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Abstract. The low-voltage energy distribution grid carries power to industrial and residential cus-
tomers. To ensure its correct operation, distribution grid operators aim to monitor the grid with
grid monitoring systems continuously. The system processes the stream of active and reactive power
measurements at customer connections. Since this imposes major privacy concerns, data gateways
typically sanitize the streams by adding noise to each measurement to achieve differential privacy.
This however reduces the utility of the grid monitoring system. Due to missing studies, the utility
of grid monitoring is not known. This leads to two research questions investigated in this study by
means of a realistic case study. The first question is how to measure the utility appropriately. The
second question is to give an intuition on whether one can achieve reasonable privacy and utility at
the same time. Studying these questions is challenging for two reasons: The plurality of (1) grid anal-
yses a grid monitoring system conducts, and (2) privacy requirements customers can have. To tackle
the challenges, we identify a set of candidate utility metrics and use a differential privacy mecha-
nism that unpacks multiple privacy requirements into one scaling parameter. Our experiments on a
real-world grid and realistic measurements indicate the following. First, the utility of grid monitor-
ing decreases faster than the sanitization error, that is frequently used in related work on differential
privacy as utility metric. Second, already under weak privacy requirements, the utility is lower than
under measurement errors.

Keywords. Differential Privacy, Electricity Distribution Grid, Utility Metrics.

1 Introduction

The smart meter roll-out in Europe comes with availability of quarter-hourly power mea-
surement streams of customers. Distribution system operators (DSOs) aim to turn these
data streams into value by using them to monitor the low-voltage grid continuously [5|
28]. To this end, DSOs use a plurality of automated grid analyses, like voltage and line
loading analysis, that link measurements with additional data, like the grid topology from
a geographic information system [28, 39, 45] (see Figure[T). However, it is well-known that
active as well as reactive power measurements facilitate everyone who has access to this
data to infer daily habits of the customers [41, 20]. Consequently, customers may have pri-
vacy requirements on their measurements. A prominent example is hiding certain power
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Figure 1: Differentially private grid monitoring. Original data refers to data that is mea-
sured and not sanitized.

patters like appliance usage cycles [55,31]]. As Figure[T|shows, to tackle these requirements,
a trusted data gateway, that is locally deployed at each customer connection, sanitizes the
measurements with respect to the privacy requirements. To this end, the gateway uses a
privacy-enhancing technology (PET). After that, the gateway transmits the sanitized mea-
surements to the DSO running the grid monitoring system.

The current gold-standard in research are PETs based on the w-event differential privacy
framework [13,30] and related definitions [55) 26,32]. The w-event DP framework guaran-
tees that anyone who inspects the measurements is not able to distinguish whether a power
pattern, like an appliance usage cycle, of a maximum length of w time stamps is present or
not. This guarantee is perfectly suitable to sanitize measurements before transmitting them
to DSOs. The reason is that, in contrast to, e.g., k-anonymity [54], ad-hoc noise adding [11}
48] or temporal aggregation approaches [16], this guarantee features post-processing im-
munity [[13]. This means that grid monitoring performed on the sanitized data still features
differential privacy. However, a differentially private PET sanitizes a stream typically by
adding a well-defined amount of noise to the measurements. As this noise may falsify the
grid monitoring results, usually, the goal is to design a mechanism such that the resulting
sanitized measurements feature high utility, i.e., the grid monitoring yields useful results for
the DSO. Selecting a PET yielding high utility for grid monitoring is currently challenging
because of two limitations of respective related work: First, most related work proposing,
e.g., novel PETs evaluate the utility of PETs for use cases like location monitoring only [51,
18]. Since measurement streams have other properties, these results can hardly be trans-
ferred. Second, related work focuses on the sanitization error of the measurements as utility
metric. But it is not known whether this metric is appropriate to measure the utility of grid
monitoring, i.e., whether the error of grid monitoring behaves in the same way.

Consequently, in this paper, we study the utility of differentially private PETs for grid
monitoring. Specifically, we are interested to answers the following research questions:

(RQ1) Is the sanitization error an appropriate utility metric for grid monitoring?

(RQ2) Having selected an utility metric, how behaves the utility of differentially private
grid monitoring under reasonable privacy requirements?
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1.1 Challenges

Studying the utility of differential privacy PETs for grid monitoring is challenging, due to
the complexity of grid monitoring systems and privacy requirements customers may have.
Specifically, we face three challenges:

Defining Candidates for Utility Metrics To answer (RQ1), candidates for utility metrics
are required. This is challenging due to the plurality of results [47] a grid monitoring
system usually outputs.

Assessing Utility To answer (RQ2), given a utility metric, a subsequent challenge is to
identify utility thresholds stating that the grid monitoring results are accurate enough
for DSOs. This definition should be DSO-independent to support the generality of
our results.

Defining Reasonable Privacy To answer (RQ1) and (RQ?2), it is essential to study the util-
ity for reasonable privacy requirements. Intuitively, reasonable privacy is given if
realistic privacy requirements are fulfilled. However, selecting them and studying
the utility with respect to a plurality of realistic requirements is challenging without
conducting an unlimited number of experiments.

1.2 Contributions

To tackle these challenges and answer our research questions, we provide the following
contributions.

* We identify three steps of differentially private grid monitoring, namely, (1) mea-
surement sanitization with the PET, (2) load-flow analysis as first step in each grid
monitoring system, (3) subsequent analyses like voltage and line loading analysis,
and candidates for utility metrics for all three. For each step, the metrics are in line
with the metrics used by experts for the individual steps.

¢ To give an intuition on the utility of grid monitoring results, we consider the frequent
case in which measurement devices are not fully accurate, since the DSOs already
accept this resulting reduced utility.

* We identify realistic power patterns from literature and decode them into privacy pa-
rameters. To study the utility for a plurality of them with a limited number of exper-
iments, we leverage the differentially private Uniform mechanism [30] that unpacks
multiple requirements into one scaling parameter.

