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Abstract. The paper describes a new method for assessing disclosure risk for tables of
counts; the subtraction - attribution probability (SAP) method. The SAP score is the
probability of an intruder recovering a ‘risky’ subpopulation table given a quantity of
information about the individuals in a population table. The method can be applied to
exact or perturbed individual tables and sets of tables. The method can also be used to
compare the risk impact of different disclosure control regimes.

1 Introduction

Releases of population data can be used by so-called data intruders to glean
sensitive information about individuals in the population. Disclosure occurs
when a data intruder makes reliable inferences (i.e., with a high degree of confi-
dence) about one or more population units. Statistical agencies need to guard
against disclosure in order to meet their legal obligations, to safeguard respon-
dent confidentiality and to maintain public trust. For example, lack of trust can
result in individuals refusing to complete census forms or returning forms with
false or missing information. Most statistical agencies are mainly concerned
with the risk of an intruder identifying a population unit, although this is not a
requirement for disclosure of information about the individual concerned.

The need for appropriate measures of disclosure risk has been well discussed.
Many authors have indicated that such measures should as far as possible take a
data intruder’s perspective of the risk (see e.g. Paass 1988, Mokken et al 1992,
Elliot and Dale 1999). Although intruder-based measures have been established
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for identification risk (Skinner and Elliot 2002), little progress has been made
with generating appropriate risk metrics for the disclosure of information about
members of the population in the absence of identification.!

This paper describes the “subtraction - attribution probability” (SAP) method
which attempts to fill this gap. We first describe the disclosure risk problem of
tables of counts and motivate the idea of a measure based on the presence of
inferable zeroes in a given cross classification. We then show how our chosen
metric (SAP) can provide an estimate of the probability of an intruder recover-
ing a zero from a given cross-classification given that s/he holds a given amount
of information about individuals within the population which the cross-
classification represents. We demonstrate the method using random rounding.
However, the method is compatible with any methodology which produces
tables of counts with finite bounds.? Finally we demonstrate the use of the SAP
with some simulated data.

2 Disclosure Risk

Understanding of disclosure risk has evolved over the last twenty years and
there is still no unequivocal definition of the term. However, definitions of dis-
closure generally involve one or both of identification (a one to one association
between a data unit and a target) and attribution (the association of one or more
variable values with a target).

Herein, a data unit is data about a population unit contained in a dataset that
is available to a data intruder?; a target is the population unit about which a data
intruder is trying to discover information.

In some cases it is possible for an intruder to perform identification or attribu-
tion with absolute certainty. In these cases the identification or attribution is

1 This type of disclosure risk mostly concerns population aggregates and in particular
tables of counts — the topic of this paper is noteworthy that whilst there has been exten-
sive and increasingly sophisticated work on methods for controlling disclosure risk in
such aggregates (see for example Cox (1995; et al 2004); Salazar (2005, 2006, 2007); Dun-
can and Roherig(2004). However, all of these in effect arbitrarily define properties of the
data as being “unsafe” or “protected”. They do not (as we do here) explicitly attempt to
measure the risk of plausible intruder behaviour as being successful and therefore, we
would argue they do not measure disclosure risk.

2 Arguably, the fact that the method works with perturbative disclosure control tech-
niques at allmakes it superior to many other methods which generally are only applica-
ble to unperturbed data..

3 A data intruder is an individual (or organisation) who seeks to obtain information
about a population unit through statistical disclosure.
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termed exact. Otherwise, identification or attribution is termed approximate.
Strictly speaking there will almost always be a degree of uncertainty regarding
the correctness of the data, so all inferences are approximate. However, this
source of uncertainty is generally ignored for disclosure risk assessment pur-
poses, and we follow this practice here.

