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1 Introduction
The field of statistical disclosure control (SDC)—maintaining privacy of individual records in a
dataset while retaining the statistical utility of the data—has long been the subject of arcane technical
analysis, conducted mainly by statisticians. The advent of differential privacy (DP) methods in 2006
[15] brought computer scientists into the field, and the arcane nature of the SDC field changed with
the well-publicized adoption of DP by the United States Census Bureau in 2017 [1].

Different SDC tools may be appropriate for different databases in different settings, not just in terms
of numeric degree of protection afforded by a tool, but also in terms of usability, interpretability and
transparency for end users [36] [22]. Here we develop new methodology that we believe database
curators will find useful in a variety of settings.

Our proposed method, Randomization Within Neighborhoods (RWN), to be presented in Section 4,
is inspired by data swapping, a classic approach to SDC. However, RWN differs from previous data
swapping approaches, in that it exploits a certain statistical independence property, to be described
in detail in Section 7.

Our context here will be that in which the database curator modifies the original microdata just
once, and releases the result to the public. This is the setting of most “traditional” SDC techniques.

A key aspect will be the ability of an SDC method to preserve, to the degree possible, multivariate
statistical relations. In essence, any SDC method is subject to attenuation or other distortion of
such relations. We will refer to one of the goals as Multivariate Relations Attenuation Resistance
(MRAR).

This paper is organized as follows. We set the stage with some motivating examples in Section
2. We then give a brief overview of SDC methods in Section 3. The RWN method is presented in
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Section 4. This is followed by a discussion of considerations in SDC specific to databases used for
statistical analysis in Section 5, and a comparison of RWN to other methods in this regard in Section
6. The underlying theory of RWN is given in Section 7. Tuning parameter selection is covered
in Section 8. Our empirical investigation is presented in Section 9, and computational issues are
discussed in Section 10.

2 Some Motivating Examples

Data privacy breaches are sometimes due to careless protection of passwords and the like, but fre-
quently arise because the intruder possesses key identifying information about one or more specific
records in the database. There are myriad different types and examples of such breaches. In order to
motivate our presentation, we cite three here.

A. Intruder has knowledge of certain small cells

Consider for instance the example given in [2]:

[Say]...in Athens, Georgia, there [is] only one male household head with 10 children...

By submitting a query for the mean income of all such people, knowing there is only one, an intruder
can thus illicitly obtain the income of this person. A similar example involving two neighbors who
know each other’s attributes as the only Hispanics in the block is given in [21]. Indeed, this problem
has been known since the early years of SDC; see for instance [8]’s example of the sole female
professor in a given university department.

B. Intruder knows the identity of some extreme record

For instance, in an employee database, the intruder may know that a certain worker has the highest
salary. In a hospital database, the intruder might know, say, the identity of the patient whose current
stay is the longest, and so on. Such settings may lead to re-identification of the record of interest.

This is a setting of frequent concern in SDC applications. As noted in [16], “...outliers may be pre-
cisely those people for whom privacy is most important.” The sdcMicro package’s dRiskRMD()
function, which computes robust Mahalonobis distances, is aimed at this situation, with the docu-
mentation noting that

...it accounts for the “outlyingness” of each observations. This is a quite natural ap-
proach since outliers do have a higher risk of re-identification and therefore these out-
liers should have larger disclosure risk intervals as observations in the center of the data
cloud.

C. Intruder simply wishes to know whether a given entity (person, firm etc.) is represented in the
dataset

For example, with a cancer patient dataset, re-identification of a record reveals that the given person
has the disease.
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3 SDC Methods

Good surveys of SDC methods are in [14] [25] [5]. Our RWN approach is a type of data swapping.
To motivate RWN, let us review the main SDC classes:

• Cell suppression

This concerns settings such as the Georgian householder we saw in Section 2. Here any query
concerning a very small number of database records is denied.

As noted, this kind of situation, i.e. queries involving small cells, has been the subject of
examples in many SDC papers over the years. It is central to the SDC field, yet the problem
has been long known to be highly mathematically challenging and computationally demanding
[19].

An obvious solution is to have the database refuse to provide an answer to such queries.
What may be less obvious, though, is that the database must also refuse to supply answers
for complementary queries. The intruder may, for example, query the total income of all
households with 10 children, then query this quantity for the female-headed households of
that size, then simply subtract to illicitly obtain the desired information. Thus at least one of
these queries must be denied.

This kind of attack must also be guarded against if there are only two records satisfying a
query, rather than just one, as a more complex attack involving several queries and subtrac-
tions would give the intruder some private quantity. To solve this problem in general requires
sophisticated mathematical tools [19], and a very serious additional concern is that it removes
much information from the database of interest to legitimate users.

• Noise addition

Another standard SDC approach is noise addition, in which random noise is added to achieve
privacy [26] [28] [42] [41]. Differential privacy, which is technically a privacy criterion rather
than a privacy method, is also typically implemented via some kind of noise addition [10].

• Data swapping

In the past, the Census Bureau has used data swapping for SDC [19] [14] [18], and it has
been proposed in numerous variants over the years, such as [6] [9] [18] [31] [33] [38]. For the
purposes of discussion here, we will define data swapping broadly, treating any method that
moves or duplicates data as belonging to the “data swapping” class, including rank swapping,
microaggregation1 and RWN, though we will sometimes distinguish among such methods.

A set of key variables is defined that may render certain individual records in the data vulner-
able to disclosure. In the basic form, some records, especially those deemed most at risk to
disclosure, will have the values of their key variables swapped with those in other records, say
drawn from the same geographic region.

Data swapping methods are typically applied one variable at a time, thus creating the concern
of attenuation of multivariate relations. This aspect will be seen below to comprise a major
impetus for our RWN method.

1For the sake of convenient exposition, we will treat microaggregation as being in this category but will point out differ-
ences at some points.

TRANSACTIONS ON DATA PRIVACY 17 (2024)



58 Noah Perry, Norman Matloff, Patrick Tendick

4 RWN: Randomization Within Neighborhoods
Our method works as follows. For each record in the data, we define a neighborhood using either a
given radius or a given number of nearest neighbors. Then, for each record r we randomly choose
a subset of the variables to perturb. For each such variable, we replace its original value by its
counterpart in a randomly chosen record in the neighborhood of r. A key point is that a different
random neighbor record may be used for each of the variables to be perturbed in r.

4.1 Formal Description
Let W = (wij), i = 1, ..., n, j = 1, ..., p denote our original data on n individuals and
p variables.

Choose the neighborhood radius ϵ > 0, number of nearest neighbors k, and modification
probability q.

Then form the released/perturbed data W ′ = (w′
ij), i = 1, ..., n, j = 1, ..., p as follows:

For i = 1, ...n:

1. Consider record i in the database:

ri = (wi1, ..., wip) (1)

2. Find the set Si of records within the neighborhood of ri other than ri itself. Each
neighborhood is defined to be either the k-nearest neighbors of ri or the set of
neighbors within ϵ distance of ri, whichever set is larger. For the distance compu-
tations, categorical variables are dummy/one-hot encoded, and numeric variables
are scaled to the [0, 1] interval.

3. For j = 1, ..., p:
With probability 1−q, leave wij unmodified, but with probability q, modify it. For
variables j that are chosen to be modified, we replace wij with the value in variable
j of a random record in the neighborhood Si. As noted, there may be a different
such random record for each j (records sampled from Si with replacement). This
results in a perturbed data point w′

ij . For unmodified variables, w′
ij = wij .