¢ To answer our research questions, we perform experiments on a real-world grid
topology with realistic measurements. With respect to the first question, our study
indicates that the utility of grid monitoring decreases faster than metrics measuring
the sanitization error suggest, indicating that grid monitoring specific metrics are
needed to assess utility meaningfully. With respect to the second one, our study sug-
gests that it is hard to achieve reasonable utility and privacy in grid monitoring at the
same time.

TRANSACTIONS ON DATA PRIVACY 17 (2024)



34 Christine Schiler, Hans-Peter Schwefel

Ref. w=1 wEe

[31]
[17]
[15]
2]
[50]
[22]
[23]
[33]
This paper

8

,00) W

Se S S XSS
N XX X N X X X
NN X 3 % % N X X[

AR TN

Table 1: Comparing related work on differential privacy for measurement data with respect
to the DP variant considered.

“Privacy potentially violated by using faithfulness value 8 computed on the measured data during post pro-
cessing.

bConsiders a weaker variant of w-event DP with disjunctive w-periods instead of rolling windows as consid-
ered in [30].

1.3 OQutline

This paper is structured as follows: In Section [} we sketch related work on differentially
private grid monitoring. In Section 8} we identify the analyses conducted by grid monitor-
ing systems and select the data used in our study. Next, in Section[d} we identify candidates
for utility metrics and state how we generate measurement errors. Then, in Section [5| we
select the PET used in our study and identity reasonable privacy requirements. Section [f]
provides and discusses the results of our study with respect to our research questions. Last,
in Section 7, we conclude our paper and discuss implications on future work.

2 Related Work

In this section, we sketch related work on differentially private PETs for measurements,
utility metrics for PETs as well as studies on security and privacy with respect to additional
data used in grid monitoring systems.

Differentially Private PETs For streams, w-event differential privacy (DP) is the current
state of the art [30]. It is a probabilistic definition claiming the indistinguishably with a
factor e® of power measurements that differ at most by a share A at each time stamp within
a window of w consecutive time stamps. For w = 1 and w — oo, w-event DP is equivalent
to event-level DP (w = 1) [14] or user-level DP (w — o0) [12]. Both has been investigated
in related work for measurement data (see Table . However, event-level DP features only
limited privacy for streams [8, 2], and user-level differential privacy limited utility, already
for finite time series [15]. While w-event DP for w > 1 has proven its worth for, e.g.,
location streams [56}[34}37]], so far, it has been sparsely investigated for measurement data.
[2] considers the concept even before the proposal of w-event DP. However, it features only
a limited number of experiments with respect to w-event DP. Additionally, it considers a
special definition called distributed DP that generally results in lower utility than w-event
DP.
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Measuring Utility of PETs All perturbation methods have the drawback that they intro-
duce an error into the measurements, that influence the utility of grid monitoring systems.
Related work focusing on w-event DP for measurement streams assesses this error either by
the sanitization error [4} 15, 2], or by the error of a specific analysis. The latter includes local
energy market analysis [31], specific forecasting algorithms [17], peak-load analysis [36] or
state estimation [50]. To the best of our knowledge, these two types of utility metrics have
not been systematically related to each other before, nor intuitions on “high enough” utility
are given.

Security and Privacy with Respect to Additional Data Besides privacy with respect to
measurements, customers may have additional privacy requirements, like secure data trans-
mission [38, 49] or protecting the Smart Meter against attacks [3, [1]. Additionally, in case
an untrusted service provider hosts the grid monitoring system, DSOs have to transmit the
additional data, like grid topology data, needed as input for grid monitoring systems. In
this context, [44} 21] focus on differential privacy for grid topology data, like line parame-
ters. However, these approaches are orthogonal to our research questions.

3 Fundamentals on Grid Monitoring and Identification of
Study Data

In this section, we first sketch fundamentals on grid monitoring systems, resulting in re-
quirements on the data used in our study. Then, we introduce related work on differentially
private grid monitoring.

3.1 Grid Monitoring Systems

In this section, we first sketch fundamentals on grid topologies and measurements serving
as an input into grid monitoring systems. Second, we introduce grid monitoring systems
as detailed as needed to identify requirements on study data and to define utility metrics
in the remainder.

3.1.1 Grid Topologies and Measurements

Subsequently, we sketch fundamentals on grid topologies, relevant measurands and mea-
surement scenarios together with notation.

Grid Topology A low-voltage grid topology is given by

1. a grid topology graph G = (N, E) in which the edges E are the lines, and N the
nodes,

2. a function typeN : N — {Trafo, customer connection box, junction box, sleeve} as-
signing nodes a type, and

3. a function typeE : E — R* assigning lines quintuples of resistance (R1), reactance
(X1), capacitance (C1) and ampacity (Imax) in ampere.
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Without loss of generality, we assume that G is a tree, as this simplifies explanations and
applies for most grids. A feeder is a single branch in the tree. Each node and line has a
specific type. For nodes, it holds that the unique root of the tree is of type Trafo. It serves
as connection point to the parent medium-voltage grid. The leaf nodes of the grid are
customer connection boxes (CCBs) connecting residential and industrial customers with
the grid. The nodes between the substation and the customer connection boxes are either
junction boxes or sleeves. The type of a line specifies its electrical parameter resistance,
reactance, capacitance and ampacity. In this paper, we assume that the topology is fully
known. If not, one can use approaches to complete the topology, e.g., [35].

Measurands Ina grid, DSOs deploy measurement devices at nodes that measure specific
measurands. Typically, they are measured per phase. However, grid monitoring systems
usually consider a one-phase representation of the three-phase grid [47].