In this paper we address the risk of exact attribution. Previous papers have
tended to concentrate on attribution stemming from identification. Fellegi
(1972) considers disclosure in terms of “sufficiently narrowly defined” popula-
tions, and goes on to state that such a population may “contain only one identi-
fiable respondent or, at least, information can be deduced from the published
estimates that can be related to a particular identifiable respondent”. He then
goes on to illustrate how disclosure can occur from the conditioning on known
information about a target, the conditional frequency table containing only the
target individual. Clearly, if an intruder can achieve this by conditioning on a
subset of the variables in the tabulation, then the levels of all the remaining
variables can be discovered. If the levels of the discovered variables were pre-
viously unknown to the intruder, then disclosure has taken place. Fellegi also
considers that conditioning to a (sub-) population of size two can result in simi-
lar disclosure if the intruder is the other member of the conditional population.
A U.S. Department of Commerce report (1978) expands this idea by considering
“coalitions” of individuals within a data set who might cooperate in order to
discover new information about targeted individuals. The report also considers
how disclosure can take place without the requirement for identification. Their
examples are reproduced below.

Table 1. Number of beneficiaries by count and race.

Race
County White Black Other Total
A 15 20 5 40
B 0 30 0 30

In Table 1 conditioning on a target being a resident of County B implies that
the target is black. A risk of such exact disclosure exists if a marginal total (in
dimension n-1) equals one of its detail cells (in dimension n). This contrasts
with the example given by Fellegi which required also that the detail cell count
be 1.

The U.S. Department of Commerce report contrasts this with the case when
the sum of a proper subset of detail cells equals the total in the relevant margin
(Table 2). The report does not define the implication that a target in County B is
either Black or Other as disclosure, because the subset of Black or Other is not as
narrowly defined as possible. Similarly, the report authors do not consider ex-
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act inferences regarding age as disclosive unless age is revealed to within a sin-

gle year.
Table 2. Number of beneficiaries by count and race.
Race
County White Black Other Total
A 15 20 5 40
B 0 28 2 30

We consider this distinction to be fairly arbitrary as ethnicity can be broken
down into more detailed classifications than those of the example, and any cate-
gorisation of a continuous variable such as age will involve ranges that are not
as narrowly defined as possible. One approach would be to associate sensitivi-
ties with any set/range of variable levels and consider disclosure to have taken
place if the sensitivity of the discovered information exceeds some predefined
threshold. However, data is often collected with an unqualified assurance of
confidentiality, so that it is arguable that all data should be regarded as suffi-
ciently sensitive to warrant protection. Therefore, for the purposes of this paper
we will simply consider that disclosure takes place when an intruder, by what-
ever means, is able to condition to a table of population counts which contains
one or more zeros. This definition encompasses the two cases illustrated above,
and the additional case where an intruder can infer that a particular combina-
tion of attribute levels does not apply to a target. For example, simply condi-
tioning on a target being a member of the population in Table 2 allows the in-
truder to infer that the target is not White and residing in County B (although
either is individually possible). So in this strict sense, we consider a risk of dis-
closure to be present if a table of population counts contains one or more zeros.

Skinner (1992) defines disclosure in the sense of Fellegi’s example (requiring
identification and attribution) as identification disclosure, whereas disclosure
that does not require identification is prediction disclosure. He considers ap-
proximate disclosure in sample tables and develops an argument that identifica-
tion disclosure is a necessary and sufficient condition for prediction disclosure.
In this paper we are concerned only with the risk of exact disclosure in popula-
tion tables. Under these circumstances it is clear that identification is neither
necessary nor sufficient for attribution (prediction disclosure).

2.1 Attribution risk from low population counts

So far, we have only considered the risks of attribution as they stem from con-
ditioning on known information relating to some targeted individual. It is im-
plicit that the intruder is also conditioning on a target being a member of the
population. But conditioning on known variable levels (or known absence of
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variable levels) is not the only way an intruder might attempt to condition
down to a smaller, more disclosive population. The U.S. Department of Com-
merce report describes the possibility of disclosure stemming from coalitions,
the main questions arising regarding the likely size of coalition, and the distri-
bution of the coalition within the population. However, we note that the type of
disclosure that can arise from coalitions does not require their existence. It is
possible for an intruder to hold information on a number of population units,
without their explicit cooperation. If they can be identified within the popula-
tion, then their records can be removed from the data set, facilitating inferences
regarding the residual subpopulation. Removal of a unique (count of 1) in a
population table clearly leads to the presence of a zero, and a risk of attribution.
Of course, records of known individuals may be removed without identifica-
tion, and partially known individuals might be ‘removed’ from the relevant
margins, placing constraints on the counts in the full cross-classification of the
residual population. In essence, an intruder can use arbitrary known informa-
tion about the population units in order to try to facilitate attribution. Lower
counts represent a greater risk of the recovery of zeros by subtraction of known
individuals.

