]).

3In Patrick Breyer v. Germany, the ECJ made its decision under the precursor to the GDPR, the Directive
95/46/EC of the European Parliament and of the Council of 24 October 1995 on the protection of individuals with
regard to the processing of personal data and on the free movement of such data (OJ 1995 L 281, p. 31, [21]).
However, its ruling still applies under the GDPR.

TRANSACTIONS ON DATA PRIVACY 17 (2024)



Legally Anonymizing Location Data Under the GDPR 3

computer.”¶38. However, it recognized that for the internet service provider (“ISP”), a dy-
namic IP address could be considered personal data: “to determine whether a person is
identifiable, account should be taken of all the means likely reasonably to be used either by
the controller or by any other person to identify the said person.” ¶42. The ECJ recognized
that the website owner alone did not maintain personal data via access to the dynamic IP
address, but since the ISP could be legally required to turn over the information necessary
to identify an individual based on her IP address, then the IP address constituted personal
data for both parties (¶49).

This case, and subsequent interpretations of the boundaries of personal data, highlight
the challenges in distinguishing personal data from non-personal data. Overcoming these
challenges requires privacy tools that help data controllers reason through threats their
data will be exposed to, what level of risk these threats pose to data subjects, and what
data transformation is necessary to mitigate privacy risk and ensure that users receive
useful data. However, there is a lack of clarity as to what levels of risk are acceptable
in non-personal data, and which anonymization techniques achieve acceptably low risk.
This could result in anonymized data sets with widely varying privacy risks.

To help address these challenges, we use the existing data privacy literature to provide
reasonable interpretations of legal criteria to evaluate the conversion of personal data to
non-personal data under the GDPR. We interpret the criteria in the context of trajectory
micro-data, hereafter referred to as location data, to complement the many anonymization
techniques for this type of data [24, 35]. Two distinguishing features make the anonymiza-
tion of location data especially challenging: (1) granularity, where a single location could
identify an individual, and (2) longitudinal trajectories, where just two longitudinally linked
granular locations are enough to uniquely identify 90% of individuals in our empirical ap-
plication. This contrasts with standard data sets where three or four non-granular variables
(e.g., zip-code, gender, date of birth or age, ethnicity) are needed to identify most individu-
als [51, 45].

We evaluate the interpretations with two reasonable anonymization solutions applied to a
location data set from COVID-19 patients in South Korea. To the best of our knowledge, this
is the first attempt to interpret and apply legal anonymization criteria to location data. We
assess whether the anonymized location data has low privacy risk and falls outside of the
scope of the GDPR. Notably, there is an absence of case law showing when data meet legal
anonymization criteria. We also examine how differences in the anonymized data affect
the usefulness of the resulting data. We find that both solutions are viable for producing
non-personal data but have deleterious effects on their usefulness. While practitioners will
ultimately require case law to determine reasonable levels of anonymization, our work
provides organizations with an example documenting a reasonable effort to anonymize
location data [11].

This paper proceeds as follows. In Sections 2 and 3, we review the legal anonymization
criteria and discuss how our work fits into the literature on protecting location data. In
Section 4, we interpret the legal anonymization criteria based on the existing privacy liter-
ature. In Section 5, we use these interpretations to evaluate whether two anonymization
solutions can legally anonymize the location trajectories from COVID-19 patients in South
Korea while retaining the usefulness of personal data. Section 6 concludes with legal rec-
ommendations and future areas of research.
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2 Legal Criteria for Converting Personal Data to Non-Personal
Data

The GDPR recognizes the term pseudonymization (GDPR, Art. 4(5) [22]), defining it as

“the processing of personal data in such a manner that the personal data can
no longer be attributed to a specific data subject without the use of additional
information, provided that such additional information is kept separately and
is subject to technical and organisational measures to ensure that the personal
data are not attributed to an identified or identifiable natural person.”

The EU uses the term “anonymous information” to describe data that falls outside of
the requirements of the GDPR. Anonymous information consists of “information which
does not relate to an identified or identifiable natural person or to personal data rendered
anonymous in such a manner that the data subject is not or no longer identifiable.” (GDPR,
Recital 26 [22]). It is important to note that while necessary to render data anonymous,
pseudonymization alone produces data that still falls under the GDPR.

The European Data Protection Board (EDPB) adopted additional guidance on anonymiza-
tion. The April 2020 Guidelines (¶15-16, [18]) on the use of location data and contact trac-
ing tools in the context of the COVID-19 outbreak provide that (Id., at ¶15; see also GDPR,
Recital 26)

“Anonymisation refers to the use of a set of techniques in order to remove the
ability to link the data with an identified or identifiable natural person against
any “reasonable” effort. This “reasonability test” must take into account both
objective aspects (time, technical means) and contextual elements that may vary
case by case (rarity of a phenomenon including population density, nature and
volume of data).”

These guidelines further outline three criteria used to determine the “robustness of anonymiza-
tion” used to convert personal data to non-personal data (¶ 16, [18]):

(i) Singling-out (isolating an individual in a larger group based on the
data);

(ii) Linkability (linking together two records concerning the same individ-
ual); and

(iii) Inference (deducing, with significant probability, unknown informa-
tion about an individual).

These criteria are derived from the EU’s precursor to the GDPR known as the Article 29
Working Party Guidelines 05/2014 (“WP Guidelines” [6]). Both the Working Party and
the EDPB Guidelines emphasize the applicability of the “reasonability test” to the concept
of anonymization. The Working Party states that the test for whether an anonymization
technique is sufficiently robust is “whether identification has become reasonably impossi-
ble,” (¶ 2.2.2; see also 2020 April Guidelines [18], ¶¶ 15, 22). Therefore, these criteria are
assessed under the reasonability test to determine if data is in fact anonymized, or remains
personal data subject to the GDPR. Presently, there is an absence of case law for meeting
these criteria which we seek to investigate in this paper.

Robustness of anonymization is key to ensuring that personal data becomes, and remains,
non-identifiable. The risk of reidentification is a growing concern (¶19, [18]). Paul Ohm

TRANSACTIONS ON DATA PRIVACY 17 (2024)



Legally Anonymizing Location Data Under the GDPR 5

[39] argues that “reidentification science exposes the underlying promise made by these
[privacy] laws– that anonymization protects privacy–as an empty one, as broken as the
technologists’ promises.” But, the law does not require complete inability to re-identify
data. It relies on a reasonableness criterion that creates an added layer of nuance to the
anonymization process.

The WP Guidelines [6] provide further guidance on anonymization processes, stating:

“...anonymisation techniques can provide privacy guarantees and may be used
to generate efficient anonymization processes, but only if their application is
engineered appropriately - which means that the prerequisites (context) and
the objective(s) of the anonymization process must be clearly set out in order
to achieve the targeted anonymization while producing some useful data. The
optimal solution should be decided on a case-by-case basis...,” (pp. 3-4).

There are two key takeaways from this statement. First, the objective of an efficient anonymiza-
tion process should be some level of targeted anonymization that also produces useful data.
Any reasonability test that is useful in practice will therefore weigh the privacy of the data
against its utility in determining whether data is non-personal. An apt description of this
balancing act is given by [19]:

“Ideally, we’d like to have a data set that has both maximal privacy protection
and maximal usefulness. Unfortunately, this is impossible. Like Goldilocks, we
want to fall somewhere in the middle, where privacy is good, but so is data
utility,” (pp. 22).