Let n € N be a node, and e € E be a line. We denote with V(n,t) the average voltage
magnitude in volts at the secondary side of node 7 in a time interval ending at time stamp
t. Similarly, with P(n,t) and Q(n,t), we denote the total active power in kilowatts (kW)
and reactive power in kilovar (kVar) injected at time ¢ and node n into the grid. Addition-
ally, I(e, t) is the average current magnitude in ampere in a time interval ending at time
stamp ¢ at the secondary side of line e. In case they are clear from the context, we omit the
parameters n and e.

Measurement Scenarios The measurement scenario of a grid specifies which measur-
ands are measured at which grid node or line. Considering real-world scenarios, we iden-
tified two measurement scenarios, namely PQ and P only, imposing different privacy re-
quirements of a PET. Subsequently, we describe them.

Measurement Scenario PQ This is the measurement scenario stated in Table 2| Here, the
voltages at the Trafo, as well as active and reactive power at all customer connection
boxes are measured.

Measurement Scenario P only In contrast to scenario PQ, the meters at the customer con-
nection boxes measure only active power, but not reactive power. This is a frequent
setting in real-world. For instance, Smart Meters in Germany are, by default, config-
ured accordingly [7].

3.1.2 Grid Monitoring Systems

As illustrated in Figure[2} a grid monitoring system usually implements a two-step process:
A load-flow analysis determining non-measured measurands followed by a plurality of
subsequent grid analyses calculating system indicators [5, 28]. Below, we sketch both steps
briefly based on [28], and state specifics relevant for ensuring the reproducibility of our
results.

Step 1 — Load-flow Analysis The load-flow analysis calculates voltages at all nodes ex-
cept the Trafo, and the currents at all lines. The algorithm is stated in Algorithm 1| There,
based on grid topology and measurements of arbitrary granularity, the algorithm obtains
a set of linearized, originally non-linear, power balance equations. The unknown vari-
ables correspond to voltages at non-Trafo nodes, and the known ones to active and reac-
tive power at the customer connection boxes. By solving this system with the iterative
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Figure 2: Illustration of the two-step process of grid monitoring.

Node Type V P Q |

Transformer measured - - -
Junction box calculated - - -
CCB calculated measured measured (in scenario PQ) -
Lines - - - calculated

Table 2: Measured measurands, and the ones calculated by load-flow analysis. Reac-
tive power at CCBs are only measured in scenario PQ, and are replaced by pseudo-
measurements in scenario P only.

Newton-Raphson method [6] that minimizes the mismatches in active and reactive power
at customer connection boxes, the algorithm obtains the voltages of all nodes. Based on the
obtained voltages, the algorithm calculates the currents. In a grid, except the power at the
Trafo, the power, voltage and current measurements in one feeder are independent of the
measurements in another feeder. Consequently, the load-flow analyses on different feeders
are independent. In our study, we use the load-flow analysis that is implemented in a grid
model developed in [47], and successfully validated in . It is based on the MATLAB
implementation in Iml We stop as soon as the mismatches are smaller than 1075, or af-
ter 100 iterations otherwise. Reactive power measurements are a necessary input into the
load-flow analysis. Consequently, in measurement scenario P only, so-called pseudo mea-
surements are generated using background knowledge on the customer connection [40].
Since this background knowledge is private information as well, in our study, we use for
reactive power the pseudo-measurement 0 kilovar, which is a common choice in case no
background knowledge is available.

Step 2 - Subsequent Grid Analyses For a low-voltage feeder, two grid analyses, namely,
voltage analysis and line loading analysis are relevant [28]. Subsequently, we introduce
both analyses.

Voltage Analysis By European standards [19], the DSO must ensure that the voltage mag-
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Algorithm 1 Load-flow Analysis at time stamp ¢ [46]

1: function LOADFLOW(G, typeN, typeE, vin pin_Qin)
2 Ve vP
3 for ¢ € N with typeN(c) == CCB do
4 Vi(e, ) <0 > Initialization
5 VIR VI IV (e, )}
6 end for o
7 VOt Il\fliwtt;)n\;gﬁa;z)h‘son(G ,typeE, V™ P, Q))
out c,t)— V¢,

9:  return VO™, |
10: end function

nitudes fluctuates at maximum +/ — 10% of the nominal voltage of 400 V. To alert
DSOs before they violate this hard limit, the voltage analysis verifies whether the
voltages at all nodes are in range +x% (overvoltage violation) and —y% (undervoltage
violation) of 400 V, and reports violations in case they are not. In line with industry
standards, we use x = y = 5.

Line Loading Analysis Lines can manage a certain nominal current that is given by their
ampacity. If the actual current is higher, they overheat. The line loading analysis
therefore calculates for e € E the load in percent by

[(Ie, )|
Load(e,t) = ———+— 1
oad(e,?) typeE(e).Imax M
and alerts the DSO in case the load is above a certain limit. That way, DSOs can react
before the lines overheat. A common load limit that we use is 90% [52].

3.2 Selection of Study Data

In this section, we select the grid topology and measurement data for our study. For each
of them, we first state requirements we impose on the data to be used in our study based
on the previous sections. Then, we state our selection. A natural overall requirement is
that the grid topology and measurements match, meaning that a data set containing only
measurements or only a grid topology is not appropriate.

Grid Topology We derive the following requirements on a low-voltage grid topology
used in the study. First, we need the grid topology of at least one feeder of a low-voltage
grid. A single feeder is also sufficient, because the results of the load-flow analysis are
independent for each feeder. Second, to ensure the validity of our results, there should exist
a successfully validated digital representation. Third, ideally, it should be a real-world grid
to support the validity of our results. Considering these requirements, as grid topology, we
use a feeder of a real-world grid topology from the Danish DSO Thy Mors Energiﬂ (TME).
Several studies before [27}43|] use it as a reference grid model as well. The grid contains 25
customer connection boxes. Four of them correspond to industrial customers (e.g., a farm),
the others correspond to residential customers. Additionally, the feeder contains one Trafo
and 10 junction boxes.