The above requires information that can be considered external to the data set
in question, and as such might not be considered an overriding issue. However,
any inferences regarding a population unit require such information. Both exact
identification and exact attribution require external information; at the very
least an intruder must be able to condition on a target being a member of the
relevant population.

2.2  Protection against attribution

Statistical agencies tend to guard against disclosure by suppressing (withhold-
ing) data or disguising the true counts by deterministic or stochastic perturba-
tions; (see Duncan et al (2001) for a review). For example, one deterministic
method is conventional rounding. A suitable non-negative odd integer is cho-
sen as base, and each count in the cross-classification is rounded to the closest
multiple of the base. Figure 2 contains the conventionally rounded, to base 3,
cross-classifications corresponding to the exact cross-classification in Figure 1.
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Figure 1. A 2-way cross-classification with margins.

VARZ2
D | E|F
A1, 3 0 4
VAR1 B 400 4
cC|3]/2 0 5
8 560 13

Figure 2. Conventionally rounded cross-classification.

VAR?2
D E F
A 03 0 3
VAR1 3,00 3
C| 330 6
9 6 0 12

An intruder (with knowledge of the rounding scheme) can easily generate
bounds on the counts in the exact 2-way cross-classification, given the corre-
sponding rounded cross-classification. We term these trivial bounds as they are
based solely on the rounding scheme.
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Figure 3. Trivial lower bounds of Figure 2.

VAR2
D E | F
Al0|2]0
VAR1 2, 0]0
c 2 2 0

Figure 4. Trivial upper bounds of Figure 2.

VAR2
D E | F
All 4|1
VAR1 4 111
Cl 4 41

Here the rounding has managed to disguise the exact value of all counts. But
subtraction of a known individual in cell (A,D) would recover a zero.

It is not unusual for statistical agencies releasing perturbed cross-
classifications to also release perturbed, or occasionally exact, marginal tables.
The presence of marginal counts places a system of linear constraints on the
counts in the full (in this case 2-way) cross-classification. Solving the system of
constraints via integer linear programming methods can lead to tighter bounds
than those derived solely from a full rounded cross-classification. Dobra (2002)
develops a method for solving cell bounds given marginal cell counts. Al-
though his algorithm is designed to deal with exact cross-classifications it is
relatively easily extended for dealing with perturbed counts (Smith and Elliot,
2003). The release of all the rounded cross-classifications (including both 1-way
margins and rounded total) in Figure 2 results in the following lower and upper
bounds.
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Figure 5. Non-trivial lower bounds of Figure 2.

VAR2
D E | F
A0 2 0
VAR1 3/0,0
c 320

Figure 6. Non-trivial upper bounds of Figure 2.

VAR2
D E | F
A 1130
VAR1 B 4 10
C| 4 3]0

Three of the four zeros have been recovered. This stems from the fact that the
trivial lower bounds for the VAR2 margin sum to 13, which is the trivial upper
bound for the rounded total. Thus the total and VAR2 margin are recovered
exactly. So the perturbation of the data has done little to remove the risk of at-
tribution. Subtraction of individuals could increase the risk still further.