4. Store the released, modified version of ri as

r′i = (w′
i1, ..., w

′
ip) (2)

A key point is that in Step 3, the p actions here are taken independently of each other. In other
words, the process acts as if the p variables in the data are statistically independent of each other.
This would at first seem to violate our goal of MRAR, but it is all resolved in the theorem in Section
7 below.

We call this technique Randomization Within Neighborhoods (RWN).

4.2 Comparison to Rank Swapping
Rank swapping [31] does data swapping using ranks rather than data values, in order to facilitate
dealing with discrete variables. The standard version of rank swapping is implemented in sdcMicro
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through the rankSwap() function [40]. Although rank swapping has performed well in some empir-
ical evaluations comparing SDC methods [12], numerous variants of the method have been proposed
to address some of its limitations and privacy vulnerabilities. RWN addresses many of these issues.

The rank swapping algorithm involves a swapping range, which is analogous to RWN’s neigbor-
hoods. Standard rank swapping uses swapping ranges of uniform size, which can be exploited by an
intruder by using a form of record linkage specially designed for rank swapped data. This vulnera-
bility was the motivation for two new variants of the method: rank swapping p-distribution and rank
swapping p-buckets [35]. By contrast, as seen in Figure 1, RWN’s neighborhoods can be of varying
sizes, depending on the choice of tuning parameters.

RWN places a premium on MRAR. Distances are computed based on all variables in a record
instead of one variable at a time, so the records within a given neighborhood can be ”similar” in
many different ways.2 Rank swapping does achieve MRAR to some extent, but the discussion of
multivariate relationships in the rank swapping literature is typically limited to bivariate correlation
coefficients [40] [32]. RWN is fully multivariate, exploiting the theorem in Section 7.

RWN also features several additional forms of randomness. Standard rank swapping perfectly
preserves univariate distributions, which is good for data utility. However, this can lead to privacy
issues, especially for rare values. For example, consider Example C in Section 2. In this context, a
value that only occurs once in the data may be disclosive of the presence of an individual known to
match that value, especially if the intruder knows that standard rank swapping was used to protect
the published data. If the rare values are extremely large or small values, this could be prevented
through top or bottom coding, but other cases may be more subtle.

By contrast, RWN duplicates data values, rather than swapping them. Consequently, some values
may appear more or less frequently in the released data than in the original data. It is also possible
for some values present in the original data to disappear entirely in the released dataset. RWN also
allows for the possibility that some values may be the original ones if the q tuning parameter is set
to a value less than 1. These additional forms of randomness create more uncertainty for an intruder.

Standard rank swapping is limited to ordinal and numeric data. As mentioned, some work has been
done to develop rank swapping variants for other types of data such as nominal data and partially
ordered sets [37] [44]. However, a variant of rank swapping that is able to handle mixed datasets
consisting of numeric, ordinal, and nominal data that is widely available does not currently exist.
RWN also address this issue.

4.3 Comparison to Microaggregation

Multivariate microaggregation is another thoroughly studied SDC method, available for instance in
the sdcMicro package via the functions microaggregation() and microaggrGower().

The method involves forming small clusters of similar observations and using an aggregation func-
tion, typically the mean, to compute a single shared value for each variable in the cluster. Perturbed
records are formed by replacing each record in a cluster by the vector of aggregated values corre-
sponding to that cluster.

Numerous variations of the method exist using different approaches for forming clusters and dif-
ferent aggregation functions [34]. Microaggregation has been tested in numerous empirical papers
and found to perform favorably in comparison with other SDC methods [12] [11]. Versions of mi-
croaggregation that can handle categorical data exist [43] [40].

Though microaggregation clusters are in some sense similar to RWN neighborhoods, there are very
substantial differences between the two. Unlike noise addition and most data swapping methods

2Semantic multivariate rank swapping, a recent variant of rank swapping for nominal data, also takes the approach of
defining swapping intervals for each record instead of for each value [37].
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including RWN, microaggregation causes the level of variation in the data to be reduced. Also, as
will be discussed below in Section 9.1, microaggregation is directly effective in a k-anonymity sense,
which will not be the case for these other methods, including RWN.

There are also other differences between RWN and microaggregation. First, the clusters used in
microaggregation correspond to groups of records, and the groups do not overlap. For RWN, each
record has its own neighborhood, and neigborhoods for different records can overlap with each
other. Second, microaggregation allows values that do not exist in the original data to be present in
the perturbed data. RWN only duplicates values, so the only values that can appear in the perturbed
data are those present in the original data.

Unlike RWN and rank swapping, microaggregation methods are typically deterministic.3 As dis-
cussed above, the randomness in the RWN algorithm gives the intruder more uncertainty when trying
to deduce information about individuals in the original data. On the other hand, as pointed out in
[12], a fully or partially deterministic approach may be preferable to one in which a different modi-
fication is made for each query (ruled out in our context in Section 5), as otherwise an intruder may
be able to gain insight about the original data through averaging.

5 Statistical Views and Goals
With any methodology for data analysis, one must first give a clear statement of the context and
goals, the topic of this section.

5.1 Released Microdata
We assume the traditional SDC context:

• We have data on which users will perform statistical analysis, yet has a privacy requirement.
A typical example would be data on patients, to be used for disease research but which must
preserve privacy of the patients.

• In pursuing the privacy requirement, the data curator modifies the data in some manner, then
releases the modified data to the users. The modification is made just once. This is in contrast
to the typical implementation of differentially private methods; see below.

• Users of the released microdata may then conduct various statistical analyses of whatever type
they wish. No distributional assumptions, nor restrictions on statistical methodology, may be
assumed by the data curator in implementing a privacy mechanism.

5.2 The Role of Differential Privacy (DP) in Microdata
The preceding subsection, involving the release of modified microdata for use in statistical analysis,
is traditionally the typical SDC context. But how, if at all, does DP fit into this context? DP is often
referred to as the “gold standard” of data privacy [48] [24] [7], applicable to any dataset, so it is
imperative that this question be addressed here.

In the form typically discussed, DP methods are not applicable to the freeform microdata analysis
defined above. Instead, many DP methods are defined specifically for a given type of statistical
output.

One common introductory example is that of the mean of one of the columns in the data; Laplace-
distributed noise is added to the actual mean in the raw microdata, calibrated to the desired DP

3A variation of the method where randomness is added is [40].
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protection level, and the noisy mean is then presented to the user. A more advanced example is that
of the Report-Noisy-Max algorithm, which estimates the index of the maximum value within a set
of numbers in a differentially private manner [10]; here noise is added to the individual data points.
A related class of methods is local DP [16], an extension of randomized response survey techniques.
Here noise is added at the source of data creation, say a survey respondent.

This means that in DP, a separate DP-compliant method must be developed for each statistical pro-
cedure used—mean, regression analysis, visualization tools, etc. This key difference was described
by statistician Larry Wasserman [46] (who refers to DP and classic SDC as the “computer science”
and “statistics” views),

CS view: Receive a query for a [specific statistical procedure], return a private answer.

Statistics view: Give me data. Then I can: draw plots, fit models, test fit, estimate
parameters, make predictions ...

In other words, Wasserman wants a “free pass” to do a variety of statistical and data-analytic opera-
tions. Let’s call this Free Pass SDC.

However, in many cases, microdata is amenable to a DP approach. A significant example is that
of entirely categorical data, i.e. a contingency table. The multinomial cell counts are then sufficient
statistics for any quantity of interest to Free Pass users. Thus a DP-compliant method that, say, adds
noise to the cell counts would fit into our context here. Say there are q cells and Ni denotes the result
of adding noise to cell i, in a DP-compliant manner. Then by the Composition Theorem [16], the
vector N = (N1, ..., Nq) is DP-compliant. This is in essence the Census Bureau approach. See also
[45].