1www.thymors.dk
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Figure 3: Identified utility metric types together with associated error metrics.

Measurements We derive the following requirements on measurements used in the study.
First, to be able to calculate utility metrics, a fully-measured measurement scenario (i.e., all
measurands are measured) is needed. Second, previous work on differential privacy for
measurement data [15] indicates that measurement streams of one day are needed and
also sufficient. Third, ideally, violations should be present in order to study the relation-
ship between privacy requirements and violations in the voltage analysis. Considering
these requirements, we use the measurements from the 25 hours undervoltage trace de-
scribed in [43E] and aggregate them to quarter-hourly values. The data set features a fully-
measured measurement scenario (i.e., all electrical parameters are measured) and contains
undervoltage violations. The measurements are simulated with the hardware-in-the-loop
simulator OPAL-RTﬂ and were also used in previous studies [43]. For details regarding the
simulation process, we refer to [43} [27].

4 Defining Reasonable Utility for Grid Monitoring

In this section, we first define candidates for utility metrics for grid monitoring. In our
experiments, we investigate which of them are appropriate. Second, we state how we
generate measurement errors used to give an intuition on the utility achieved by a PET.

4.1 Measuring Utility — Candidate Utility Metrics

Considering Figures [T| and 2} we identified three types of utility metrics serving as can-
didates. As shown in Figure 3} these are: the sanitization error, load-flow analysis error
and subsequent analysis error. In the remainder of this section, we first identify the specific
metrics commonly used in related work for each of the types. No subsequent analysis error
metrics have been proposed in literature before. Consequently, second, we propose novel
subsequent analysis error metrics. We state them by using the following notation: £ is a
measurand or system indicator (like line loading), and X is a set of lines or nodes. Measur-
ands or system indicators with superscript * belong to sanitized measurements or system
indicators calculate by using sanitized measurements. Consequently, e.g., P and Q are the
measured powers, and P* and Q" the sanitized ones. Additionally, p is the number of time
intervals in the measurement stream prefix.

2
3

www.bit.ly/vbn-data-expvall
www.opal—-rt.com
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Sanitization Error Metric For the sanitization error, the mean absolute error is frequently
used [30, 56,10, 51]. For measurand £ and set of lines or nodes X’ it is defined by

1 & .
Erl&) = STE Z Z |E(x,t) — E*(x, 1), )

t=1zeX

i.e., the average over the L1-norm between £ and £* at each time stamp and node or line.

Since we sanitize active and reactive power of residential customers, in our study, we focus

on ErS’CCBr“) and Erﬁ?’CCB’“), in which CCB, is the sub-set of customer connection boxes

of N belonging to residential customers.

Load-flow Analysis Error Metric The load-flow analysis calculates the voltages and cur-
rents that are subsequently used in voltage and line loading analysis. This suggests to
measure the utility of the load-flow analysis by the error in calculated voltages and cur-
rent. To define these errors, power engineers usually rely on the maximum norm [42].
Consequently, to quantify the voltage and current error, we use

1 p
Erl&Y) = =N max |E(x,t) — £¥(x,1)]. 3)
p =1 TEX
Note that our study, measurement streams contain the measured voltages and currents
at all nodes and lines, facilitating us to calculate this error. Since the load-flow analysis

calculates the voltages at all nodes except the Trafo, we are interested in Er(Y:NV\{Trafo})

o . For
currents, we are interested in the current error at all lines, i.e., Erg(;E ).

Subsequent Analyses Error Metrics To the best of our knowledge, there is no related
work measuring the utility of voltage and line loading analysis. Consequently, we propose
novel error metrics considering the benefit of the DSO of both analyses.

Voltage Analysis To calculate this error, we first compare the number of violations for
each node on the original and sanitized measurements. Then, we sum these numbers yield-
ing error in the total number of voltage violations. Formally, let the variable hasVoltVio(n, t)
indicate whether there is a voltage violation at node n and time stamp ¢. With that no-
tation, we measure the error in the total number of voltage violations that is given by
Eriqasvow'o’m. This means that one obtains the calculation formula by using £ = hasVoltVio
and X = N in Equation[2}

Line Loading Analysis The line loading analysis first calculates the load of each line, and
then checks whether the load is below the defined limit. We define an error metric for each
of the two steps. First, we calculate the loading error in percentage points based on com-
paring the loading for each line on the original and sanitized measurements. Formally, we
define loading error in percentage points (% P) by Er(°®*)_ This means that one obtains the
calculation formula by using £ = load and X = E in Equation[8] Second, we calculate the
error in the total number of loading violations based on comparing the loading violations
for each line on the original and sanitized measurements. Formally, let hasLoadVio(e, t)

be the indicator variable for a line loading violation of line e at time stamp ¢. With that

notation, we measure the error in the total number of loading violations by Er(anSLoadVio’E).

This means that one obtains the calculation formula by using £ = hasLoadVio and X = E
in Equation 2}
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4.2 Assessing Utility - Measurement Errors

A PET is not the only influence factor that may reduce the utility of grid monitoring sys-
tem. Specifically, measurement devices are typically not completely accurate, meaning that
even the analysis results on measured data are erroneous. Consequently, to assess whether
the utility provided by the PET is reasonable, we propose to compare the utility of the PET
with the utility that can be achieved if measurement errors are present. This utility is al-
ready accepted by DSOs. As measurement error, in line with previous work [42], we use
measurement-dependent Gaussian noise with o = 0.01. Specifically, let G be the Gaus-
sian distribution. Then, the resulting active and reactive power measurement containing
measurement errors are given by (1 + G(0,0)) - P(¢) and (1 + G(0,0)) - Q(¢).

5 Defining and Ensuring Reasonable Privacy for Measure-
ment Streams

In this section, we first introduce the differentially private PET for measurement streams
we use in our study. The PET is designed such that it allows to evaluate various privacy
requirements with a limited number of experiments, i.e., PET runs. Second, we define
reasonable privacy by identifying meaningful privacy requirements from literature.