2.3 A measure of attribution risk

As the discussion in section 2.2 indicates: a risk of exact attribution exists if, and
only if, one or more zeros, recoverable by an intruder, exist in some cross-
classification. We regard this as analytically true, i.e. true by definition of the
term “exact attribution”. If there are no zeroes in a given cross classification —
taking account of the intruder’s prior knowledge about the population units
represented in that cross classification - then exact attribution is logically impos-
sible. Conversely, if once the intruder has taken account of prior knowledge

about population units represented within the cross classification and there are
zeroes present anywhere in the residual cross classification (once that knowl-
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edge has been accounted for) , then it only requires further knowledge regard-
ing membership of a target within the set of population units represented in the
cross classification to (at the very least) infer a combination of variable levels
that do not apply to the target.* Without zeros, any combination of variable lev-
els could apply. The only exception concerns structural zeros, where it would
be difficult to assert that the non-applicability of an impossible combination of
variable levels constituted disclosure. This is independent of whether disclo-
sure control has been applied to the cross classification and of what disclosure
control method has been used. Furthermore, the population cross-classification
in question need not necessarily have been released. In general, a set of popula-
tion cross-classifications can be used to place bounds on any cross-classification
from which they could be derived.> It is enough to consider only the ‘base’
cross-classification with axes corresponding to the union of the variables in the
released cross-classifications. Any cross-classifications over a superset of the
variables in the base cross-classification contain (recovered) zeros if, and only if,
the base cross-classification contains (recovered) zeros. Bounds on smaller mar-
gins can be solved, but again this is unnecessary, as any zero in a margin im-
plies zeros in the full cross-classification.

Given the questionable distinction between inferences on the basis of the ‘nar-
rowness of definition” we propose a measure based simply on the presence of
zeros in the full population cross-classification. Sensitivities are not considered
for the reason given earlier, although we note that the methodology can be ap-
plied to conditional tables as easily as marginal tables, in which case we could
assess risk for given population units or population cells given an assumed set
of key variables. We also wish to take into account the additional risk stemming
from intruder knowledge of the population, and to be able to apply the measure

4 The reader may have noted that, by this definition, standard sample microdata sets
would be at risk of attribution disclosure. Logically this is so, however, the further step
that the intruder requires further knowledge regarding membership of a target within
the set of population units represented in the cross classification is the barrier to disclo-
sure in this case. With sample microdata, the situation we are describing here corre-
sponds to one of response knowledge (i.e. where the intruder knows, through prior
knowledge, that a population unit is contained within a sample). This is a special situa-
tion, which it is generally accepted is outside the realm of practical SDC. In practice, this
definition would be applied to population cross classifications, typically census tables
where membership of the data cross classification can be reasonably inferred from
membership of the population and it is this situation with which we are primarily con-
cerned within this paper..

5 A special case of this is where it is possible to recover the exact counts in a full 3-way
cross-classification (containing a zero) from its three distinct 2-way margins (containing
NO Zeros).
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to relatively arbitrary releases of exact and / or perturbed cross-classifications.
Specifically, our chosen measure is the ‘probability of recovering one or more
zeros in the full cross-classification given the subtraction of a random sample of
n population units’. We term this the subtraction attribution probability (SAP).
Assume we have a base table of counts of arbitrary dimension with cell counts
ci, 1=1to m. Assume that an arbitrary set of perturbed marginal tables is pub-
lished, each perturbed using some independent rounding scheme (i.e. each cell
is perturbed independently of the others). Then each published count, x, im-
plies a pair of constraints of the form, | <¢, ¢ <u, where | and u are the trivial
bounds implied by the rounding scheme and c is the total of some set of cells in
the base table. Dependencies between bounds might imply that there exist
tighter bounds than the trivial bounds. These may be found by integer linear
programming methods. The recovery of a zero by subtraction of a known sam-
ple of the population occurs if, and only if, the sample implies that S, =¢;, =U/,

where si is the corresponding known sample count and U; is the corresponding

value in the table of the tightest upper bounds on the base table implied by the
set of all linear constraints.

In general, the probability of recovering at least one zero for some assumed
level of intruder knowledge, equivalent to a random sample of size 7, is:

ZS:P(SI IO)I(ZSi —m)I(0eu’'—s)
SAP(n) = SEGIIEs =

seS

where S is the set of all possible sample tables, p is the population table (known
to the data holder), sampling is simple random sampling without replacement,
subtraction of tables is elementwise, and I(.) is the indicator function. i.e. It is
simply the weighted proportion of sample tables that have at least one upper
bound equal to a sample count.