We note too that conditional quantities, say mean wage of Hispanic high school teachers, are then
also DP-compliant, because any function of N will have that property, as seen by considering inverse
images in the mathematical definition of DP. However, the basic DP criterion may not even be
defined in some conditional situations, as will be discussed in Section 6.2.

6 Desirable Characteristics
In developing a new SDC procedure, such as our proposed RWN, these goals were key for us:

• Ability to handle mixed continuous and discrete/categorical data.

• Ability to accept the full range of queries.

• Preservation, to the degree possible, of multivariate distributions/relations, for proper statisti-
cal analyses (MRAR property).

• Easy interpretability of the privacy afforded by the method, as perceived by those who are
affected.

Let’s elaborate on these goals, in the light of RWN and existing microdata-based methods, including
differential privacy (DP).

6.1 Handling Mixed Continuous and Categorical Data
A major obstacle to noise addition methods is their inability to handle discrete/categorical data.
Consider a variable such as Number of Children in Family. After noise addition, a value may become
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negative, an unacceptable situation. Truncation at zero induces bias. A similar difficulty arises with
categorical variables, after they are converted to dummy (one-hot) form.

Data swapping methods generally cope well here, and RWN in particular handles mixed continuous
and discrete/categorical data in a simple, natural, computationally straightforward manner.

In the US Census case, data curators had an additional constraint, in that they wished to preserve
certain marginal totals in the contingency table. This was not an issue in terms of the privacy guar-
antees themselves, as the DP criterion allows post-processing [16], though matching all the desired
marginal totals necessitated complex and highly time-consuming linear programming algorithms.

6.2 Handling the Full Range of Queries
Cell suppression by its very nature fails this criterion, as seen in the example of the Athens, GA
householder in Section 2 above. Surprisingly, DP also suffers from this drawback, again due to its
very nature:

The formal definition of DP involves comparing the probabilistic behavior of a query function f on
two (real or potential) databases differing only in records x and x′. Say for example that the record x
is that of our male Athens householder, and the paired record x′ differs in terms of gender. Suppose
the only householder with 10 children in Athens is male.

Then since f in this example is a conditional mean, it is undefined on the database containing x′,
i.e. the value of a query regarding the mean income of all female householders with 10 children
is undefined. The definition of DP itself is the problem here, and a differentially private response
is impossible. In other words, even a DP-compliant database must resort in part to using non-DP
methods, such as cell suppression (which the US Census application of DP does). Note again, as
discussed in Section 2, this type of setting has been deemed key throughout the years of research in
SDC methods, including the DP literature; it is not a minor anomaly.

As a member of the class of data swapping methods, RWN does not have this problem.

6.3 Preservation of Multivariate Relations
Absent some compensating feature, any change to the data arising from applying a Free Pass SDC
procedure (and for that matter, most DP methods) will result in distortions of the relations between
variables in the data, typically in the form of attenuation. Since analysis of multivariate relations
comprise the very core of statistics, we take as a major goal at least approximately preserving such
relations.

We are of course willing to allow the preservation of those relations be just one aspect of the utili-
ty/privacy tradeoff that is necessary to any disclosure avoidance technique. Again, we call the utility
aspect of this in the context of preserving multivariate relations Multivariate Relations Attenuation
Resistance (MRAR). The goal then is to develop an SDC method that includes MRAR, with the
method providing the database curator “levers” that allow them to choose their desired utility/pri-
vacy tradeoff level.

MRAR is a challenging condition to meet, and thus comparatively little work in the SDC field has
focused on it. For instance, it is mentioned only briefly in [25] and [14].

In the noise-addition realm, there has been [26] [28] [41]. If the added noise preserves covariance
matrix structure up to a multiplicative constant p, then statistical methods such as linear regression
and principal components analysis can be made valid. However, even then, some statistical quantities
will be distorted.

In the realm of data swapping methods, pairwise correlations can also be preserved to a user-defined
extent with the rankSwap() and shuffle() functions in the sdcMicro [40] package. The correlation
level is a tuning parameter.
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The theorem presented in Section 7 shows that RWN does offer MRAR.

6.4 User Interpretability of the Privacy Parameters
Consider any database involving human subjects (HSs). (The same comments will apply to corporate
subjects and so on.) In choosing a privacy mechanism, it is vital that the database curator win the
confidence of HSs that the curator has made all reasonable efforts to preserve the HSs’ privacy. Any
privacy mechanism will have associated with it various tuning parameters, and it is vital that those
HSs understand the nature of the numerical values of those parameters, in the privacy/utility tradeoff.

Data swapping methods, including our RWN method here, excel in this regard. For instance,
RWN’s parameter q is the probability that a given field in a given record will be swapped. An HS
can take comfort in this, thinking (correctly),

Each of my attributes will be replaced by that of another HS, with probability q. My
record in the database will likely not be identifiable as mine, and even if identified, there
is probability q that any given value in the perturbed record isn’t mine.

In other words, in data swapping methods, the tuning parameters have a simple, direct interpretation.
Classical noise-addition methods are also directly interpretable. Going further, an HS in a dataset
modified by microaggregation with cluster size k can take solace in knowing there are k − 1 other
HSs who are recorded as exactly like them. (This however, may be mitigated by the number and
nature of the variables not involved in the clustering process.) This HS can directly understand how
much privacy is afforded them by the parameter k.

The situation is more complicated in the case of DP. The basic notion is clear enough: Under the
usual intuitive description of DP, the HS will think,

The results of database queries will not be much affected by my presence in the database,
so I am effectively invisible.

However, the central question is, how much protection the HS is provided; just how much is meant
by “not much affected”? This is much less clear, as the DP tuning parameter ϵ often has no easy
interpretation like say q above. For instance, in the 2020 US Census, ϵ = 19.61 [20]. That figure
is quite devoid of meaning for most HSs, who would not have any inkling whether that is “a lot or
a little” amount of protection. And any HSs who understand the technical aspects would likely say,
“Since e19.61 is over 300 million, it’s not clear that I have any protection at all.”

Worse, recall that small tabular cells have been a recurring theme in SDC research, often the focus
of attention. Yet, very large values of ϵ such as 19.61 tend to give reasonable protection only to large
cells.

One of the inventors of DP, Frank McSherry, considers any ϵ value of more than 1.0 as problematic,
and characterized the value of 14, surmised for Apple DP, as “pointless” [23].

6.5 Ability to Address the Three Canonical Examples in Section 2

A. Intruder has knowledge of certain small cells:

As noted, cell suppression methods are highly problematic here, and DP may be forced to use them
as well. The other methods should do well.

B. Intruder knows the identity of some extreme record:

TRANSACTIONS ON DATA PRIVACY 17 (2024)



64 Noah Perry, Norman Matloff, Patrick Tendick

Rank swapping and similar methods will not solve this problem. RWN and microaggregation will
handle it well. DP in the multinomial setting described in Section 5.2 may or may not solve the
problem.

One common approach by the Census Bureau over the years, top coding, would help; here a maxi-
mum value is set, say on income, with any value exceeded it to be replaced by the top code.

C. Intruder simply wishes to know whether a given entity (person, firm etc.) is represented in the
dataset:

In general, methods having high degrees of k-anonymity such as microaggregation will do well
here, almost automatically. Data swapping methods, including RWN, will do well, providing the
tuning parameters are chosen to have sufficiently high modification so as to prevent a high probability
of record re-identification. This issue also involves the small-cell problem.

6.6 Summary
As noted, data swapping methods generally have all of our listed desirable properties, except for
MRAR. As a data swapping method, RWN “inherits” those desirable properties, as well as solving
the MRAR problem.