5.1 Differential Privacy for Measurement Streams

Below, we first briefly introduce the definition w-event differential privacy (DP) for streams
as far as required for this paper. For details, we refer to [30]. Then, we state the PET that
we use satisfying w-event DP.

5.1.1 Definition of w-Event Differential Privacy

Intuitively, w-event DP guarantees that anyone who inspects the measurements is not able
to distinguish whether a certain power pattern, like an appliance usage cycle, of a maxi-
mum length of w time stamps is present or not. To this end, the definition of w-event DP is
based on the notion of neighboring databases and stream prefixes. Both are itself based on
power shares and window lengths. Formally, let S = (D1, D3, ..) be a power measurement
stream of a customer connection box collecting database D; at time stamp ¢ as illustrated
in Figure[4] Two databases D,, D; are neighbors if (a) the total active power P(t) differs by
at most AF and (b) the total reactive power Q(t) differs by at most A9 [9, 26, 2]. Now, let
Sp = (D1, .., D,) be a prefix of the stream S of length p. According to Definition [1, two
stream prefixes are w-neighbors, if (1) the databases collected at each time are pairwise the
same or neighbors, and (2) all neighboring databases fit into a window of size w.

Definition 1 (w-Neighboring Stream Prefixes [30]). Let w be a positive integer. Further, let

t,t1,t2 < p be three time stamps. Then, two stream prefixes .S, S}, are w-neighboring, if

1. for each D;, D; with D, # Dj, it holds that D;, D; are neighboring

2. for each Dy,, Dy,, D; , Dy, with t; < ty, Dy, # Di and Dy, # Dy, it holds that
tg — tl + 1 S w.
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Consumer/ Dy D, D5

Generator P Q P Q P Q

Consumer 1 || 0.00 | 0.00 || 1.71 | 0.20 || 1.84 | 0.21
L Consumer 2 || 0.00 | 0.00 || 0.00 | 0.00 || 0.60 | 0.10

Q(D;) = (P()]Q(?) ] 0.00 [ 0.00 [ 1.71 [ 0.20 [[ 244 [ 031 || ---

Stream S

Figure 4: Example for a measurement stream of a consumer connection.

Based on the definition of neighboring stream prefixes, Definition |2| defines w-event dif-
ferential privacy. w-event e-differential privacy is given if the power measurements of all
w-neighboring stream prefixes are hard to distinguish. The privacy budget e quantifies the
hardness. It usually lies between 0.1 and 1.0 [51].

Definition 2 (w-Event e-Differential Privacy [30]). Let M be a randomized mechanism that
takes as input a stream prefix of arbitrary size. We say that M satisfies w-event e-differential
privacy if for all R € Range(M), all w-neighboring stream prefixes .S, S;, and all p, holds
that

Pr[M(S,) = R] < ¢ - Pr[M(S)) = R]. (4)

5.1.2 A PET ensuring w-Event Differential Privacy

To implement a PET, we leverage the Uniform mechanism [30] as stated in Algorithm[2} At
each time stamp ¢, it sanitizes the power measurements P(¢) and reactive Q(t) of a customer
according to given, time-invariant, privacy requirements. The privacy requirements consist
of the privacy level ¢, window size w, the power shares AP and A®, and noise splitting
parameters o, a@ satisfying af + a@ = 1. The noise splitting parameters split the available
budget € between active and reactive power. This is required because active and reactive
power are correlated [29]. Given these inputs, the PET first calculates the noise scales for
the Laplace distribution in Lines [ and 5] Then, it perturbs the measurements yielding the
sanitized measurements. Last, the PET outputs the sanitized measurements. [30] proofs
that this PET satisfies w-event differential privacy.

Considering the scales in Lines [4 and [5, we observe that multlple pr1vacy requ1rements
result in the same n01se scale. For instance, AP(A” = 1,w = 5,0F = 1,e = 1) =5 =
AP(AP =5 w =1,aP = 1,e = 1). This enables to investigate the utility with respect to an
infinite number of privacy requirements by one PET run.

5.2 Assessing Reasonable Privacy — Privacy Requirements

To limit the number of experiments, we aim to perform experiments for different noise
scales. To this end, we focus on noise scales representing appliance usages from residential
customers. Consequently, we sanitize only the measurements from the residential cus-
tomers. In the remainder, we select the requirements and then state the resulting noise
scales used in our study.
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Algorithm 2 PET: Uniform Mechanism at time stamp ¢

1: function UNIFORM,(P(t), Q(t), e, w, AP, AQ of a9)
2 ep —ap-e€

3: €Q aq - €

4: AP AP(AP w,af €) = %

5 A% AQAQ w,aQ,¢) = A%

6 return PERTURB(P(t), Q(), AP, \Q)

7. end function

8: function PERTURB(P(¢), Q(t

9:  P(t) « P"(t) + Lap(\") > Laplace mechanism
10: Q*(t) « Q*(t) + Lap(\?)

11: return P*(¢), Q" (t)

12: end function

5.2.1 Selection of Privacy Requirements

Below, we select the privacy requirements. Table 4| provides an overview of the require-
ments we discuss. With respect to appliances, we consider all 14 appliances from [24]
simulating Smart Meter time series from residential customers. In compliance with related
work, we keep € € (0,1.0].