Where data has been perturbed, the calculation of the SAP measure may be
simplified computationally due to the additional constraints imposed by the
perturbation. For a data release comprising of a single rounded table we have a
pair of constraints, |; <¢;, ¢, <u; for each cell i. The mutual orthogonality of

these pairs of constraints in R" ensures that the trivial bounds are the tightest
bounds. For a sample with corresponding sample counts, s, i =1 to m, the SAP
measure for a given sample size, 1, can be calculated as follows.

2.3.1 Single rounded table

The marginal probability of recovering zeros in any set of cells with total x is
simply the following Hypergeometric probability,

TRANSACTIONS ON DATA PRIVACY (2008)



44 Duncan Smith, Mark Elliot

N —x
n—x
N
X
Applying the inclusion / exclusion principle it is simple to derive an expres-

sion for the probability that at least one cell is zero given a random sample of n
population units.

where N is the cross-classification total, > ci.

Let Z denote the set of all subsets of cell indices, equal to the union of the sets
of n-subsets Z(0), ..., Z(m). i.e. Z(0) = <, Z(1) = {{1}, ..., {m}}, Z(2) = {{1,2}, {1,3},
w,Am-1, mY}, .., Z(n) = {{1, ..., m}}.

Let e.g. c1 + c2 be denoted by ci2.

Then,

I
-
—_~
=
T
™M
7~ N\
s =2
|
P
N—

SAP(n)

In practice many of the terms in the above summation will be equal to zero.
For exact tables we have |, = ¢, =u, for all i, and all cell counts represent some
risk of recovering a zero, although for a given level of risk, n, we need only con-
sider c¢: s.t. C,<n. For rounded tables we need only consider c: s.t.
c,=> U <n.

iez

Calculations for the following exact counts (with no constraints on margins)

are given below.

[2,1,3]

TRANSACTIONS ON DATA PRIVACY (2008)



A Measure of Disclosure Risk for Aggregate Data 45

6-2 6-1
SAP(2) = (ZQZJ + (2@}} _ %
() (09 ()
(3)= MRS G2 _14
OO0
O e e o o i

900 0 ‘

i

SAP(0) is trivially zero as there are no zero counts, and SAP(n) is trivially one
for all n > 3.

2.3.2 Single rounded table and rounded total

In this case we have an additional pair of constraints, |, < ZCi , Zci <u,,
i i

where u: denotes the trivial upper bound for the table total. We also have the
obvious risk of subtraction where the sum of the sample counts ZSi =Uu,, and
i

this only occurs when Zsi = Zci =U,. But this new constraint is not mutu-
i i

ally orthogonal to the existing constraints, and the trivial upper bounds might
not be the tightest possible bounds. In this particular case the tightest possible

upper bounds on any base table cell jis, U} = min(uj U, — z |i] :
i#j
Lemmal. If S, =U, for any seS and any i, then S, <U; for any U/ <U;. In other

words, if there is any risk for the release without rounded total, then the release
of the rounded total results in no increased risk.
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Proof. It would be sufficient to show that u, — Zli >C; for any j. Minimum
i#]

upper bounds occur when U, = Zci . So assuming the tightest possible ‘new’
i

bounds we have,

Zi:ci >l >c;

i#]

diei=1)>c; -1,

So the lemma is proved true apart from the case where ¢, =1, Vi # j, where we

have equality.

In this case we have,

u] :min(uj,Z(ci —Ii)+ljj

:min(uj,cj —1; +Ij)

i =Cj

The existence of a risk (without rounded total) implies that U; = C; for at least

one c¢i. So, either,

1. u; =c; =Uj and there is no increased risk (the bound is already tight),

or
2. |, =c; =u; for some i # j, and we have a rounding scheme that doesn’t

round all counts.

Lemmal is proved for all independent rounding schemes that perturb all base
table counts.[

Corollaryl. If u, > ZCi , then the risk with rounded table is exactly the same as
i

the risk without rounded table.
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Corollary2. If a rounded table represents zero risk, then the addition of a
rounded total represents a risk if, and only if, U, = Zci . This risk pertains only
i

to knowledge of the full table, unless exactly one cell count, say cj, is not equal to
its trivial lower bound. In that case all tables s.t. §; = C; represent a risk.