7 Rationale and Theoretical Basis for RWN
Since we are using neighborhoods, one might ask, “Why not just replace entire data rows—a given
row is replaced by a neighboring row—rather than do replacement component by component, taking
different components from different neighboring rows?” That would achieve our MRAR goal, but
at the possible expense of too much increase in the standard errors of estimated quantities of interest
to the analyst, and possibly make record re-identification easier for the intruder.

We must ask whether our method has the all-important MRAR property. The following theorem,
cast in an idealized setting, shows that it does. Informally:

Let fX be a density function for the p-variate vector X = (X1, ..., Xp). Consider the
conditional distribution of X , given that X is in a small neighborhood of a point t. Then
the Xi are approximately independent in this distribution.

For expositional convenience, the theorem and proof will be stated for the case p = 2.
Theorem: Consider a bivariate random vector (X,Y ) having a joint density, and set ϵ > 0. For

any t in R2, let At,ϵ denote the ϵ neighborhood of t. Let F denote the joint cdf of (X,Y ). Given
(X,Y ) = t, define Gt,ϵ to be the cdf of (X,Y ), given that that vector is in At,ϵ. Finally, given
(X,Y ) = t, define independent random variables Uϵ and Vϵ to be drawn randomly from the first-
and second-coordinate marginal distributions of Gt,ϵ, respectively. Then

lim
ϵ→0

P (Uϵ ≤ a and Vϵ ≤ b) = F (a, b) (3)

for all −∞ < a, b < ∞.
In other words, as ϵ goes to 0, the bivariate distribution of (Uϵ, Vϵ) goes to that of (X,Y ), even

though Uϵ and Vϵ are independent while X and Y are not independent.
□
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Note that (3) concerns the unconditional distribution of (Uϵ, Vϵ). The latter is a random vector in
A(X,Y ),ϵ.

Intuitively, although Uϵ and Vϵ are conditionally independent, the vector (Uϵ, Vϵ) is close to (X,Y )
in the unconditional distribution and thus has approximately the same joint distribution.

Proof:
First,

lim
ϵ→0

Uϵ = X (4)

and

lim
ϵ→0

Vϵ = Y (5)

Using the Bounded Convergence Theorem, we have

lim
ϵ→0

P (Uϵ ≤ a and Vϵ ≤ b) = lim
ϵ→0

E [P (Uϵ ≤ a and Vϵ ≤ b | X,Y )] (6)

= lim
ϵ→0

E [P (Uϵ ≤ a | X,Y ) · P (Vϵ ≤ b | X,Y )] (7)

= E [1X≤a · 1Y≤b] (8)

= E
[
1X≤a and Y≤b

]
(9)

= P (X ≤ a and Y ≤ b) (10)
= F (a, b) (11)

8 Neighborhoods and Tuning Parameters
The neighborhoods are formed using both the Euclidean distance-based radius ϵ and the number of
nearest neighbors k, which must be specified by the user. In short, ϵ provides control over the sim-
ilarity of the data points within a neighborhood, while the nearest-neighbor parameter k guarantees
that the neighborhood will have sufficiently many data points.

For many datasets, there are typical records as well as records with more unusual or extreme values.
Typical records will have many neighbors even for small values of ϵ while unusual records may have
zero neighbors unless ϵ is large. The following discussion will use for illustration the bodyfat data
from the R package mfp [3].

If ϵ alone were used to form neighborhoods, RWN would exclude records with empty neighbor-
hoods from the released dataset. This would protect their privacy, which is important considering
that these unusual records may correspond to more identifiable individuals, but would result in a
complete loss in their utility. To avoid this, the user could increase ϵ until these more extreme
records have non-empty neighborhoods. However, as seen in Figure 1, an increase in ϵ can substan-
tially increase the size of the neighborhood for typical records as well, causing the values in a typical
record to be mixed with very dissimilar records in the perturbation process, potentially leading to a
decrease in utility of the perturbed data.

On the other hand, using k alone would impose both an upper and lower bound on the neighborhood
size. For instance, for small k, the neighborhood size may be suitable for unusual records but
undesirably small for typical records. Furthermore, a uniform neighborhood size is more easily
exploited by an intruder. Thus, having two complimentary neighborhood size parameters ϵ and
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Figure 1: Body Fat Data, Plots of Minimum Distance vs. Neighborhood Size

k gives the database curator finer control over the perturbation of the data to balance utility with
privacy for a specific dataset.

In Figure 1 we illustrate how different choices of RWN tuning parameters affect neighborhood size.
We calculate the distance to the closest record (DCR) for each record in the original dataset. Here,
the distances are calculated between records within the original dataset. Then, we plot distance to
closest record against the neighborhood size (i.e. the number of records within the neighborhood)
for multiple choices of ϵ while holding constant q = 1 and k = 5. In the charts, the red horizontal
line depicts the value of ϵ and the gray vertical line depicts the value of k. When ϵ is small, the
points are clustered along the vertical gray line, reflecting that the k parameter is primarily dictating
the size of the neighborhoods. As ϵ increases, many points stray away from the vertical gray line
as neighborhood size increases for many records. However, a few points stay near the gray vertical
line. These are outlying data points who are ensured to have at least five neighbors since k = 5 was
chosen.
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9 Empirical Investigations: Criteria

Any SDC method is a balance of statistical utility and degree of privacy. Empirical investigation
of the method must then define measures for these two criteria. We note at the outset, though, that
different SDC methods may require different measures.

9.1 Privacy

Measurement of privacy can be complex. In this section, we explore that issue and relate it to RWN
and other methods.

9.1.1 Which Variables Are Modified?

It is common in the SDC literature to distinguish between different kinds of variables such as iden-
tifiers, quasi-identifiers, and confidential attributes (see e.g. [38] [35]). Identifers are variables that
can uniquely identify individuals on their own such as social security number. These variables must
be removed from the released data. Quasi-identifier variables such as ZIP code contain information
that generally does not uniquely identify an individual and may be available to an intruder. Individ-
uals may, however, be uniquely identified using combinations of values in multiple quasi-identifers
variables. Confidential attributes contain information that intruders do not have access to and may
want to learn.

As noted by [38], ”any attribute is potentially a quasi-identifier, depending on the external informa-
tion available to the intruder.” In our modern day where vast amounts of data are collected and sold
about individuals, distinguishing between quasi-identifiers and confidential attributes is increasingly
challenging and unrealistic, especially since the data curator often cannot anticipate what types of
information will be possessed by intruders [39].

Consequently, we do not distinguish between quasi-identifiers and confidential variables anywhere
in our RWN analysis, and we have RWN perturb all variables in the input dataset. But with many
other SDC methods, modification may typically be made only to some variables. This may make it
difficult to compare the various methods.

9.1.2 k-Anonymity

One of the most well-known privacy measures, k-anonymity, requires that for each unique combina-
tion of values in the quasi-identifier variables, there must be at least k records in the dataset sharing
that combination of values.

Over the years, various shortcomings and limitations of k-anonymity have been identified, leading
to many enhancements such as p-sensitive k-anonymity, l-diversity, and t-closeness. However, these
enhancements are also not entirely satisfactory. For instance, data utility is often a major issue for
datasets achieving some form of k-anonymity [13].

Microaggregation with cluster size k essentially makes k-anonymity automatic. This is also the
case with certain probabilistic k-anonymity methods that are special cases of microaggregation [38].
In general, though, k-anonymity will not be a good criterion for assessing methods such as RWN
and rank swapping.