Selection of Window Size w We focus on window sizes that correspond to typical ap-
pliance usage cycles. As stated in Table 3} we consider individual appliance usages, as
well as combinations. An example for an individual appliance usage is the usage of the
washing machine. According to [24], it usually runs for 2 hours and 15 min. Considering
that our measurement streams feature an interval length of 15 min., this corresponds to

= 2hdm — 7 We consider additionally combinations of appliances, because appliance
usages are typically correlated. An example is that the dryer usually runs after the washing
machine. To cover this, we have to select the sum of the cycle duration of both appliances.
For instance, if the washing machine runs 7 time stamps, and the dryer 9 time stamps, we
have to select w = 16. If two appliances run in parallel, we have to select the maximum of
both cycle durations. For compliance with related work, we integrate the respective win-
dow size for ensuring event-level (w = 1) and user-level (w = oo) DP in our study (see
Table . For user-level DP, that is not implementable for infinite streams, we interpret the
stream as a finite time series. Then, we choose w = p = 100, which is the number of time
stamps of our measurement stream prefix.

Selection of Shares AP and A? Related work uses shares according to the classical local
setting that protects the existence of all producer and consumer. To calculate these shares,
we rely on the highest difference in active and reactive power of two residential customers
at one time stamp that can occur in our measurement trace. Specifically, for £ € {P,Q}, the
share [2] is given by
Af = E(t,c)— min E(t,c)]. 5

| cmax E(tc)— _min (L c) ®)
For our study data introduced in Section these shares are given by AP = 4.85 kW and
AQ = 3.37kVar. With respect to appliance usages, the shares must be selected in line
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Requirement AP AC w

Measurement Scenario PQ

user-level DP Eq.p|(€ =P) Eq.]5[(€ = Q) p
w-event DP Eq.p|(€ =P) Eq.p|(€ =Q) [2,p)
event-level DP Eq.p|(€ =P) Eq.jp|(€ = Q) 1

Measurement Scenario P only

Individual appliance 4 power _share(z) - W

i1 followed by iz max {power_share(i)} - 3 W
et ie{inin} T

i1 parallel to iz S>> power._share(i) - max {W}

i€{i1,iz} i€{i1,iz}

Table 3: Overview of shares and window sizes assuming a 15 min. stream sampling rate.

with the power usually consumed by the appliances or appliance combination as stated in
Table 3| Since we are not aware of any publication stating the reactive power consumed
by appliances, we consider privacy requirements with respect to appliance usages only in
combination with measurement scenario P only, in which reactive power is not given.

Selection of Splitting Parameters aP o In line with related work [30], in the measure-

ment scenario PQ, we use o = o@ = 0.5. In the measurement scenario P only, in which
we do not need to hide Q, we use the full budget for sanitizing active power. This means
that we use o = 1.

5.2.2 Resulting Noise Scales

Table [4] states the resulting minimum and maximum noise scales per measurement sce-
nario. For the measurement scenario P only, we only consider hiding individual appliance
usages explicitly, as the maximum noise scale in this case is already similar to the mini-
mum one for achieving user-level DP measurement scenario PQ. In case we do not achieve
reasonable utility for user-level nor event-level DP, we consider reduced noise scales, lim-
iting the maximum noise scale in scenario P only to the minimum noise scale needed to
achieve event-level DP in scenario PQ. Note that we cover combinations of appliances im-
plicitly, since the noise scales lie in the range between user-level privacy and consideration
of individual appliances.

6 Results

In this section, we present and discuss the results of our study regarding our two research
questions. Before that, we present grid monitoring results in the ground truth scenario to
give an intuition on grid monitoring results in general. Second, we answer our first research
question (RQ1) by relating the utility metrics of different types identified in Section 4.2| to
each other. Finally, we state the results with respect to our second research question (RQ2)
using the appropriate utility metrics identified. In all experiments, we use different values
of w, ¢, AP and A® broke down to the noise scales AP and A as described in Section5.2.1]
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Name Measrmt. Requirement € af ol A@
Scenario min  max
user PQ user-level DP [0.1,1.0] 0.5 0.5 674 6,740
event PQ event-level DP [0.1,1.0] 05 05 6.74 67.40
app P only indiv. appliances | [0.1,1.0] 1.0 0.0 - -
app’ P only app reduced [0.1,1.00 1.0 0.0 - -
aAPw _ 4.85.100
0P 1.00.5
bA%w _ 485100
c grg't:u — 4:8541‘
P 1.005
d A'gw __ 4.85-1
caP 0105

Refrigerator cycle with cycle_duration= 15 min. (w = 1) [24], power_share=140 W (AP = 0.14 kW) [24] and
e =1.0.

fSpace heating with cycle_duration= 210 min. (w = 14) [24], power_share=7,000 W (AP = 7 kW) [24] and
e=0.1.

&Maximum noise scale from event-level DP.

Table 4: Privacy requirements and resulting minimum and maximum noise scales.

Note, as our experiments depend on random numbers, in line with the benchmark re-
quirements proposed in [25, 51], we execute each experiment multiple times, and report
the average errors. As preliminary experiments revealed that the average error converges
after 10 runs, we stick to this number of runs.

6.1 Illustration of Grid Monitoring Results

Below, we present grid monitoring results in the measurement scenario PQ to give an in-
tuition on grid monitoring results in general. The grid monitoring results in scenario serve
as ground truth for all subsequent experiments. Additionally, we state the errors in mea-
surement scenario P only compared to scenario PQ, and give an intuition on the sensitivity
of the metrics. They serve as a lower bound on the errors we can achieve with a PET in
scenario P only.