An anonymization process that disregards utility will likely fail to produce useful data.
Second, in order to balance privacy and utility, two aspects need to be accounted for: the
context and the objectives of the anonymization. A one-size-fits-all approach that does
not account for these aspects would not allow for optimal solutions to be decided on a
case-by-case basis. The Working Party [6] further states that removing directly identifying
elements from data is not sufficient for anonymization, and that, “It will often be necessary
to take additional measures to prevent identification, once again depending on the context
and purposes of the processing for which the anonymised data are intended,” (pp. 9, emphasis
added).

A proper reasonability test will identify both the context and objectives of the anonymiza-
tion process, and determine the level of risk at which identification has become reasonably
impossible and at which useful data is produced. If anonymized data achieves this level
of risk, then it falls outside the scope of privacy law. Ultimately, this reasonableness con-
cept makes it impractical to define a single set of criteria for anonymization within the
opaque guidance of the law. The EU’s definition of anonymization also presents an added
challenge to the usefulness of data, since maintaining good statistical inferences about indi-
viduals reduces the chances of successfully converting personal data to non-personal data.
This challenge may be exacerbated in contexts with very high privacy risk, i.e., location
data. In any context, anonymization processes directly impact the usefulness of data, which
can range from pure noise with strong privacy guarantees, to well-preserved statistics with
weak privacy guarantees.

The complete exploration of all privacy regulations, definitions, and practical implications
is beyond the scope of this paper. The EDPB’s three criteria of anonymization in the context
of the GDPR appear to encapsulate many criteria that various legal definitions consider
when determining if data is non-personal4. Therefore, we consider the EDPB’s definition

4See the appendix for the analysis of regional privacy laws which led us to this conclusion.
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of anonymization criteria as exhaustive and focus on these criteria for the remainder of this
paper.

3 Related Work

The privacy risks associated with location data are well documented (e.g., [36, 15]). Two
factors motivate our study of legally anonymizing location data: (1) Location data has
many uses, from location based targeting [29] to the study of disease dynamics; and (2)
it is difficult to anonymize due to the granularity and uniqueness of individuals’ location
trajectories [24]. Existing work has examined linkage, homogeneity or attribute linkage,
and probabilistic attacks against location data, as well as the privacy principles that oppose
these attacks, namely indistinguishability and uninformativeness [24, 35]. Privacy criteria,
such as k-anonymity and differential privacy, have been applied to location data to quan-
tify these privacy principles. What is lacking is a connection between the literature on
anonymizing location data and the anonymization criteria dictated by privacy law, which
we seek to address.

There has been relatively little work that interprets the EDPB’s anonymization criteria.
While [10] proposed a universal standard for Singling-out, they did not interpret Link-
ability or Inference, and did not incorporate the reasonability test or the context of the
anonymization process. These authors assumed a worst case scenario where the data is
subject to a computationally unbounded adversary with complete knowledge of the data
generating distribution. This is unlikely to occur and protecting against such an adver-
sary requires anonymization methods that can severely reduce data utility, e.g., differential
privacy [7, 42, 24], and likely goes beyond what would be determined as reasonable. Of-
ten, a data controller wishes to share personal data with processors who also have security
controls for their data. Legal anonymization should incorporate context-specific factors
such as the type of data being anonymized, the technical abilities of the data user, and the
amount of time the anonymized data will be available, as recommended by the Working
Party. The authors in [26] took such an approach and interpreted Singling-out, Linkability,
and Inference in the context of protected queries submitted to a data base. We also take
a context-specific approach, and interpret Singling-out, Linkability, and Inference in the
context of location data.

Other examples of context based anonymization include the Five Safes [5, 4], which is a
framework for reasonably assessing the safety of different portions of the anonymization
process, and the European Medicines Agency (EMA) guidance on anonymizing clinical
data [20]. The EMA stated that either Singling-out, Linkability, and Inference must be pre-
vented, or the identification risks must be deemed acceptably low. Ultimately, a data set can
be anonymized in different ways, each of which may be adequate depending on the risk of
re-identification in the context in which anonymized data is disclosed. In any context, the
EMA supported maximizing the utility of the data for scientific study with adequate pri-
vacy. Similarly, in our empirical application, we evaluate two anonymization solutions for
location data and examine the level of protection that maximizes data utility and achieves
legal anonymization.

TRANSACTIONS ON DATA PRIVACY 17 (2024)
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4 Interpretation of Legal Anonymization Criteria

In this section, we interpret the three legal criteria used to evaluate the robustness of
anonymization as described in the EDPB Guidelines [18]. These criteria define when Singling-
out, Linkability, and Inference are prevented, and can be used to perform the reasonability
test to evaluate anonymized data. Recall the three risks outlined by the EDPB:

Singling-out: isolating an individual in a larger group based on the data

Linkability: linking together two records concerning the same individual

Inference: deducing, with significant probability, unknown information about an individual

We consider a data set Y which has been pseudonymized through the removal of any
direct identifiers. The data set Y contains N rows, each row assumed to correspond to a
unique individual, labeled [N ] = {1, . . . , N} and indexed n ∈ [N ], and P columns, labeled
[P ] = {1, . . . , P} and indexed p ∈ [P ]. Note that the data set Y is a collection of rows;
Y = [y1, . . . ,yN ]T where a row yn = (yn,1, . . . yn,P ) and yn,p denotes the value in row n
and column p.

4.1 Singling-out

Singling-out is “isolat[ing] some or all records which identify an individual in [a] data set,”
[10] and Singling-out has occurred when the statement “There is exactly one user that has
these attributes,” is correctly made by someone examining the data [26]. We assume each
individual has one record in Y. Therefore, Singling-out amounts to isolating an individ-
ual’s record from the rest of the records in Y. We assume isolation occurs if an adversary
identifies a record yn that differs from all other records on at least one value yn,p ∈ yn.

Define Ŷ as the matrix formed from the unique rows in Y. A row is unique if it differs
from all other rows on at least one value yn,p. Note that Ŷ = [ŷ1, . . . , ŷI ]

T where ŷi is
a unique row indexed by i ∈ {1, . . . , I} and I ≤ N . Define a counting measure µ(ŷi) =
#{n ∈ [N ] : yn = ŷi} as the number of times row ŷi appears in Y, and define vector
ẑ = (ẑ1, . . . , ẑI) with ẑi = µ(ŷi) and

∑
i ẑi = N . Singling-out can occur when ẑi = 1 for

some i and is prevented when

min ẑ ≥ 2. (1)

Singling-out is prevented when the minimum number of occurrences of any row yn in Y
is at least two and no individual can be isolated. To illustrate, consider the data set Y in
Table 1 with records containing location trajectories and two categorical attributes.

L1 L2 L3 Sex Disease
1 60.123, 120.827 60.124, 120.831 60.438, 121.002 F Dementia
2 60.124, 120.829 60.128, 120.834 60.431, 121.004 F Cancer
3 61.879, 122.384 61.243, 121.939 61.001, 121.822 M Hypertension
4 61.872, 122.386 61.241, 121.933 61.004, 121.823 F Hypertension
5 58.847, 119.998 58.294, 120.353 59.559, 121.491 F Dementia
6 58.843, 119.991 58.295, 120.358 59.555, 121.496 M Dementia

Table 1: data set Y.
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Every individual can be singled out based solely on one of the location attributes {L1,
L2, L3}. Singling-out can be prevented by applying generalization or suppression to the
attributes in Y to create subsets of records, or equivalence classes, that share the same
attribute values [44]. We create a protected version of Y in Table 2 by truncating the decimal
places in the latitude and longitude measurements [41] and suppressing non-matching Sex
and Disease values in equivalence classes.