On the contrary, these methods will typically result in little or no increase in what we will call
mean k-anonymity (MKA). We define that as follows. For each record in the dataset, determine the
maximal value of k such that this record matches k−1 others. MKA is then the average of this value
over all records.
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Privacy Method m MKA
none 5 480.92

rank swap, R0=0.10 5 451.79
rank swap, R0=0.90 5 467.55

RWN 5 483.22
none 25 1699.84

rank swap, R0=0.10 25 1566.30
rank swap, R0=0.90 25 1603.99

RWN 25 1700.49

Table 1: MKA Experiment

Here is a brief numerical look. We consider svcensus, a dataset included in the R qeML package.
This is data on programmers and engineers, from the 2000 US census. MKA was computed as the
average value in the fk component in the return value of sdcMicro::freqCalc().

There are 20090 rows and 6 columns, the latter for age (numeric), education (ordinal), occupation
(6 categories), wage income (numeric), weeks worked (numeric), and gender. All ordinal vari-
ables were converted to ordinal numeric. We omitted the income and occupation variables. We ran
rankSwap() from sdcMicro, with R0 = 0.10, 0.90, using all columns as key variables. RWN was
run with the number of nearest neighbors k set to 10.

Also, we discretized age, first rounding to the nearest m = 5 years, then to the nearest m = 25.
Larger values of m should lead to larger MKA.

The results are presented in Table 1. Neither rank swapping nor RWN achieved a substantial
increase in MKA; if anything, MKA seems to degrade under rank swapping. Results for other
tuning parameter values, not shown here, were similar. In other words, k-anonymity seems to be a
poor choice of privacy measure in some settings.

9.1.3 Record Re-identification

Another class of re-identification risk measures are record linkage-related. This typically takes the
form of the intruder determining the closest record in the perturbed data to the intruder’s external
knowledge of the intended target. Criteria of this form have been widely used in empirical studies
comparing SDC methods [12] [35] [34]. One empirical study explains the following:

The number (or the proportion) of correct re-identications is a common record linkage-
based measure of disclosure risk. However, this measure has some limitations that
we next discuss. It is certainly appropriate when SDC is achieved by masking the
quasi-identier attributes, whereas the sensitive attributes are left unmodified (or are only
slightly modified). However, if the sensitive attributes have been signicantly altered, a
correct linkage may not be equivalent to disclosure [11].

In our analyses here, we consider two criteria along these lines.

9.1.4 Probability of Self-Closest Record (PSCR)

Consider an “ideal” scenario in which the intruder knows all of some individual’s attributes. The in-
truder then finds the perturbed record closest to this attribute vector, and assumes that this is actually
the record belonging to the target. We may determine the probability that the intruder successfully
re-identifies the target’s perturbed record in this manner. This is the setting of Example C in Section
2, but we can still take it as a general privacy criterion.
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9.1.5 Distance to Closest Record (DCR)

Another measure in this class is Distance to Closest Record. The computation of DCR involves
comparing the original and released datasets by computing the distances between records across the
two datasets. Different variations of the measure have been used in the literature. For example, [11]
computed DCR using the ranks instead of the data values themselves. In general, a larger DCR value
is taken to imply less disclosure risk for the record in question. However, it is important to note that
DCR provides an incomplete picture of disclosure risk. For instance, a DCR value of 0 may not
imply high disclosure risk if the data contains categorical variables with few unique values or the
range of the numeric variables is small. In these cases, the identical record in the released data may
be provided some privacy by being “hidden in a crowd” of similar records [29].

9.1.6 Other Measures

Another category of privacy measures is interval disclosure risk. The basic idea is that even if an
intruder cannot exactly determine the attribute of an individual, they may still be able to determine
a narrow range of values or set of categories that the true value falls in. For example, little pri-
vacy is provided when an intruder can determine that a patient’s diagnosis is one of several similar
conditions or can infer the salary of an employee within a few thousand dollars [16].

One way to compute interval disclosure risk for numeric data is to create an interval around each
released data value and then check whether the corresponding value in the original data falls within
the interval. A higher proportion of values in the original data within the constructed intervals
implies higher disclosure risk. The intervals can be created in various ways such as using standard
deviations, ranks, and robust Mahalanobis distance [40] [27].

As mentioned earlier, detecting outliers and rare values is another critical part of any privacy anal-
ysis since these individuals may be the most easily identifiable. There are many statistical methods
for detecting outliers. For example, outliers may be identified using Mahalanobis distance or via
Cook’s distance for linear regression analysis [47].4

9.2 Statistical Utility
As noted, statistical analysis is at its core a matter of identifying relations between variables. The
question to consider in the SDC context is whether the relationships that exist in the original data
tend to remain intact in the released data. Here we follow [17], who note that a reasonable measure
is to assess whether the released dataset “can obtain approximately the same substantive [relational]
results while simultaneously protecting the privacy.” For instance, consider the color correlation
plots in Figure 5.5 We find that we can perturb data while retaining broad correlation structure,
including to a large extent the strength of the correlations.

Another aspect of utility is validity of standard errors for statistical inference purposes. For SDC
methods affecting only a small portion of the data, this is less of an issue. For RWN, one can prove
that the standard errors are asymptotically valid, as q → 0 at the proper rate relative to n. (See [17]
for a DP solution, under certain assumptions. As usual, the problem of discrete/categorical variables
remains a challenge.)

Since we emphasize MRAR, we utilize numerous measures that capture how well multivariate
relationships are preserved in the released data. We address this by investigating how correlations,
principal components, regression coefficients, and R-squared values are affected by perturbation.
We also investigate using those relationships for prediction of new cases.

4The measure is based on the effect of leaving-one-out operations, and is thus not a “distance” per se.
5These use the bodyfat dataset (Section 9.3.2).
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9.3 RWN Experiments
We now apply these considerations to experiments involving RWN.

Figure 2: Utility vs. Privacy, for various k

9.3.1 Privacy-Utility Tradeoff

Of course, larger values of q, and of k or ϵ, will lead to poorer statistical utility, the classical Privacy-
Utility Tradeoff. Here we consider an example, again based on the svcensus dataset.6 Our measure
were as follows:

• Our privacy criterion was Probability of Self-Closest Record (PSCR), defined above in Section
9.1.4.

• For the statistical utility criterion, we took an actual statistical problem: We ran a linear re-
gression analysis, predicting wage income from the other variables. One of the variables is for
gender, and we are interested in the estimated coefficient for the indicator variable for being
female, which was -$8595.6. Statistical utility then is defined as the closeness of the perturbed
coefficient estimate to this figure.

We present several graphs here. In each, the number of nearest neighbors k = 5, 10, 15, ..., 75,
and q varies as shown in the graph legends. As RWN has a randomness component, the graphs

6We use the full dataset here, not deleting some columns as before.
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show means over 10 replications; loess smoothing was used to produce the curves. Note that (a) the
smaller the privacy value, the better, and (b) the closer the utility value is to -8595.6, the better.

• Here we plot utility versus privacy. Each value of k corresponds to a point on the tradeoff
curves, though k does not appear explicitly in the graph. The results are shown in Figure 2.

• Next, we plot privacy against k, shown in Figure 3.

Figure 3: Privacy vs. k

• Finally, we plot utility against k; see Figure 4.

The graphs show the standard trend in SDC settings: The lesser privacy levels yield the greater
statistical accuracy.

Figure 3 is somewhat surprising. Though, as expected, greater values of k yield better privacy, the
dominant factor is q rather than k.

Figure 4 is possibly the most interesting one. Though we see quite substantial effects of q, they
rather converge at k around 50 or 60.
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Figure 4: Utility vs. k

9.3.2 Bodyfat Data

The bodyfat dataset [4] consists of measurements of 252 adult males. Two estimates of their body
fat percentages are calculated using the Brozek and Siri equations. For our analysis, we use only
the body fat percentages based on Siri, eliminate 11 observations that contain values that appear to
be erroneous or biologically implausible such as body fat percentages less than four percent, and
calculate Body Mass Index (BMI) for each individual.