Figure [5| shows the results of the load-flow analysis as well as the subsequent analyses.
These are the voltages and currents calculated by the load-flow analysis, as well as the re-
sulting line loadings, and voltage respectively line loading violations determined by sub-
sequent analyses. We observe that the voltages at all nodes are between 360 and 400 V,
which is expected. Additionally, we see the voltage drop that was provoked during the
simulation of the undervoltage trace. In total, we have 1,555 undervoltage violations: All
25 customer connections and 10 junction boxes have either 44 or 45 time stamps voltages
below 380 V. The line currents are between close to zero and 23 A. The highest currents
occur for the lines near the Trafo when the voltages in the nodes drop. This is expected,
as the measurements are simulated by an online modification of the secondary voltages at
the transformer [28]. Consequently, the loads of the lines increase during the voltage drop
as well. However, the line load violation limit (90%) is never exceeded, meaning that no
line loading violations are present. Using pseudo-measurements for reactive power as in
scenario P only reduces utility. Below, beside the pure error numbers, we give a first intu-
ition on the high sensitivity of the subsequent analyses error metrics. Table Line SCP°™,
shows the errors with respect to all defined metrics in the measurement scenario P only. We
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Scenario Erg,N\{Trafo}) Er(;laSVO"ViOvN) Er(()L,)E) Er(()lgad,E) Er(L}jlasLoadVio,E)

Measurement Scenario with P and Q measured

scha Ground Truth
sch?,,, 0013V 0.2 0.13 A 0.24 %P 0

sche, [25;17-10°]1V  [299; 1,756] [113;9 101 A  [201;7-10°]%P [1;3]-10°

Measurement Scenario with P measured only
scPhey 023V 13 2.64 A 1.55 %P 0
schow 024V 4.8 40A 3.1 %P 0

SC:p?)r,"y [0.4;244]V [17;236.9] [3.3;95.4] A [1; 245.5] %P [0; 751]

Table 5: Overview of utility in all experiments. Error ranges relate to parameter variations.
Non-integer violation numbers relate to reported mean errors over 10 experiment repeti-
tions.

observe a small voltage Er{"M\{T2}) and current Er(l:®) error. Additionally, we observe

an error in the number of voltage violations, but not in the line loading violations. The
rationale for the former is that, as Figure [5|(a) reveals, many voltage values are close to the
undervoltage violation threshold. Consequently, even a small error in the voltages results
in a difference in the number of violations. Inversely, a high current error is required to
achieve a difference in the number of loading violations.

6.2 (RQ1) Utility Metric Relationships in Grid Monitoring

The DSO is interested in the results of the subsequent analyses. However, in literature, the
utility of mechanisms with respect to sanitization error are known [51]. This raises Ques-
tion (RQ1) asking how the sanitization, or the error of load-flow analysis as an intermediate
step, relate to the subsequent analysis error. Considering the increasing number of subse-
quent analyses that exist, using the sanitization error or load-flow analysis error would be
preferred if appropriate. Consequently, as illustrated in Figure (3, we subsequently relate
these three types of utility metrics to each other. Ideally, they have a pairwise linear re-
lation. In this case, the metrics are would be interchangeable, and all are appropriate to
measure the utility of grid monitoring. To this end, we consider measurement scenario P
only, because we have a higher variety of privacy requirements identified than for PQ.

The key results indicate the following. First, the relations between the metric types are
highly non-linear. Second, the subsequent analysis errors are more measurement data de-
pendent than the load-flow analysis errors. Consequently, we propose to use the load-flow
analysis error in future work.

6.2.1 Sanitization Error vs. Load-flow Analysis Error

Below, we relate the sanitization error to both error metrics used to measure the load-flow
analysis error, namely, the voltage and the current error. For the Uniform mechanism,
it holds that the sanitization error converges towards AP or A [30], i.e., Erp; (P, CCBres) —
AP Er11(Q, CCByes) — AQ. Due to the lack of reasonable privacy requirements w.r.t. Q in the
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Time Time
(a) Voltages at all nodes determined by the load- (b) Currents at all lines determined by the load-
flow analysis and the violation es determined by flow analysis.

the voltage analysis.

Violation threshold(s)

188 | Violation threshold

(a) Total undervoltage violations 1,555
+ Total overvoltage violations 0

Load [%]
g

1 = Total voltage violations 1,555
0 . . .
(c) Total line load violations 0
0 20 40 60 80 100
Time
(©) L%ne loads at all lines determined by the line- (d) Sums of violations identified by voltage and line load-
loading analysis. ing analysis.

Figure 5: Grid monitoring results in the ground truth measurement scenario PQ. In (a),
each curve represents one node. In (b) and (c), each curve represents one line.

most scenarios (see Section , in our experiments, we have a focus on the measurement
scenario PQ. But in this scenario, it holds that Erp 1 (Q, CCB,s) = 0, since Q is not measured
and therefore also not sanitized. Consequently, we focus on A" as sanitization error.

Figure [f] (a) reveals that the load-flow analysis errors increase, as the sanitization error
increases. However, not in a linear way. Both, the voltage and current error increase faster
than the sanitization error. This means that the higher the sanitization error is, the less
meaningful is it to assess the utility of grid monitoring. This applies especially to the cur-
rent error increasing even faster than the voltage error. We consequently propose to use not
only the sanitization error to assess the utility of newly proposed w-event DP PETs, but to
use an analysis-specific metric in addition.

6.2.2 Load-flow Analysis Error vs. Subsequent Analysis Error

Knowing that the sanitization error is not appropriate, it remains the question whether the
load-flow analysis error is the appropriate, or whether subsequent analysis metrics should
be used. The reason is that subsequent analyses process the outputs of the load-flow analy-
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sis before the results are useful for the DSO. Consequently, we now discuss the relationship
of the voltage and current error (output of load-flow analysis) on the difference in the volt-
age and line loading violations (output of subsequent analyses). They are illustrated in
Figure [p] (b). Generally, we observe that the relationship is again non-linear. In contrast
to Figure [f] (a), the relationship is even more complex. Specifically, regarding the voltage
violations, for voltage errors < 10, the subsequent analyses errors change only slightly. The
reason is that for many time stamps and nodes, the voltages are next to the violation limit
(see Figure f). Regarding the line loading violations, for readability, we focus on the er-
ror in the total number of violations. Note that for DSOs, the loading violations are more
important that the ‘raw’ line loadings. Considering the results, we observe that even for
a current error of 7 A, the violations are still correctly identified. The reason is that the
loads in the undervoltage trace are far below the violation thresholds (see Figure5). This
indicates that errors of subsequent analyses are highly sensitive with respect to measure-
ments and chosen thresholds. Measuring utility with subsequent analyses error metrics in
research studies requires to compute the errors with respect to various measurements and
thresholds, being a high effort. As a consequence, we propose to use load-flow analysis
error metrics as a compromise. They do not reflect the error in grid monitoring as accurate
as subsequent analyses error metrics, but significantly more accurate than the sanitization
error.