L1 L2 L3 Sex Disease
1 60.12, 120.82 60.12, 120.83 60.43, 121.00 F *
2 60.12, 120.82 60.12, 120.83 60.43, 121.00 F *
3 61.87, 122.38 61.24, 121.93 61.00, 121.82 * Hypertension
4 61.87, 122.38 61.24, 121.93 61.00, 121.82 * Hypertension
5 58.84, 119.99 58.29, 120.35 59.55, 121.49 * Dementia
6 58.84, 119.99 58.29, 120.35 59.55, 121.49 * Dementia

Table 2: Generalized data set Y with Singling-out prevented.

This level of protection against Singling-out may be sufficient, depending on the context
and objectives of the anonymization process. Larger equivalence classes must be created
if better privay is required. However, for this data set it is not possible to create larger
equivalence classes using the truncation technique even if all decimals are removed. This
illustrates the difficulty of preventing Singling-out in location data sets especially with a
small number of records. By our measurements, the geographic area represented by spatial
points with two decimal places is approximately 1110 by 892 meters, meaning there is
significant uncertainty about the precise locations of these individuals, and utility will be
reduced significantly with further generalization. We note that preventing Singling-out
alone does not provide adequate overall privacy, e.g., attribute disclosure occurs since the
value of Sex is disclosed for the first two rows, and the value of Disease is disclosed for
the last four rows. We discuss the prevention of this type of disclosure in Section 4.4.

Whether an individual can be singled out is related to the concept of unicity, or the unique-
ness of the location trajectories in a given data set. Significant work has gone toward devel-
oping methods for reducing the unicity of location data [24, 35] since individuals’ location
trajectories can be easily singled out [36]. To measure the risk associated with a unique
location trajectory in Y, one could consider the probability that a trajectory is also unique
in the population [48]. This probability affects whether a match between a population tra-
jectory and a unique trajectory in Y is correct, which we discuss in the next section and in
our empirical application.

4.2 Linkability

We define Linkability to mean that a one-to-one linkage occurs between records for some
individual in Y and an external data set X, containing some or all of the same attributes
in Y [26]. To be conservative, we assume it is known that the one-to-one linkage is correct.
There are three types of linkage that do not constitute Linkability, and are acceptable: (1)
a one-to-many linkage (one row in X to multiple rows Y) (2) a many-to-many linkage
(multiple rows in X to multiple rows Y) and (3) a many-to-one linkage (multiple rows in
X to one row in Y).

Suppose the external linking data set X contains N ′ rows, each row identifying a unique

TRANSACTIONS ON DATA PRIVACY 17 (2024)



Legally Anonymizing Location Data Under the GDPR 9

individual, and P ′ columns. To be conservative in terms of privacy, we assume that the ex-
ternal data set includes at least some data on all individuals in Y where N ≤ N ′, i.e., the set
of individuals with records in Y is a subset of the individuals with records in X. This pre-
cludes the one-to-many linkage scenario as there will always be a row in X corresponding
to each row in Y.

Define common information (CI) as the nonempty subset of columns K ⊆ [P ] of size
K ≡ |K| that is contained in both Y and X.5 For a row yn, let ȳn = (yn,k, k ∈ [K])
denote a CI tuple which is the truncation of yn leaving only the CI. The matrix of unique
CI tuples found in Y is the J ×K matrix Ȳ = [ȳ1, . . . , ȳJ ]

T with unique CI tuples indexed
j ∈ {1, . . . , J} where J ≤ I . Let the counting measure µ(ȳj) = #{i ∈ [I] : ¯̂yi = ȳj} denote
the number of times the unique CI tuple ȳj is the result of shortening each of the I unique
rows ŷi from Ŷ, i.e., the P -vector ŷi is shortened to the K-vector ¯̂yi. Define the vector of
counts z̄ = (z̄1, . . . , z̄J), where z̄j = µ(ȳj) is the count for unique CI tuple j ∈ [J ] and∑

j zj = I . We focus on a direct one-to-one linkage attack, i.e., an external record is linked
to a record in Y when the CI in both records is identical. Linkability occurs when z̄j = 1
for some j ∈ [J ] and is prevented when

min z̄ ≥ k, ∀k ≥ 2. (2)

The criteria in (2) is synonymous with k-anonymity [51] where one-to-one linkage is pre-
vented when there are at least two records in Y corresponding to each CI tuple ȳj based on
K. This is not as strong of a requirement as the prevention of Singling-out and we discuss
the difference in Section 4.3. To illustrate, we return to our example from Section 4.1. Sup-
pose an adversary has access to an external data set X. For simplicity, we show a subset
of X in Table 3. The common information K are the three location attributes and sex, i.e.,
{L1, L2, L3, Sex}. One-to-one linkage occurs between records two and six in X and their
matches in Y using {L1, L2, L3, Sex} when no data protection is applied.6

L1 L2 L3 Sex
1 65.563, 125.824 65.229, 125.912 64.277, 124.800 M
2 60.124, 120.829 60.128, 120.834 60.431, 121.004 F
3 68.162, 123.688 68.253, 124.765 69.100, 123.134 F
4 58.245, 119.072 60.621, 118.834 61.356, 119.081 M
5 75.136, 130.364 73.753, 129.624 74.274, 130.421 M
6 58.843, 119.991 58.295, 120.358 59.555, 121.496 M

Table 3: External data set X.

5Common information is sometimes referred to as ‘key’ variables in the literature [47].
6In fact, one-to-one linkage can occur between records two and six and their matches using any one of the

location variables.
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L1 L2 L3 Sex Disease
1 60.123, 120.827 60.124, 120.831 60.438, 121.002 F Dementia
2 60.124, 120.829 60.128, 120.834 60.431, 121.004 F Cancer
3 61.879, 122.384 61.243, 121.939 61.001, 121.822 M Hypertension
4 61.872, 122.386 61.241, 121.933 61.004, 121.823 F Hypertension
5 58.847, 119.998 58.294, 120.353 59.559, 121.491 F Dementia
6 58.843, 119.991 58.295, 120.358 59.555, 121.496 M Dementia

Table 4: Data set Y.

We apply generalization and suppression to the variables in K to produce the Y shown in
Table 5.

L1 L2 L3 Sex Disease
1 60.12, 120.82 60.12, 120.83 60.43, 121.00 F Dementia
2 60.12, 120.82 60.12, 120.83 60.43, 121.00 F Cancer
3 61.87, 122.38 61.24, 121.93 61.00, 121.82 * Hypertension
4 61.87, 122.38 61.24, 121.93 61.00, 121.82 * Hypertension
5 58.84, 119.99 58.29, 120.35 59.55, 121.49 * Dementia
6 58.84, 119.99 58.29, 120.35 59.55, 121.49 * Dementia

Table 5: Data set Y with Linkability prevented.

Now, only a one-to-many linkage can occur between record two in X and records one and
two in Y, and record six in X and records five and six in Y. If all records in X were exam-
ined, only many-to-many linkages could occur. The probability that an external record and
a record with matching attributes in an equivalence class of size k correspond to the same
individual is 1/k [6] (assuming that the external record only matches to one equivalence
class). While k-anonymity is one of the most commonly applied protection approaches
for location data [35], it has known shortcomings, such as failing to prevent composition
attacks [27], and the Working Party provides several warnings on its use [6].