For the experiments in this section, we use the cleaned bodyfat dataset as well as several perturbed
versions of this dataset created using RWN with tuning parameters k = 5, q = 1, and varying
values of ϵ from 0 to 1.2 by increments of 0.05.7 We conduct a variety of analyses to illustrate
the performance of RWN through a variety of visualizations and scenarios. For these analyses, we
generate only one perturbed dataset using RWN for each ϵ value. These experiments build intution
about proper tuning parameter selection as some combinations of tuning parameters achieve a more
optimal trade-off of privacy and utility than others. In each figure where a horizontal blue line is

7The neighborhood of a point is determined by k or ϵ, whichever produces a larger neighborhood.
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present, the line denotes the result for the unperturbed data.

Correlation:
We calculated Pearson correlation coefficients pairwise for all variables in the bodyfat dataset.

The colored correlation matrices in Figure 5 show that for small ϵ, the correlation coefficients in
the perturbed and unperturbed data for a given variable are of the same sign and of very similar
magnitude. This provides evidence of the MRAR property of RWN. As ϵ increases, the correlation
coefficients tend towards zero. Thus, for large ϵ, the variables in the perturbed data are essentially
uncorrelated.

Figure 5: Body Fat Data, Correlation Matrices for RWN

Principal component analysis:
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Figure 6: Body Fat Data, PCA Scree Plots and Proportion of Variance Plots
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Obs. Number Body Fat Pct. BMI Age Weight Height Neck Chest Abdomen Hip
37 35.2 48.9 46 363.2 72.3 51.2 136.2 148.1 147.7
39 34.5 39.1 45 262.8 68.8 43.2 128.3 126.2 125.6

205 47.5 37.6 51 219.0 64.0 41.2 119.8 122.1 112.8
231 35.0 33.9 65 224.5 68.3 38.8 119.6 118.0 114.3
168 29.9 33.2 37 241.3 71.5 42.1 119.2 110.3 113.9

Table 2: 5 Individuals in Body Fat Data with Highest BMI

After scaling the data, we performed principal component analysis (PCA) on both the unperturbed
and perturbed datasets. In Figure 6, we see that the majority of the variance in the data is along the
first principal component. For small values of ϵ, the scree plot is very similar to the original data,
but as ϵ increases, the variation is spread over more principal components. This is consistent with
Figure 5 where we observed that most of the body measurements are positively correlated, but the
correlations go to zero as ϵ increases.

Outliers:
We regressed body fat percentage on all other variables including BMI, and computed Cook’s

distances. One use of Cook’s distance is to identify areas of the space spanned by the explanatory
variables where few observations are found.

The cleaned bodyfat dataset contains one individual who is substantially larger than all the oth-
ers. Consequently, this individual would be one of the most easily identifiable in the unperturbed
data. Table 2 shows the five individuals with the highest BMI values and a subset of their body
measurements. The person who stands out in size is Observation 37.

In Figure 7, this individual corresponds to the largest Cook’s distance in the unperturbed data.
However, even with minimal perturbation, the maximum Cook’s distance becomes much lower,
suggesting that this individual is no longer as easily identifiable in the perturbed data.

We can also visualize how perturbation affects this individual through plots of principal component
scores. This outlier is highlighted in each plot in Figure 8 using a red triangle while other data points
are represented using black diamonds. In the unperturbed data, the outlier has the largest score on
the first principal component by far. In the perturbed data, the outlier retains the largest score on the
first principal component but stands out much less noticeably from rest of the data.

Returning briefly to Figure 1, we see there is one record which has the same neighborhood of size
5 for all values of ϵ. This record corresponds to the exceptionally large individual. Consequently,
although we plot maximum Cook’s distance and principal component scores for a variety of ϵ val-
ues, the perturbed records corresponding to this individual in the various perturbed datasets are just
different randomizations based on the same neighborhood determined by k = 5. However, the other
data points are affected by the increasing ϵ, which is seen in the shrinking size of the cloud of points
due to the first principal component accounting for a lesser proportion of the total variance.

9.4 Empirical Comparison of SDC Methods

Next, we use the bodyfat data to compare the empirical performance of RWN with rank swapping
and multivariate MDAV microaggregation as implemented by sdcMicro through the rankSwap()
and microaggregation() functions. Since RWN and rank swapping both involve randomness and
may generate different datasets each time they are run, we generate 100 distinct datasets for each
choice of tuning parameters to ensure that the comparative performance of these methods is not
dependent on a single anomalous run of these algorithms. For these methods, we compute each
performance measure separately using each of the 100 released datasets and then take the average to
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Figure 7: Body Fat Data, Cook’s Distances

obtain a single value for a particular choice of tuning parameters. The version of microaggregation
used is deterministic, outputing the same released dataset when given the same input data and cluster
size, so the microaggregation results are based on a single dataset for each cluster size.

A fundamental issue for comparative analyses of different SDC methods is finding a proper basis
of comparison. What choices of tuning parameters are comparable? Examining the structure of the
algorithms themselves does not provide a definitive answer. For example, RWN’s neighborhoods
are analogous to the swapping ranges in standard rank swapping, but RWN’s neigbhorhoods are
allowed to be of widely varying sizes while swapping ranges are of uniform size, so there is no exact
equivalence between the two. Microaggregation defines disjoint clusters of records while RWN
defines non-disjoint neighborhoods for each record in the dataset. Consequently, there is no clear
equivalence between neighborhood size and cluster size.

Many empirical analyses in the literature compute a score, a weighted average of various disclosure
risk and information loss measure, to compare the empirical performance of each method across a
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Figure 8: Body Fat Data, PCA Outlier

variety of tuning parameters selections [12] [35] [34]. Our analysis is inspired by [11] which uses
a variation of DCR to find tuning parameters for each method that provide a comparable level of
privacy when applied to a specific dataset. Then, using the chosen tuning parameters, each method
is compared using a utility measure to determine the best performing method. As seen their analysis,
the relative performance of each method may differ when applied to different datasets. We follow
this general procedure with numerous modifications.

First, we identify numerous choices of tuning parameters that are comparable in terms of DCR.
We use a variation of DCR where distances are calculated using the values in the data (instead of
using ranks) and the minimum Euclidean distance is found for each record in the original dataset.
Let v denote the number of replications. v = 100 for RWN and rank swapping, and v = 1 for
microaggregation. Let W denote the original dataset with records r1, . . . , rn and let W

′(k) denote
the perturbed datasets with records r

′(k)
1 , . . . , r

′(k)
n .

DCR(ri) = min
j

||ri − r
′(k)
j ||2

TRANSACTIONS ON DATA PRIVACY 17 (2024)



78 Noah Perry, Norman Matloff, Patrick Tendick

Tuning Parameter Index RWN (ϵ) Rank Swapping (P ) Microaggregation (k)
1 0.25 0.12 2
2 0.30 0.15 3
3 0.35 0.18 4
4 0.40 0.21 5
5 0.45 0.24 6
6 0.50 0.27 7
7 0.55 0.30 8
8 0.60 0.33 9
9 0.65 0.36 10
10 0.70 0.39 11
11 0.75 0.42 12
12 0.80 0.45 13
13 0.85 0.48 14
14 0.90 0.51 15
15 0.95 0.54 16

Table 3: Tuning Parameter Values for Comparison

Risk(W,W
′(k)) =

1

nv

v∑
k=1

n∑
i=1

DCR(ri)

As in the previous section, for RWN we use k = 5 and q = 1, so the only RWN tuning parameter
that varies is ϵ. The tuning parameter index column in Table 3 is used as the x-axis in all the
comparison plots in this section.