Soif s; =u, for any seSor u, > Zci , then we can use the algorithm for single
i

rounded tables.
Otherwise, the above results lead to the following algorithm.

1. Construct a list containing the trivial lower bounds for the rounded base
table counts (i.e. based solely on the rounding scheme).
2. Construct a corresponding list of counts for the exact cross-classification.
3. Find the sum, S, of those counts in the list of lower bounds that are equal
to the corresponding count in the list of exact counts.
4. For all n in the range 0 to (T — S — 1) (where T is the exact cross-
classification total) the SAP measure is zero.
S
[n -T+ SJ

Y

It is hoped that the existing results can be further generalised to provide effi-
cient means for calculating SAP measures for more general table releases. The
current approach is to use an extended version of Dobra’s shuttle algorithm to
solve the initial bounds problem and then recursively generate all tables with
non-zero risk (Smith and Elliot, 2003). Randomly sampling tables is an alterna-

5. For each n in the range (T — S) to T the SAP measure equals

2.3.3 General table releases

tive approach for generating approximate SAP measures.

Calculating exact measures by generating all feasible tables tends to be very
computationally expensive. Obviously, the number of feasible tables tends to
increase rapidly with population size, although it also depends on the perturba-
tion scheme, the constraints implied by margins and the assumed sample size n
This was the initial approach used for the analysis of large numbers of sets of
small tables which prompted the development of the above algorithm. But the
above results suggest other efficient algorithms for other cases.
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2.4 An example with simulated data.

For contractual reasons we are, at present, unable to publish an extensive SAP
analysis that we have conducted on the UK Neighbourhood Statistics. But Ta-
ble 3 contains some results for an analysis of a set of 1200 randomly generated
2x6 cross-classifications. The cross-classification counts were generated from a
Poisson distribution with mean 2. Each cross-classification was conventionally
rounded to base 5, and the exact total was conventionally rounded (to base 5) to
produce a rounded total. SAP measures for each cross-classification were gener-
ated for n=0 to 24 using the algorithm outlined in Section 2.3.2. Table 3 contains
the numbers of cross-classifications that had SAP scores in various ranges. SAP
scores that were exactly 0 or 1 are contained in the second left and rightmost
columns respectively.

The software was implemented in the Python programming language. The
simulation took just under 1 minute to run on an old Athlon XP 2100 box with
1Gig RAM running Windows XP.

For n in {0,1} the SAP measure is necessarily 0 for all cross-classifications, due
to the nature of the rounding scheme. For n=2 the SAP measure could be as high
as 1, given a cross-classification total of 2.

The SAP measure for any individual cross-classification and value of n must
be at least that for n-1, so there tends to be a migration of SAP measures from 0
to 1 as n is increased. But for cross-classifications with no relevant cells, the SAP
measure is zero for all n.

Table 3 demonstrates how the risk of recovering a potentially attribute-
disclosive cross-classification tends to increase with greater intruder knowledge
of the population. Of course, this depends on the size of the cross-classifications,
the distribution of counts and the rounding scheme. But the pattern of results
shown in Table3 is reasonably close to that which the authors have found with
real-world data sets. Analyses such as this can be used to help define threshold
values for n for which a non-zero (or value greater than another threshold) SAP
measure can be considered to constitute too great a risk for release. Similarly,
analyses can be used to investigate the protection afforded by alternative per-
turbation schemes. Of course, any comprehensive analysis of perturbation
schemes would also consider the effect of perturbation on data quality.
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Table 3. Simulation results showing for 1200 randomly generated tables the
banded probabilities of producing a table containing at least one zero, given
subtraction of n randomly selected units from the tables.