First, small values of k result in low privacy, but may be appropriate in contexts with high
data security and other safety measures. The value of k should always be chosen to pro-
vide a reasonable balance between privacy and utility. Second, equivalence classes should
not contain uneven distributions of attributes. This relates to the ability of an adversary
to perform attribute disclosure, i.e., deduce information pertaining to a target individual
when the linked records in Y correspond to a single attribute value (or one attribute value
with high probability) [24]. For example, if an adversary links a target record to the second
equivalence class in Table 5, they learn the target individual has Hypertension. We exam-
ine attribute disclosure in creater detail in Section 4.4. Third, it is inappropriate to exclude
any quasi-identifiers from the k-anonymity calculation. However, the line between quasi-
identifiers and sensitive attributes (non-identifying variables, e.g., Disease in Table 5) is
blurred for location data, which we discuss more in Section 4.3.

We note that there are other approaches to record linkage such as principal component
score rankings or probabilistic, distance, or cluster-based matching [13, 47, 59, 14]. We also
assumed that an adversary knew a one-to-one linkage was correct. In practice, a unique
record in a data set may not be unique in the population, especially if the size of the data
set is small relative to the size of the population [48]. However, for location data, the prob-
ability that a unique sample record is a unique population record is likely very high: four
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spatio-temporal points are enough to Single-out 95% of 1.5 million individuals at a rela-
tively low spatial resolution [36].

4.3 Singling-out vs. Linkability

Depending on the external data set, some locations may be CI while others are sensitive
such as the location of an individual’s home or work [35]. This means z̄ will be difficult
to determine since the organization may have no knowledge of which columns in Y are
CI from the 2N − 1 possibilities. Since we assume the external data set contains a record
for each individual in Y, one-to-one linkage is prevented for all possible K ⊆ [P ] when
Singling-out is prevented, i.e., min ẑ ≥ 2. In this case, yn is non-unique relative to X.
Therefore, any CI-truncation ȳj is also non-unique, which implies that min z̄ ≥ 2, i.e.,
Linkability is prevented. Conservatively, we suggest organizations take this approach and
prevent Singling-out such that no record from Y may be directly linked with a public record
from X under any K.

Preventing Linkability does not necessarily prevent Singling-Out. For example, rows one
and two in Table 5 can be Singled-out based on Disease. However, Singling-out (and
hence Linkability) are prevented in Table 2 since no row can be isolated and one-to-one
linkage is prevented based on any CI. The distinction is that any record must match at
least one other record on all variables, not just CI, for Singling-out to be prevented. This
is a stricter requirement than traditional k-anonymity, and syntactic privacy methods may
struggle to achieve (1) while maintaining data utility, especially in high dimensions [2].
However, most of the proposed protection methods for location data focus on preventing
linkage attacks [24] so organizations can choose the method that yields the highest utility
while meeting the legal criteria. We note that many-to-one and many-to-many linkages
can still allow attribute disclosure to occur (e.g., Sex for the first equivalence class and
Disease for the second and third equivalence classes in Table 5, respectively) which we
discuss in Section 4.4.

4.4 Inference

Inference is deducing, with significant probability, unknown information about an indi-
vidual. Whether Y prevents Inference depends on a reasonability test where “a solution
against [Inference] would be robust against re-identification performed by the most likely
and reasonable means the data controller and any third party may employ,” (pp. 12, [6]).
In the context of location data, unknown information could take many forms, such as per-
sonal attributes or home or work locations. We consider an adversary’s goal with Inference
to be able to correctly make statements of the form, “the value of this attribute is s” for
some individual of interest, based on the information in Y, any publicly available data X,
and background knowledge b [26]. We need a reasonable interpretation of Inference that
allows us to limit the increase in probability that such statements are correctly made by
accessing the anonymized data set.

We define Inference using an attribute disclosure attack against our data set Y. An ad-
versary seeks to identify the value of a sensitive categorical (or intervaled) variable for
individual n using some external information on individual n, such as x (a row in X cor-
responding to individual n) and/or b (background knowledge about the individual or the
sensitive variable of interest). Let S denote the discrete random variable and s denote the
value of the random variable. Let s∗ be the true value for individual n that the organization
is trying to prevent Inference on. The adversary has a prior probability p(s∗ |X,b) of the
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individual having a value s∗ based on external information and background knowledge.
Once Y is released, the adversary updates the probability p(s∗ |x,b,Y) based on the new
information. The pseudonymized data set Y prevents Inference for individual n when

p(s∗ |x,b,Y)− p(s∗ |X,b) ≤ c. (3)

The change in probability on the left-hand side (LHS) is always between -1 and 1. Per the
EDPB’s guidelines, we view (3) as the most likely and reasonable means that a third party
would use with the value of c set between 0 and 1 based on their definition of significant
probability. Note that if the LHS of (3) is negative, the criterion is not violated as Inference
is worse on individual n and the probability that the adversary infers the value s∗ is lower
than it was prior to accessing Y. Exploring the ramifications for individual n if the adver-
sary infers an incorrect value s is outside the scope of this paper. We suggest setting the
LHS to 0 in cases where Inference is degraded, p(s∗ |x,b,Y) < p(s∗ |X,b), and limiting
the maximum increase in probability across all individuals in Y.

We revisit our example from Sections 4.1 and 4.2 to illustrate (3). Suppose an adversary
seeks to deduce the Disease of individual n in Y using the corresponding record in X.
The adversary bases their prior belief over the Disease of individual n using the following
probability mass function (PMF)

p(s |X,b) =


0.6, s = Hypertension,
0.2, s = Dementia,
0.2, s = Cancer,

which could be based on prior beliefs b, the population PMF in X, or both. For simplicity,
we assume the Disease categories are mutually exclusive and collectively exhaustive. In
practice, we do not know the amount of external information available to an adversary,
and the prior PMF should be chosen to be both reasonable and conservative to serve as a
baseline for assessing whether Inference is prevented.

Suppose the adversary’s individual of interest corresponds to the second record in X.
For brevity, we examine Inference in Y after Singling-out and Linkability have been pre-
vented.7 In this example, x links to the first and second records in Y based on the CI.

L1 L2 L3 Sex
1 65.563, 125.824 65.229, 125.912 64.277, 124.800 M
2 60.124, 120.829 60.128, 120.834 60.431, 121.004 F
3 68.162, 123.688 68.253, 124.765 69.100, 123.134 F
4 58.245, 119.072 60.621, 118.834 61.356, 119.081 M
5 75.136, 130.364 73.753, 129.624 74.274, 130.421 M
6 58.843, 119.991 58.295, 120.358 59.555, 121.496 M

Table 6: External data set X.

7Inference is trivial when Singling-out and Linkability are not prevented. The adversary simply has to find the
record ym which links to x and they can infer the values of any attributes not in x.
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L1 L2 L3 Sex Disease
1 60.12, 120.82 60.12, 120.83 60.43, 121.00 F *
2 60.12, 120.82 60.12, 120.83 60.43, 121.00 F *
3 61.87, 122.38 61.24, 121.93 61.00, 121.82 * Hypertension
4 61.87, 122.38 61.24, 121.93 61.00, 121.82 * Hypertension
5 58.84, 119.99 58.29, 120.35 59.55, 121.49 * Dementia
6 58.84, 119.99 58.29, 120.35 59.55, 121.49 * Dementia

Table 7: data set Y with Singling-out and Linkability prevented.