In Figure 9, it is immediately clear that all three methods are comparable for indices 3 through 7.
However, other comparable values can be found by drawing horizontal lines through the chart. For
instance, similar DCR values are attained for RWN with ϵ = 0.80 (index 12), rank swapping with
P = 0.54 (index 15), and microggregation with k = 14 (index 13).

We also use the interval disclosure measure from sdcMicro to examine these disclosure risk results
from a different angle. For standard deviation interval disclosure risk, we use a standard deviation of
1. In Figure 10, we see that using standard deviation-based intervals, RWN achieves a much lower
level of disclosure risk. For robust Mahalanobis distance-based intervals, the difference is much
less distinct but the relative performance remains the same. These results suggest that the privacy
equivalencies established using DCR are conservative for RWN. That is, they may understate the
level of privacy provided by RWN relative to other methods.

Next, we compare the performance of the three SDC methods in terms of information loss mea-
sures. The first information loss measure IL1 is the mean absolute difference of Pearson correlation
coefficients. Let X and X

′(k) denote the correlation matrices corresponding to the original and
perturbed datasets W and W

′(k), respectively.

IL1(X,X
′(k)) =

2

vp(p− 1)

v∑
k=1

p−1∑
i=1

p∑
j=i+1

|xi,j − x
′(k)
i,j |
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Figure 9: Body Fat Data, Distance to Closest Record Comparison

Figure 10: Body Fat Data, Interval Risk Comparison

For this measure, a higher value implies more information loss. In Figure 11, we see that RWN
and rank swapping slightly outperform microaggregation at lower DCR values, while the latter is
substantially better for higher DCR values.

Note, though, that the absolute differences between correlation coefficients do not provide a full
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picture. The algebraic sign of the difference is also important. Microaggregation tends to strengthen
correlations as the level of perturbation increases while rank swapping and RWN tend to weaken
correlations as the level of perturbation increases. This phenomenon can be seen by comparing
Figure 12 with Figure 5. Ideally, correlations should neither increase nor decrease upon perturba-
tion. In MRAR terms, we see that microaggregated data will tend to overestimate relations between
variables, while RWN will tend to underestimate them.

Figure 11: Body Fat Data, Correlation Comparison

The second utility measure IL2 is the mean absolute difference of PCA loadings. Considering the
scree plots in Figure 6, we only analyze the loadings on the first and second principal components.
We analyze the loadings one principal component at a time. Let Y and Y

′(k) denote the PCA
loadings matrices corresponding to the original and perturbed datasets W and W

′(k), respectively.
Let Y.j and Y

′(k)
.j denote the loadings for the jth principal component.

IL2(Y.j , Y
′(k)
.j ) =

1

vp

v∑
k=1

p∑
i=1

|yi,j − y
′(k)
i,j |

In Figure 13, we see that all three methods perform very comparably for the first principal compo-
nent, but for higher DCR values, RWN performs substantially less favorably for the second principal
component.

The third utility measures IL3 is the mean absolute difference of regression coefficients. Let β
and β

′(k) denote the vectors of estimated regression coefficients corresponding to the original and
perturbed datasets W and W

′(k), respectively.

IL3(β, β
′(k)) =

1

vp

v∑
k=1

p∑
i=1

|βi − β
′(k)
i |

In Figure 14, we see that rank swapping and RWN attain similar levels of information loss for IL3.
The line for microaggregation is much more jagged, likely due to multicollinearity and the fact that
v = 1. Unlike RWN and rank swapping, microaggregation strengthens the correlations as the cluster
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Figure 12: Body Fat Data, Correlation Matrices for Rank Swapping and Microaggregation

size increases. Consequently, increased cluster size leads to more severe multicollinearity, and the
jaggedness in the microaggregation line reflects this.

We also examine the R-squared values. The R-squared values for RWN and rank swapping follow a
similar pattern: as neighborhoods and swapping ranges increase in size, R-squared values decrease.
This is consistent with our observation of correlation coefficients in Figures 5 and 12. In contrast,
the R-squared values for microaggregation increase as the cluster size increases because variation in
the data is lost to a greater degree for larger cluster sizes. As in the correlation comparison, RWN
and rank swapping perform very similarly for smaller tuning parameter choices, but rank swapping
achieves less information loss than RWN for larger values of ϵ.

In summary, we find that RWN performs most similarly to rank swapping when applied to the
bodyfat data. For this dataset, RWN outperforms rank swapping in terms of interval disclosure
risk but performs similarly or slightly worse in terms information loss in multivariate relationships
depending on the tuning parameter selection. It should be noted that the relative performance of
these methods may differ when applied to different datasets, and a data curator could use a similar
battery of tests to select an SDC method and find an optimal choice of tuning parameters for their
context.
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Figure 13: Body Fat Data, PCA Loadings Comparison

Figure 14: Body Fat Data, Regression Comparison

9.5 Prediction-Oriented Assessment
Statistical applications tend to fall into one of two general categories, which we will refer to as
Description and Prediction. The former has the goal of understanding some entity, process, effect
and so on, while the latter concerns predicting new data.

Much of the SDC literature has been aimed at the Description side of things, estimating means,
totals, regression coefficients and the like. The Prediction side has rarely been the focus, and we
now turn to that aspect in this section. We are interested particularly in classification settings, the
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form of many modern applications.
Intuitively, SDC methods should do fairly well in classification settings. Consider 2-class problems,

for instance, where we are predicting Y = 0, 1 from a vector of covariates X , say with a continuous
distribution. Assuming equal misclassification costs, the set of t for which P (Y = 1|X = t) = 0.5
forms the decision boundary. What is the effect of RWN’s data perturbation?

Consider a nonparametric regression method, say random forests. If a data point in the training set
is far from the boundary, perturbation will have little or no effect on future predictions; only points
very close to the boundary would be likely to experience change in prediction. One may conjecture,
then, that SDC methods will not compromise prediction ability much, at least for nonparametric
regression methods. This was confirmed in our experiments.

We first consider pef, a dataset included in the R regtools package. This is data on programmers and
engineers, from the 2000 US census. We predict a variable occ, which codes one of six occupations,
from variables such as age, income and education. Here we took q = 0.5, ϵ = 0, and varied
k = 5, 10, 25, 50. Misclassification rates, using random forests, are as follows:

Random Forest Misclassification Rate
Unperturbed k = 5 k = 10 k = 25 k = 50

0.628 0.627 0.645 0.682 0.659

This dataset does not lend itself to strong predictability, with an error rate about about 63%. How-
ever, that rate increases only slightly under RWN. The above results were based on 25 replications,
with a holdout set size of 1000.

Here is the same analysis on a second dataset, the well-known Pima diabetes study. It’s quite
different from the census data, in that it is much smaller (768 rows, vs. 20090 for pef), thus requiring
more privacy protection. On the other hand, greater predictive accuracy is possible for this data.
Again, performance appears not to decline due to the privacy action, and may even help, due to
salutary smooting effects.

Random Forest Misclassification Rate
Unperturbed k = 5 k = 10 k = 25 k = 50

0.241 0.242 0.233 0.245 0.241

We briefly investigate this phenomenon using the pef dataset. Total correlation (also known as
multiinformation) is an information theoretic measure of the multivariate relationships in the data
[30]. Since the pef dataset contains a mix of numeric and categorical variables, many of the ex-
ploratory experiments used for the bodyfat data like Pearson correlation and principal component
analysis cannot be applied to the entirety of the pef dataset. Total correlation is the Kullback-Leibler
divergence between the joint distribution p(X1, X2, . . . , Xn) and the product of the marginal dis-
tributions p(X1)p(X2) . . . p(Xn). A larger total correlation implies a greater degree of dependence
among variables whereas a total correlation near 0 implies that the variables are nearly independent.