6.3 (RQ2) Privacy-Utility Trade-Off

We first assess reasonable utility by determining the utility if measurement errors are present.
Second, we compare this utility with the utility achieved by the PET. To this end, we fo-
cus, but not limit ourselves, to load-flow analysis utility metrics, as the previous section
suggests. Table [5| gives an overview of the results discussed in this section. The scenar-
ios are notated with SCNeasurementScenario ' The syperscript states the measurement scenario
€ {PQ,P only}. The subscript states which noise is introduced into the measurements, if
any. In this context, o = 0.01 stands for noise relating to measurement errors. Additionally,
for noise resulting from a PET, the names are in line with Table 4l Note that both dimen-
sions, i.e., measurement scenario and introduced noise, are orthogonal to each other. All
errors are computed by comparing the analysis results with the ground truth scPa. Key
outcome is that it is hard to achieve reasonable utility while keeping reasonable privacy.

6.3.1 Utility in the Presence of Measurement Errors

In this experiment, for each measurement scenario, namely, PQ and P only, we determine
the utility if we inject measurement errors. We only use this utility to give an intuition on
the utility achieved by a PET in the remainder. The utility in scenario P only is stated in Ta-
ble Lines SC°2, ;; and SC" 2 . For the measurement scenario PQ, we observe that the
measurement errors cause only a small error in voltages and currents. Additionally, they
do not affect the number of line loading violation. Specifically, the voltage, current and
loading errors are a magnitude smaller than the errors in SC”°". For the measurement
scenario P only, we compare the error in SC” " and SCEEB'}EH, since the former is a lower
bound of the latter. It reveals that the measurement errors have only a marginal impact on
the voltage error, but nearly double the current and loading error. Interestingly, the dif-
ference in the number of voltage violation error decreases, which is unexpected. However,
the reason is that the voltages calculated deviate more upwards to the ground truth, be-
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Figure 6: Relations between error metrics of different types.

cause there are more imbalances in the measurements than in SC” ", Consequently, less
undervoltage violations are present.

6.3.2 Intuition on the Utility of the PET

Subsequently, we compare the utility of the PET with the utility that can be achieved if
measurement errors are present.

Measurement Scenario PQ For measurement scenario PQ, we first considered event-
level differential privacy, since we expect higher utility than from a user-level differentially
private PET. The noise scales used in our experiment are compliant with Table[4} Line 2. In
Table @ the Line SCES,, shows the resulting errors. The lower numbers apply to e = 1.0,
and the higher numbers to € = 0.1. We observe that already for ¢ = 1.0 inducing the lowest
privacy guarantee, the voltage and current errors are three orders of magnitudes higher
than for the measurement error scenario SCH2, ;. Additionally, we observe over-voltage
violations, that are not in line with the undervoltage trace (not visible in the table). As a
result, we assess the errors are too high to achieve reasonable utility in this scenario.
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Figure 7: Utility for varying noise scales.

Measurement Scenario P only The maximum noise scale Table E] for hiding individual
appliances is with A" = 980 two orders of magnitudes larger than the minimum noise scale
for event-level DD, that already does not yield reasonable utility. Consequently, in our ex-
periments, we consider the reduced setting and limit the upper bound to AP = 9.7, hiding
the total power at one time stamp only. To investigate whether the PET achieves reason-
able utility, we now compare the error in 'SCappc;;,]Iy with the ones in SCEEB%I. Figure|7|shows
both. We observe that all considered privacy requirements yield a higher voltage error
than in SCEEB%:L by far. This means that the usage of a PET yields — even for low privacy
requirements — worse utility than the utility resulting from measurement errors. However,
if a higher error is acceptable for the DSO, the figures are useful to derive the achievable
privacy requirements for a predefined error value, and vice versa. For example, as illus-

trated in Figure[7] (a), if a voltage or current error that is one order of magnitude higher

than the errors in SCiig%l is still acceptable, \° = min{1.0,4.5} = 1.0 is the maximum

possible noise scale, that in turn corresponds to, e.g., the privacy requirement “protect-
ing one refrigerator cycle with ¢ = 0.14”. To sum up, the results suggest that it is hard
to achieve reasonable privacy and utility, because the utility with respect to all considered
utility metrics for weak privacy requirements is already low.

7 Conclusions

In this paper, we study the utility of differentially private grid monitoring. Specifically, we
ask (1) which utility metrics are appropriate and (2) how utility of a PET relates to utility
under measurement errors. To this end, we identify candidates for utility metrics for all
three steps of grid monitoring. To define reasonable privacy, we use privacy requirements
relating to appliance usages given in literature. Based on these definitions, we perform
a case study on a real-world grid and realistic measurements. With respect to the first
question, we observe that the utility of grid monitoring decreases faster than the sanitiza-
tion error that is frequently used in related work on differential privacy as utility metric.
With respect to the second question, the study indicates that already under weak privacy
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requirements, the utility is worse than under measurement errors.

Our work has the following implications on future work: First, our study indicates that
in future work, it is recommended to not only consider the sanitization error as utility
metric, but analysis-specific error as well. Second, our study suggests that it is hard to
achieve reasonable utility and privacy in grid monitoring at the same time. Consequently,
we investigate two possible approaches for achieving it: The first one is allowing a finer
granular specification of privacy requirements by generalizing policy-based notions [26)
32]. The second one is to design load-flow analysis algorithms that take the additional error
due to the PET into account, like previously investigated for measurement errors [53].
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