This results in the following updated Disease PMF for the first two rows based on x, b,
and Y,

p(s |x,b,Y) =


0.42, s = Hypertension
0.29, s = Dementia
0.29, s = Cancer,

which is conditioned on the values of Disease being different for the first two rows. Under
this scenario, there is an increase of 0.09 in the probability of the adversary deducing that
the Disease of individual n is “Cancer”. Using (3),

p(s∗ |x,b,Y)− p(s∗ |X,b) = 0.29− 0.20 = 0.09,

which is a relatively low increase. However, for the individuals corresponding to records
three through six in Y, (3) would be violated since the adversary can deduce their Disease
values with 100% certainty without considering any external information. Thus, the maximum
of the LHS of the Inference condition is equal to

max{0.09, 0.09, 0.40, 0.40, 0.80, 0.80} = 0.80.

Reducing the LHS for records three through six would require further generalization
to create equivalence classes with non-homogenous Disease values (which is not pos-
sible through additional truncation), or suppressing all values of Disease which would
severely degrade the utility of the data. The examples in this section have shown that
k-anonymity does not prevent Singling-out and that extensions such as l-diversity and t-
closeness would be needed to prevent Inference via attribute disclosure [6, 57, 55]. Overall,
whether (3) is violated depends on c and the choice of the sensitive variable, which must be
reasonable and most likely, even if it does not actually result in non-identified information.
We note that other methods of evaluating attribute disclosure such as interval disclosure
[52] could be used. Overall, very little work has examined attribute disclosure in location
data [24] and we examine such an attack in our empirical application.

5 Application to South Korean COVID-19 Location Data

5.1 Data Description

Our data set was collected by the Korean Centers for Disease Control and Prevention
(KCDC) and contains latitude/longitude coordinates for COVID-19 positive individuals
in South Korea [16]. We build on the notation introduced in Section 4 and define a longitu-
dinal location data set Yℓ. The superscript ℓ denotes that rows have longitudinal data. The
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original data set Yℓ is a collection of N ℓ = 1, 472 location trajectories of COVID-19 positive
patients tracked from January 20, 2020 to June 01, 2020, where yℓ

n = (yn,1, yn,2, . . . , yn,Pn
)

is the trajectory for individual n and yn,p denotes the p-th location tuple for individual n.
There are Pn location tuples in the location trajectory for individual n, where Pn ranges
from one to forty-five tuples for all individuals. We delete trajectories with Pn < 5, result-
ing in 595 trajectories across all of South Korea, and 247 trajectories in Seoul. Additionally,
we delete the timestamps associated with the trajectories because nearly all of the trajec-
tories are unique with them. After this redaction, 97.31% of individuals have a unique lo-
cation trajectory and 63.73% of location tuples in this data set are unique. Without further
disclosure limitation, the prevention of Singling-out would require the deletion of nearly
all trajectories.

5.2 Use Cases of Location Data

We assess reasonable anonymization solutions of Yℓ,d for two use cases involving indi-
vidual location trajectories and individual location tuples. The anonymization solutions
intend to “...achieve the targeted anonymization while producing some useful data,” [6].
We use the criteria from Section 4 to assess how the usefulness of the data changes at the
point in which the legal criteria are met.8

The first use case stores the data for each individual in a location trajectory which is useful
for tracking and mitigating the spread of disease, predicting consumers’ path-to-purchase
[50], providing accurate point-of-interest recommendations and context-aware marketing
messages [34], and influencing taxi drivers’ decision-making processes to improve driver
incomes and market efficiency [61].

The second use case drops the longitudinal links and treats each location as an indepen-
dent observation which is useful for disease mapping9 and geo-targeting/conquesting [25].
This removes information on individuals’ movements and we denote this non-longitudinal

location data set as Y which has N =
∑Nℓ

n=1 Pn observations.
Furthermore, the EDPB states that the reasonability test for location data must “take into

account both objective aspects...and contextual elements...including population density, na-
ture and volume of data...”[18]. Thus, we separate our analysis into two geographical re-
gions with varying population densities - the city of Seoul (approximately 605 km2) and
the country of South Korea (approximately 100,210 km2) - shown in Figure 1. The num-
ber of locations observed across South Korea and Seoul are approximately 0.05 and 4 per
square kilometer, respectively. In practice, additional contextual factors should be consid-
ered when balancing privacy and utility, such as the technical abilities of the data user, and
the length of time the anonymized data will be available.

5.3 Anonymization Solutions for Location Data

For the first use case, we perform Location Coarsening by manually rounding the latitude
and longitude coordinates in Yℓ to a lower number of decimal places, denoted d, which
is similar to truncation [41]. For example, there are many specific location tuples, e.g.,
(37.5926645, 127.0174081), (37.5929072, 127.0169073), and (37.5928234, 127.017167) at d = 7,
that correspond to the coarsened tuple (37.593, 127.017) at d = 3. As a result, the number

8We discuss additional use cases in the appendix.
9For example, see coronamap.site.
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Figure 1: Location tuples mapped over South Korea (top row) and Seoul (bottom row). A
and D contain original locations, B and E contain coarsened locations for d = 1, and C and
F contain microaggregated locations for k = 5.
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of coarsened location tuples when d ≤ 7 is always at least as big as the number of location
tuples when d = 7 for a given tuple. The same is also true for coarsened trajectories.

For the second use case, we use the sdcMicro package in R [52] to perform microag-
gregation to replace the values of location tuples in clusters of size k with the centroid
of the cluster. For example, the clustered tuples (37.5926645, 127.0174081), (37.5929072,
127.0169073), and (37.5928234, 127.017167) for k = 3 would all be replaced with their cen-
troid (37.5927984, 127.0171608). Figure 1 illustrates the coarsened location tuples when
d = 1 and the microaggregated tuples for k = 5, respectively.

Both approaches alter the data with no randomness and produce location trajectories and
tuples consistent with the original data and palatable across the organization.

5.4 Preventing Singling-out

To prevent Singling-out, no individual can have a unique location trajectory (for use case
one) or location tuple (for use case two). One issue with evaluating the effects of Location
Coarsening is that the original trajectories have different lengths Pn from 5 to 45. To ad-
dress this issue, we simulate 500 protected data sets for each value of d ∈ {0, 1, 2, 3, 4, 5}.10

These 500 simulated data sets are created by sampling (without replacement) one to five
location tuples from each trajectory in the original data set. We calculate the percentage of
trajectories that are unique in each simulated data set. For the second use case, we perform
microaggregation for cluster sizes k ∈ {2, 5, 10, 15, 20, 25}. We apply both anonymization
solutions to both the South Korea and Seoul data sets.

Each boxplot in Figure 2 shows the percent of unique trajectories for each of 100 simula-
tions given a sampled trajectory length and value of d. One weakness of Location Coarsen-
ing is that it is possible to reduce the granularity of the locations but still have a unique tra-
jectory. Without deletion, Location Coarsening does not prevent Singling-out at any value
of d in Seoul or South Korea. However, the required number of deletions for trajectories is
considerably less for the high density region of Seoul.11 The advantage of microaggrega-
tion in this case is that it protects against Singling-out for any value of k since it replaces
the locations in each cluster with the cluster centroid.

Table 8 reports quantiles of the distance shifted (in meters) for locations under each anonymiza-
tion method, calculated using the geosphere package in R. For the first use case, the useful-
ness of the coarsened data is poor for low values of d. To prevent Singling-out, over 88%
of the trajectories must be deleted when d ≥ 2 and over 50% of the trajectories must be
deleted in South Korea when d = 1 where the median distance shifted is approximately 4
kilometers. The utility results for coarsened data are better in Seoul for d = 1, but worse for
other values of d. The reason is that location coarsening places points on a grid determined
by the decimal values. The distance shifted depends on how close the original locations
are to that grid. The locations in Seoul are close to the grid points for d = 1 (see Figure 1),
which results in low quantiles.