After discretizing numeric variables, we calculate total correlation using one instance of the pef
dataset perturbed by RWN for each of the tuning parameter combinations listed above. The results
are displayed in the table below.

Total Correlation
Unperturbed k = 5 k = 10 k = 25 k = 50

1.133 1.181 1.176 1.146 1.133
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Interestingly, the degree of dependency among variables in minimally perturbed datasets is slightly
higher than in the original dataset. As expected, this degree of dependency decreases as the level of
perturbation increases.

10 Large Data Sets and Computational Complexity

10.1 Current Trends
Data sets are growing rapidly in both size and dimension. This is driven by many factors, including:

• A proliferation of data sources, including applications, back-office systems like ERP, smart
devices, and sensors.

• The growth of the systems themselves, as businesses and other organizations achieve global
scale.

• Increases in data collection and storage capacity through networks and mass storage.

• Larger computing devices and cloud scale computing.

• The transition from recording data about entities (such as people) to storing transactions like
purchases to storing events like clicks. Rather than understanding people, the goal now is
often how people behave in terms of transactions, mobility and so on.

• The transition from structured to semi-structured to unstructured data. Structured data, like
that found in traditional database tables, is strictly constrained in terms of dimension. Semi-
structured data like JSON objects, which is often captured from running applications, is un-
constrained in dimension. Unstructured data, like documents, photos, or videos, is of almost
unlimited dimension. Unstructured data might not seem like a candidate for the method de-
scribed in this paper, but documents, photos, and videos are often reduced to a set of features
described by categorical, binary, or numeric variables.

As a result, datasets can now easily be in the billions of rows with hundreds or thousands of vari-
ables or features. But with the growth of datasets comes a growth in risk. Larger datasets put
more people at risk, and increased dimensionality increases damage per person. Also, the increase
in dimensionality makes it easier to identify someone’s record in a dataset. We need to be able
to apply the method to these huge datasets, so the algorithm must be reasonably efficient from a
computational complexity perspective. As we will see in the next section, the basic algorithm is
computationally expensive, but with slight modification can handle large datasets.

10.2 Computational Complexity of RWN
To assess computational complexity of the method, going forward we will assume p is large but fixed,
q = 1, and n is increasing. We will also assume that the distance measure used to define closeness
is arbitrary. This is reasonable, since we need wide latitude to define closeness in different ways
for very different datasets. Under these conditions, whether we are selecting nearby points based
on epsilon neighborhood or k-nearest neighbor, the computational complexity of the basic method
is O(n2), since we have to calculate the distance between all possible points. This is probably not
tenable for large datasets, e.g., n = 109, for which the number of calculations would be of the order
1018.
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10.3 Alternative Methods
10.3.1 Method 1: Draw Neighbors from a Sample of Points

For the first method, we will just take a smaller sample of data points to use as neighbors. That
is, we will take a sample S of size m << n. For each data point in the original dataset, select
the neighbors from the sample, then apply the method as before. For this method, the complexity is
O(mn), considerably better than the original method. For n = 109, m = 104, complexity is of order
1013 instead of 1018, an improvement of five orders of magnitude. Assuming that all the data is in
memory, the cost of generating a sample of size m is O(m), so if we were to use a distinct random
sample for each point, the complexity would still be O(mn). For n = 109, m = 104, complexity is
still order 1013. The advantage is that we potentially get slightly richer data and better protection.

10.3.2 Method 2: Sample Randomly from the Distance Matrix

In Method 1, we are actually sampling twice as many points as we need to, since when we sample
point xj to be a possible neighbor of the point xi, we can also use xi as a potential neighbor of xj .
This is due to the symmetry of distance measure and the distance matrix D = [dij ] where dij is the
distance between points i and j. So instead of drawing a new sample for each data point, we could
simply draw a sample of elements from the entire distance matrix. Then for each data point, we
could look at the distances in the sample and find those that are sufficiently small or find the smallest
k elements.

We will now describe the method more formally and derive the complexity. Let W = (xij) be the
original dataset. We want to sample pairs (xi, xj), i < j at random with a sample size of ns = nm/2
where m << n is the desired sample size per data point. There are n(n − 1)/2 such pairs total,
and we are sampling ns << n(n− 1)/2. To generate the sample, we can use a mixed congruential
random number generator to generate numbers in [1, n(n− 1)/2].

Once we have ns random integers in the range [1, n(n − 1)/2], we will map them to (i, j) pairs,
1 <= i < j <= n to obtain the set Sd = {(i, j)}. We then calculate the distances dij = < xi, xj >
and store them in an undirected graph Gd (for efficient retrieval) with nodes representing the n data
points and edges {eij : (i, j) ∈ Sd}. Since the complexities of generating the random numbers,
mapping the random numbers to (i, j) pairs, calculating distances, and finding neighbors are all
O(nm), the complexity of the entire algorithm is still O(nm).

10.3.3 Method 3: Partitioning

With the advent of cloud computing, it has become much more feasible to harness the power of many
computers or virtual machines, each with gigabytes of memory. Under this scenario, the problem
(and data) are partitioned and spread across multiple instances, and then the results are combined to
form a single modified dataset. There are several ways this approach could be applied to the problem
at hand:

1. Simply partition the dataset into u equal partitions and then apply the original method. In
this case, the size of each partition is n/u, so the complexity is O(un2/u2) = O(n2)/u, a
reduction in overall complexity by a factor of u over the original method. However, if the
partitions are processed in parallel, the complexity for each individual partition represents a
reduction of a factor of u2 over the original method.

2. Partition the dataset into u equal partitions and then apply Method 1 or 2 above. Again, the
size of each partition is n/u but we are only calculating distances for a sample of size m, so
the overall complexity is O(umn/u) = O(nm), the same as it is for Method 1 or 2 without
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partitioning. However, if the partitions are processed in parallel, the complexity for each
individual partition is O(mn/u), a reduction by a factor of un/m over the original method.

Partitioning has two potential advantages: It spreads the work across multiple instances, thereby
increasing the computing power that can be brought to bear on the problem, and in the case of
approach 1 above, it further reduces the complexity of the problem being solved on each node.
However, with partitioning, the resulting combined dataset will be somewhat different.

11 Conclusion

We have presented a new SDC method for data release, distinguished by its ability to preserve
multivariate relations as well as handle mixed continuous and discrete/categorical data, and provided
a theoretical basis for the role of neighborhoods in achieving MRAR.

In addition to its theoretical appeal, RWN possesses practical features needed by database curators.
RWN’s tuning parameters k, ϵ, and q provide curators multiple levers to adapt the method to a
specific dataset and context. The curator must select and tune an SDC method according to the
special characteristics of the database at hand: Prevalence of outliers, distributional traits of the
variables, presence of small cells, a need to make some parts of the data more secure than others, and
so on. In deciding what kind of privacy must be provided, the curator may need to take into account
requirements of public policy specific to their domain or their organization’s legal contracts. Hence,
the importance of a particular measure of utility or privacy may differ by context. In light of this, we
performed a variety of statistical analyses to examine privacy and utility from multiple angles. For
example, a curator who aspires to provide special privacy to individuals who are easily identifiable
due to having unique or rare attributes may choose to adopt our Cook’s distance approach. Our
empirical results demonstrate RWN’s ability to balance the twin goals of preserving data utility
while providing privacy.
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