0.1- 02- | 03- | 04 |05 |06- | 07- | 08- | 09-

SAP | =0 0-0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 =1
n=0 1200 | O 0 0 0 0 0 0 0 0 0 0

1 1200 | O 0 0 0 0 0 0 0 0 0 0

2 26 1173 1 0 0 0 0 0 0 0 0 0

3 26 1137 36 0 0 1 0 0 0 0 0 0

4 25 869 275 28 2 0 0 0 1 0 0 0

5 25 460 497 160 40 16 1 0 0 0 0 1

6 25 234 471 267 127 | 48 20 6 1 0 0 1

7 23 108 332 365 169 113 59 13 14 2 0 2

8 23 60 226 266 292 115 117 50 28 17 4 2

9 23 33 144 201 254 212 115 102 64 31 17 4
10 23 14 93 146 188 203 220 93 105 75 30 10
11 23 9 58 110 158 150 205 176 125 95 72 19
12 22 4 42 63 108 149 186 154 188 113 138 33
13 22 4 21 51 84 126 126 169 211 148 186 52
14 22 3 12 37 57 104 111 138 157 234 244 81
15 22 3 8 33 32 65 104 124 159 217 | 303 130
16 22 3 2 18 32 46 80 108 127 199 379 184
17 22 3 0 12 30 31 46 101 118 182 395 260
18 21 4 0 7 16 28 39 73 93 144 442 333
19 20 5 0 2 13 26 25 45 84 143 409 428
20 20 5 0 0 9 12 29 40 54 105 423 503
21 20 4 1 0 7 9 26 18 43 104 365 603
22 20 3 1 0 2 10 9 27 35 74 318 701
23 20 3 1 0 0 7 10 16 26 42 290 785
24 19 3 1 1 0 5 6 10 26 33 235 861

3 Concluding Remarks

The SAP method provides an integrated approach for assessing attribute disclo-
sure risk for any given release of cross-classifications. It incorporates a represen-
tation of intruder knowledge and allows the same metric to be produced for
both single and multiple cross-classifications, whether perturbed or unper-
turbed.

Computational constraints mean that comprehensive analyses of large cross-
classifications, using exact measures, can be time consuming. The computa-
tional burden can be ameliorated through sampling to derive approximate SAP
measures; further work is needed on producing exact measures and far more
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efficient algorithms have been found for certain special cases. These cases were
chosen for no other reason than the fact that they are common forms of release
from the Office for National Statistics; in fact, there are obvious extensions to
other cases that are not detailed here.

Another important issue not addressed here is how practical the criteria defini-
tion for baseline disclosure is. In other words, is the “recovery of a zero any-
where in the full table” too strong a definition of disclosure risk? To illustrate
this with an extreme example: suppose that an NSI releases a selection of tables
based on an underlying full cross classification of thirty variables. If, through
subtraction, an intruder could recover a zero in an interior cell of the full cross
classification should this be of concern to the NSI? Establishing that no popula-
tion unit in the target population had a particular combination of thirty vari-
ables would meet a literalist definition of disclosure. However, such a disclo-
sure is unlikely to be of interest to the data intruder, nor is it likely to be of great
concern to a member of the target population.

This issue is part of a more general one of when does a literal disclosure become
a sensitive one. To deal with the technical side of this, the SAP measure could be
adapted to take into account the maximum depth below which the NSI-user
would cease to be concerned, the point at which a technical disclosure might
reasonably be regarded as uninteresting. Alternatively separate statistics could
be produced for each depth; although this would make interpretation less
straightforward. Further work is needed here.

A final point concerns the question of what information the intruder might
have. This is an empirical question which can only be dealt with through data
environment analysis; Elliot and Purdam (2002). This is clearly important and
therefore is a stand of urgent applied work.

Notwithstanding the above qualifications, the SAP method, as it stands, pro-
vides a complete risk measure for exact attribute disclosure, which is anchored
in mirroring what a data intruder might actually do to attack a cross-classified
release of aggregate counts. It can be applied to arbitrary sets of tables as long
as finite bounds can be generated for cell counts, and the exact counts are avail-
able for reference. This would also include tables with suppressed cells, tables
containing intervals and tables produced from controlled rounding (Salazar et
al., 2004). This in itself represents an advance. The data intruder is assumed to
be able to calculate bounds, whilst the data holder has access to the original data
in order to calculate the measure. Where it is not possible for the intruder to
calculate finite upper bounds, then exact attribute disclosure is not possible.
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