For the second use case with microaggregation, the distances shifted depend on the prox-
imity (density) of the original locations. Hence, the utility of the Seoul data is significantly
better at nearly every quantile and aggregation level. For location coarsening, d = 1 pro-
vides the best balance between privacy and utility since most of the data must be deleted

10We only consider decimal places d ≤ 5 because there is little effect from coarsening to values of d larger than
five.

11Our results were obtained from location data without considering the temporal aspect that often accompanies
this type of data. Including temporal information in location traces further raises the identifiability of individuals
[41] and would greatly increase the difficulty of preventing Singling-out.
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Figure 2: Percentage of unique trajectories for each value of d = 0, 1, . . . , 5 and sampled
trajectory lengths from one to five tuples in South Korea (left) and Seoul (right)
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Anonymization Method Full Data Seoul Data

Location Coarsening

d 2.5% 50% 97.5% 2.5% 50% 97.5%
5 0.08 0.39 0.65 0.08 0.39 0.63
4 1.00 3.94 6.36 1.00 3.96 6.48
3 10.61 40.36 64.04 10.71 39.94 64.14
2 82.62 394.35 642.58 123.86 413.19 645.01
1 987.36 3,990.97 6,378.20 861.47 3730.77 6050.11
0 15,223.54 47,203.55 63,859.24 40,978.59 51,748.75 55,882.45

Microaggregation

k 2.5% 50% 97.5% 2.5% 50% 97.5%
2 0.00 0.00 3,455.16 0.00 0.00 576.80
5 0.00 140.81 8,449.03 0.00 106.53 983.13
10 0.00 352.33 13,752.10 0.00 246.27 1,382.91
15 0.00 484.22 18,314.74 0.00 352.74 1,724.26
20 0.00 680.27 18,846.68 0.00 482.35 1,818,04
25 0.00 776.56 26,569.35 0.97 587.22 2,130.31

Table 8: Quantiles of distances shifted (in meters) between coarsened tuples and original
tuples and microaggregated tuples and original tuples for the full and Seoul data sets.

for d ≥ 2, and the median distance shifted when d = 0 is over 47 kilometers. Any choice of
k for microaggregation prevents Singling-out, so organizations can choose the value that
best balances utility and privacy in their specific context.

5.5 Preventing Linkability

In practice, an organization would meet the stronger Singling-out criterion to prevent Link-
ablity since both are required to convert to non-personal data. Even when Linkability is
prevented, the size of equivalence classes is directly related to the probability that an ex-
ternal record and a matching record in an anonymized data set correspond to the same
individual. Based on the same simulation described in Section 5.4, Figure 3 plots the dis-
tribution of the inverse equivalence class size 1/k for all non-unique trajectories across all
simulations for each combination of d and sampled trajectory length, and for each value of
k under microaggregation.

For use case one, most trajectories are in equivalence classes of size two for d ≥ 2, the
minimum size for legally anonymized data. This requirement may be an acceptable level
of privacy in contexts with other privacy or security measures. However, privacy improves
by moving to d = 1 to place more trajectories into larger equivalence classes. The dense
Seoul data exhibits larger equivalence classes under location coarsening for d = 1 than
the South Korea data, where the best privacy occurs when d = 0 and most trajectories are
contained in equivalence classes of at least ten records. d = 1 represents a better tradeoff
between utility and privacy for both coarsened data sets due to the massive reductions in
data utility at d = 0 (note that unique trajectories must still be deleted to legally anonymize
the data).

The results are better for use case two, where microaggregation produces equivalence
class sizes bounded by our choice of k, and there are outlying clusters with larger numbers
of location tuples. Between the two methods, comparing equivalence classes of at least
ten locations shows that utility is orders of magnitude better under microaggregation than
Location Coarsening, e.g., a median shift of 246.27 meters for k = 10 in the microaggregated
Seoul data vs. 3,730.77 meters for d = 1 in the coarsened Seoul data.
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Figure 3: Distribution of 1/k for each value of d = 0, 1, . . . , 5 and sampled trajectory lengths
from one to five tuples in South Korea (left) and Seoul (right).

TRANSACTIONS ON DATA PRIVACY 17 (2024)



20 Bale, Fischer, Schneider, Weber, Chang

Given that preventing Singling-out is a stronger requirement than preventing Linkabil-
ity, we also consider the case where a data controller decides to only prevent Linkability.
When Singling-out is not prevented in Yℓ, some individual with a completely unique tra-
jectory exists. Suppose an adversary does not know the true identity of individual n and
the adversary’s external linking data set Xℓ contains one or more individuals with trajecto-
ries that could be linked to individual n. As a result, the adversary may have a one-to-one
linkage, which constitutes Linkability, or a many-to-one linkage, which prevents Linkabil-
ity. Past research indicates that four spatio-temporal points corresponding to geographical
areas ranging between 0.15 to 15 square kilometers are enough to uniquely identify 95 per-
cent of individuals from a population of 1.5 million [36]. By our calculation, location tuples
coarsened to d = 2 fall within the range of one square kilometer. For d = 2, Figure 2 shows
that over 90% of trajectories are unique with only two location tuples and over 95% of tra-
jectories are unique with three or more location tuples. Thus, an adversary with a data set
of the entire population and CI consisting of four or more location tuples would likely have
a one-to-one linkage for over 95% of the individuals in Yℓ. This implies that preventing
Linkability by coarsening locations when Singling-out is not prevented is difficult unless
the organization uses a value of d ≤ 1 in both high and low density regions. We suggest or-
ganizations attempting to anonymize location trajectories using Location Coarsening first
prevent Singling-out; otherwise, consider different approaches, such as noise infusion, to
release a less linkable data set of protected latitude and longitude coordinates.

5.6 Preventing Inference

There is a great deal of sensitive information that could be deduced from location data. For
example, [34] find that in the absence of data obfuscation, individuals’ location trajectories
can be used to accurately predict individuals’ home addresses within an average radius of
2.5 miles, and two randomly sampled locations are enough to fully identify 49% of individ-
uals’ entire location trajectories. For our application, the most likely inference of interest in
our data set is attribute disclosure to determine whether an individual has COVID-19.

To study the probability of a successful attribute disclosure, we randomly assign 1% of
individuals to have COVID-19 in our original data set Yℓ. All location tuples from these
individuals’ trajectories are marked as having COVID-19 in the data set Y. Using Equation
(3), we define sn = {0, 1} as the COVID-19 status of individual or location n with the
prior probabilities p(1|X,b) = 0.01 and p(0|X,b) = 0.99. The updated probabilities when
the adversary has the protected data set are p(1 | x, b, Yℓ) for Location Coarsening and
p(1 | x, b, Y) for microaggregation.

For a reasonable attribute disclosure attack in use case one, we assume the adversary
matches the larger population data set Xℓ to the location trajectories released in a version
of Yℓ with Singling-out and Linkability prevented. To produce the updated probability in
Equation (3), 100 simulated data sets are generated for each value of d and trajectory length
(one to five). We only consider values of d ∈ {0, 1, 2} since the majority of trajectories had
to be deleted to prevent Singling-out and Linkability when d > 2. For each simulation,
one percent of individuals are randomly assigned a positive COVID-19 status. Then, for
each positive individual, we randomly sample one location tuple to treat as CI. We identify
the trajectories that match each CI tuple x and take the mean of the matching COVID-19
statuses to compute the updated probability, p(1 | x, b,Yℓ) for each positive individual. The
left-hand side of equation (3) follows and we compute the maximum across all COVID-19
positive individuals in each simulation. This process is performed once using the full data
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and once using the Seoul data.
For use case two, we also perform 100 simulations to assess a reasonable attribute disclo-

sure attack against the microaggregated data sets with Singling-out and Linkability pre-
vented. We sample one location tuple from the trajectory of each COVID-19 positive indi-
vidual and treat these tuples as CI. We assume the adversary performs a nearest-neighbor
based matching such that each CI tuple is linked to its nearest equivalence class based on
Euclidean distance. We compute p(1 | x, b,Y) as the mean of the COVID-19 status within
the linked equivalence class, and compute the maximum of the LHS of the Inference con-
dition across all COVID-19 positive individuals in each simulation.

Figure 4: Boxplots of the maximum increase in Inference probabilities for COVID-19 posi-
tive individuals under Location Coarsening (top row) and Microaggregation (bottom row).

Figure 4 plots boxplots of the maximum increase in Inference for each use case. For Loca-
tion Coarsening in the top row, a boxplot is shown for each value of d and trajectory lengths
of one to five tuples in South Korea and Seoul, respectively. For microaggregation in the
bottom row, a boxplot is shown for each value of k in South Korea and Seoul.

For use case one with Location Coarsening, preventing Inference is extremely difficult
in low density regions of South Korea. Locations must be coarsened to d = 0 for most
of the simulations to have a maximum increase in probability of 12% or less. Preventing
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Inference is more likely in high density regions like Seoul for d ≤ 1 with most simulations
having 5% maximum increase in probability. We also see that the maximum increase in
Inference tends to be slightly lower for longer trajectories since each trajectory contains a
higher number of locations and it is more likely that a single CI tuple matches to multiple
trajectories. To prevent Inference for Location Coarsening at higher values of d, we suggest
suppressing location tuples that are nearly unique to one individual to reduce the ability
of an adversary to deduce unknown information about these individuals.

For use case two with microaggregation, the maximums are lower in Seoul than South
Korea. Interestingly, the maximum increases in Inference are significant for large equiv-
alence class sizes, e.g., the maximum increase is over 12% in about 50% of simulations
when k = 25. To explain this result, we plot red stars in Figure 4 that denote the average
proportion of locations corresponding to the targeted COVID-19 individual in the linked
equivalence class. The targeted individuals tend to have multiple locations in the targeted
equivalence class, e.g., about three out of twenty-five locations correspond to the target
individual when k = 25, leading to larger increases in Inference.

For comparison between the two use cases, Location Coarsening in the Seoul data for
d = 0 produces equivalence classes of approximately twenty-five trajectories, and most of
the maximum increases are less than 5%, since each positive individual can only increase
the probability of Inference by 1/25. We also see cases where the coarsened trajectories
provide better protection against Inference than Microaggregation for significantly smaller
equivalence class sizes. For example, the distributions in the Seoul data for d = 1 are
significantly lower than for microaggregation for k ∈ {10, 15, 20, 25} even though most
of the coarsened tuples are contained in equivalence classes of six or fewer individuals.
Overall, it will be challenging for organizations demanding a high level of usefulness to
prevent Inference for all individuals in the simplest of cases, such as using a binary variable
that indicates disease status. Another reasonable approach may be to delete the data of
individuals who have a maximum probability of Inference above an acceptable level.

5.7 Summary of Results

This application illustrated a case study of whether anonymization methods can produce
legally anonymous location data while retaining usefulness.

For use case one with location coarsening, a low value of d = 0 was necessary to anonymize
location data for low density regions. However, this had an enormous negative impact on
usefulness, with most locations shifting by over 47 kilometers. Data from high density re-
gions was anonymized for a slightly higher value of d = 1, but most locations still shifted
by 3.7 kilometers or more. In sum, coarsened individual-level location trajectories were not
private and required too much coarsening to meet legal criteria.

For use case two, microaggregation improved upon Location Coarsening at preventing
Singling-out and Linkability, which resulted in most locations being shifted by zero meters
when k = 2 and 140 meters when k = 5. However, microaggregation removed the longitu-
dinal links between tuples and prevented most applications such as predicting consumers’
path-to-purchase or tracking the spread of diseases. Microaggregation also struggled to
prevent Inference and required significant data deletion to limit Inference to a legally ac-
ceptable level. On the other hand, Location Coarsening produced better protection against
Inference at d = 1 than Microaggregation at any value of k.

We assessed two reasonable anonymization solutions for specific use cases with location
data. We found that the use cases were severely degraded when preventing all three criteria
simultaneously.
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We also showed the importance of incorporating contextual factors in the anonymization
process, such as using location data in low and high density areas. Specifically, in high
density areas, anonymized location data can meet legal anonymization requirements while
retaining a higher degree of usefulness.

6 Discussion

Location data are essential for tracking and mitigating the spread of disease, predicting
consumers’ path-to-purchase , providing accurate point-of-interest recommendations and
context-aware marketing messages, influencing taxi drivers’ decision-making processes to
improve driver incomes and market efficiency, disease mapping, and geo-targeting and
conquesting. In this paper, we proposed an interpretation of legal anonymization criteria to
evaluate converting personal location data to non-personal location data under the GDPR.
Using two reasonable anonymization solutions for the above use cases, we found that it
was not possible to produce legally anonymous location data while retaining usefulness.
We also found that context-specific factors, such as population density, influence whether
data can be legally anonymized.

This study was the first attempt to interpret and apply legal anonymization criteria to
location data. Without case law on this challenging problem, our study provides organiza-
tions with an example to document a reasonable effort at anonymizing location data. We
note that the anonymization techniques we used are not likely to meet anonymization cri-
teria for other complex data sets, including retail point-of-sale transactions [46], time series
[37], textual data stored from chatbots, search history logs [53], facial images [62, 1], social
network data [23], or even contact tracing data [17] derived from location data. As a result,
we encourage government agencies and privacy-minded organizations to invest in more
sophisticated anonymization techniques that retain the usefulness of complex data sets.

Large organizations or services (e.g., Google, Amazon Web Services, etc.) may eventu-
ally invest in and sell technological solutions that convert contextually-dependent personal
data to non-personal data; however, the costs are likely prohibitive for small- to medium-
sized organizations. In the short term, these smaller organizations will either use straight-
forward solutions (as shown in our application) that may only satisfy certain regulatory
definitions, incur the regulatory costs and corresponding risks to continue using personal
data, or, more likely, implement privacy and security controls using personal data.12 How-
ever, even with additional security and legal measures designed to protect personal data,
personal data still gets out. A report by Verizon found that 34% of the 2,013 data breaches
in 2019 involved internal actors such as employees [58], and the number of data breaches
more than doubled in the following years. Assuming a data breach will eventually oc-
cur, this leads to the question of whether it is more important to comply with the law or
anonymize the data at its source.

For limitations of this paper, we focused on generalization techniques in our empirical
application since these do not introduce randomness into the data and are more palatable
to the user. However, applying randomization techniques such as differential privacy ap-
proaches to location data is an active area of research [35], and future work should compare
randomization vs. generalization-based approaches in achieving legal anonymization for

12A study commissioned by the Attorney General’s Office of California’s Department of Justice stated that
small-sized firms with less than 20 employees would incur $50,000 in initial costs for CCPA compliance and
medium-sized firms with 20-100 employees would incur $100,000 in initial costs for CCPA compliance based on
data from a TrustArc survey [40].
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location data. In Section 4, we noted that the literature supports the possibility of other
interpretations of Singling-out, Linkability, and Inference. As opposed to [10], we excluded
differential privacy from our interpretation as not being reasonable for organizations. Fu-
ture work could examine the implications of these interpretations on the resulting balance
of privacy and utility in the anonymized data. It would also be valuable to analyze whether
more advanced anonymization techniques, such as applying varying levels of coarsening
on a per-trajectory basis [30] or creating synthetic location data using generative models
[35, 60] can produce more useful legally anonymized data.

This paper is a demonstration of the value of bringing multidisciplinary stakeholders to-
gether to develop privacy-promoting methods to address personal and non-personal data.
And, we hope for lawyers, statisticians, and data users to sit at the table together to con-
tinue to engineer privacy-oriented solutions. The EDPB has also provided commentary [18]
on the ability of various anonymization techniques, broadly categorized as either random-
ization or generalization, to protect against re-identification. The EDPB concluded that no
anonymization technique on its own is guaranteed to anonymize data based on Singling-
out, Linkability, and Inference. While based on past research, the EDPB’s opinions were
not specific to location data and they ultimately concluded that the optimal solution for
anonymizing a data set should be decided on a case-by-case basis, as demonstrated in this
paper. Furthermore, the absence of legislature or case law defining a “significant proba-
bility” or a “reasonability test” leaves practitioners guessing and was a motivation for the
application in this paper. Ultimately, any method used to convert personal data to non-
personal data must meet legal criteria, but there is no guarantee that meeting these criteria
provides adequate overall privacy [56] (e.g., 2-anonymity may comply with the law but
provide little privacy). Further, while our interpretations were intended to encapsulate
anonymization requirements from multiple privacy laws, no one solution may fit all le-
gal requirements impacting a data set. This is a challenge that requires a joint legislative
and mathematical solution, and we encourage further research combining privacy law and
disclosure limitation.
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Appendix

Here, we describe the legal analysis of the anonymization criteria in various legal frame-
works. Our conclusion was that the three anonymization criteria described by the EDPB,
namely, Singling-out, Linkability, and Inference, appear to encapsulate many of the criteria
that various legal definitions consider when determining if data is non-personal. Explo-
ration of other regional data protection regulations also provides little additional insight
into the statistical interpretation of anonymization, so the EDPB’s definition of anonymiza-
tion was considered exhaustive and was the focus of our paper.

Assessing Anonymization Criteria Across Legal Frameworks

The CCPA uses three terms relevant to determining if personal information is non-identifiable:

(1) “Aggregate consumer information”;

(2) “Deidentified”; and

(3) “Pseudonymization”.

The CCPA defines pseudonymization (§ 1798.140(r), [9]) as:

“The processing of personal information in a manner that renders the personal
information no longer attributable to a specific consumer without the use of
additional information, provided that the additional information is kept sepa-
rately and is subject to technical and organizational measures to ensure that the
personal information is not attributed to an identified or identifiable consumer.”

This definition is almost verbatim the definition found in the GDPR (Art. 4(5), [22]).
The CCPA defines de-identification (§ 1798.140(h), [9]) as:
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“Information that cannot reasonably identify, relate to, describe, be capable of
being associated with, or be linked, directly or indirectly, to a particular con-
sumer, provided that a business that uses deidentified information:

(1) Has implemented technical safeguards that prohibit reidentification of
the consumer to whom the information may pertain.

(2) Has implemented business processes that specifically prohibit reidenti-
fication of the information.

(3) Has implemented business processes to prevent inadvertent release of
deidentified information.

(4) Makes no attempt to reidentify the information.”

And, finally, the CCPA recognizes the idea of aggregation as a method to decrease the
identifiability of personal information, defining “aggregate consumer information” (§ 1798.140(a),
[9]) as:

“Information that relates to a group or category of consumers, from which indi-
vidual consumer identities have been removed, that is not linked or reasonably
linkable to any consumer or household, including via a device. “Aggregate con-
sumer information” does not mean one or more individual consumer records
that have been deidentified.”

In essence, under the CCPA, there is a legal distinction between the terms pseudonymiza-
tion and de-identification, whereas under the GDPR, there is a legal distinction between the
terms pseudonymization and anonymization. The terms “anonymized data” and “deiden-
tified data” both refer to protected data and are sometimes used interchangeably. These
terms do have shared characteristics. For example, both the EDPB’s criteria for the term
anonymization and the CCPA’s definition of the term deidentification focus on the con-
cepts of Linkability of data to an individual and Inference. Further, the EDPB’s criteria
for anonymization and the CCPA’s definition of the term aggregate consumer informa-
tion include the concept of Singling-out. However, these terms ultimately have different
meanings under the CCPA and the GDPR. These differences can result in varying prac-
tical and quantitative implications for privacy as well as corresponding privacy impacts
that are not clearly outlined, or understood, within the legal community. Arguably, both
regulations have the same intent: to recognize that there are technical means to remove, at
least substantially, identifiers from personal data such that it is no longer attributable to an
individual.

Looking beyond the EU and the CCPA, there are additional definitions of anonymiza-
tion that can play a role in generating a mathematical equivalent to the legal definition of
anonymization. For example, Japan’s Act on the Protection of Personal Information defines
anonymization (Ch. 1, 9(i), [32]) as:

“Information relating to an individual that can be produced from processing
personal information so as neither to be able to identify a specific individual by
taking action prescribed in each following item in accordance with the devisions
[sic] of personal information set forth in each said item nor to be able to restore
the personal information. (i) personal information falling under paragraph (1),
idem (i) ; Deleting a part of descriptions etc. contained in the said personal
information (including replacing the said part of descriptions etc. with other
descriptions etc. using a method with no regularity that can restore the said part
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of descriptions etc.) (ii) personal information falling under paragraph (1), idem
(ii) ; Deleting all individual identification codes contained in the said personal
information (including replacing the said individual identification codes with
other descriptions etc. using a method with no regularity that can restore the
said personal identification codes).”

Japan’s definition focuses heavily on the concept of deletion of data, which presumes some
permanent method of removing the identifiers from personal data, unlike prior definitions
that focus on the unlinkability of the data.

Further, there are standards, which are not laws or regulations, that also use the term
anonymization. For example, the National Institute of Standards and Technology (“NIST”)
defines this term [28] as:

“The process that removes the association between the identifying data set and
the data subject.”

NIST’s definition focuses on the association between data sets and individuals, but pro-
vides little insight into the criteria to be taken into consideration when creating anonymiza-
tion techniques.

From a broad review of these varying definitions, it appears that the EDPB’s definition
of anonymization covers a wider variety of mechanisms to convert personal data to non-
personal data, including the removal of identifying information, aggregation, and other
statistical approaches such as noise infusion.

Additional Use Cases for COVID-19 Location Data

There are other common uses of geolocation data not studied in this paper: mandatory
quarantines of COVID-19 positive individuals (e.g., as seen in Hong Kong and Poland) and
contact tracing (e.g., as seen in Singapore, Israel, and South Korea) [38, 54]. Mandatory
quarantines enforced using geolocation data do not meet the criteria of non-personal data
because by definition, they require individuals to be Singled-out within a small geograph-
ical area. Contact tracing requires GPS data or Bluetooth data, but more commonly uses
Bluetooth data and indicates whether an individual m had contact with another individ-
ual at a specific time (or duration) within a close proximity (i.e., Bluetooth connection or
a few meters with GPS data). Contact tracing is designed with the goal of contacting all
individuals that have a first (or second) degree connection with a COVID-19 positive indi-
vidual. This networked data mimics the properties of social network data (e.g., Facebook
or LinkedIn data) and fundamental privacy issues are discussed at length by [23] and [49].
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