TRANSACTIONS ON DATA PRIVACY 5 (2012) 333 —376

Mobile Systems Privacy: “MobiPriv” a
Robust System for Snapshot or Con-
tinuous Querying Location Based Mo-
bile Systems.

Leon Stenneth and Philip S. Yu

Computer Science, University of Illinois, Chicago, 60607, USA
Email: Istenn2@uic.edu, psyu@cs.uic.edu

Abstract. Many mobile phones have a GPS sensor that reports accurate location. Thus,
if these location data are not protected adequately, they may cause privacy breeches.
Several reports are available where people have been stalked through GPS. The contri-
butions of this paper are in two folds. First, we examine privacy issues in snapshot que-
ries and propose a method that guarantees that all queries are protected. Previously
proposed algorithms achieve a low success rate in some situations. Next, we study con-
tinuous queries and illustrate that current snapshot solutions cannot be applied to con-
tinuous queries. In this paper, a robust suite of algorithms called MobiPriv that is useful
for privacy preservation in both snapshot and continuous querying mobile location
based system is presented. MobiPriv addresses the shortcomings of previous work in
location and query privacy. The efficiency and effectiveness of the proposed MobiPriv
scheme is evaluated against previously proposed approaches. Results indicate that
MobiPriv has high success rate, good run time performance, and resilience.

1 Introduction

A GPS sensor is available on many smart phones that can provide within 20m
accuracy. Many third party location based services are been created randomly
to provide services such as location based social networks, transportation itiner-
ary planning, and location based coupons/deals. In these systems, the mobile
users reveal their locations. If these locations are not adequately protected, it
may reveal a person's political views, religious affiliations, or state of health.
Knowledge of a mobile user’s location may lead to stalking or unwanted adver
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tisements sent to the mobile device with the marketing of products or services
[23, 24, 30]. There has also been an increase in the number of GPS based harass-
ments [11].
Location privacy preservation aims to prevent adversaries from learning a mo-
bile user’s past or current locations, or the times of the visits. To preserve loca-
tion privacy, Gruteser and Grunwald [1] introduced the K-anonymity model in
location context. In this model, location privacy ensures that a mobile user’s
location is indistinguishable from K-1 other user locations. The K value denotes
the desired minimum anonymity level. A value of K =1 implies that anonymity
is not required for the message. A value of K > 1 means that the message will be
assigned a spatiotemporal cloaking box that is indistinguishable from at least K-
1 other messages, each from a different mobile client. Therefore, larger K values
imply higher degrees of privacy. One way to determine the appropriate K value
is to assess the certainty with which an adversary can associate the message.
This certainty is given by 1/K.
Another level of protection demanded in location based systems is safety
against request/query linking, by preventing an adversary from knowing the
mobile user that has submitted a sensitive query. Sensitive queries such
as, “Where is closest XXX Rehab Center to my current location?” should not be
linked to the mobile user. In query privacy, the location component inside the
query is the quasi-identifier [31]. Fortunately, the concept of K-anonymity [1]
can also be used for query privacy protection. Mobile users in these frameworks
are considered K-anonymous if a query cannot be distinguished from at least K-
1 other queries. The technique is to expand the query location point until we
locate K-1 other queries. This way, the exact query locations are hidden.
Traditional approaches such as encryption, hashing or removing the mobile
user identification (e.g. user name) from the submitted request cannot overcome
the privacy threats in location based systems because the quasi identifier is loca-
tion and not user-id. Furthermore, encryption provides an “all (100%) or noth-
ing (0%)” service. In these privacy aware systems, mobile users may want a per-
sonalized percentage of privacy (e.g. 80%), this cannot be done using encryp-
tion. Moreover, location based log files may be released to the public for re-
search or data mining purposes. Due to the uncertainty that would have been
introduced by encryption, this released data would be difficult to mine.
Personalized control of location information disclosure is needed in location
based systems because the privacy requirement varies from one mobile user to
another. For example, in a location based social network application such as
Foursquare, some people may feel comfortable revealing their exact location at
all times, other mobile users may feel comfortable revealing the zip code only,
or the city, or country. Clearly, mobile users may need a model that allow them
to define the personalize privacy level that they desire.
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Several privacy focus architectures are considered for privacy aware location
based services. These architectures are client-server, trusted third party, and peer
based. In the strict client server architecture, clients communicate directly with
the LBS by submitting a request to the LBS, the LBS then returns a response di-
rectly to the client [11, 12, 13, 14]. In the peer based model, clients communicate
directly with each other to achieve location privacy [21]. The intention of the
clients is to cloak with each other in order to satisfy location K-anonymity. The
trusted third party model utilizes the concept of a middle-ware between the
mobile user and the LBS. We sometimes refer to the middle-ware as an anony-
mization server or AS. Mobile requests are first sent to the middle-ware, the in-
coming request is then cloaked with other requests by the anonymization server
before submission to the LBS. The proposed work is focused on the trusted third
party architecture since these systems are now being deployed to the public
[25]. The trusted third party framework is also common in privacy preserving
location based systems [8, 15, 19, 29, 32].

The proposed privacy solution is effective for both snapshot and continuous
query systems. A snapshot query is a request submitted once by the mobile us-
er. For example, “Where is the closest sushi restaurant?” On the other hand, a con-
tinuous query is submitted at discrete time points by the same mobile user. For
example, “Continuously send me gas price coupons as I travel the inter-state high-
way?” Most of the current work have focused on snapshot queries. However,
since the cloaking set for the same mobile user may be different at discrete time
stamps, a snapshot solution may not be sufficient in a continuous querying en-
vironment as indicated by [29].

Importantly, we observe that current anonymization techniques [7, 8, 15, 19,
28, 29] underperform if K-1 other users or requests cannot be found. Conse-
quently, the request is discarded since it cannot be anonymized. One contribu-
tion of the proposed work is ensuring that all incoming location based requests
can be safely anonymized to the desired level.

The remainder of the paper is organized as follows. Section 2 highlights the re-
lated work. Section 3 addresses the preliminaries and Section 4 discusses the
dummy generation scheme. In Section 5 an overview of MobiPriv system is pre-
sented, and in Section 6 the proposed algorithms are discussed. Section 7 and
Section 8 describes the evaluation matrices and the experimental results for
snapshot systems. Continuous query study and evaluation is presented in Sec-
tion 9. Finally, Section 10 compares the two proposed algorithms, and Section 11
concludes the paper.
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2 Related work

This work is an extension of our previous work [32]. The concept of K-
anonymity was originally used within the realm of relational databases [9]. The
idea of location k-anonymity was first proposed by Gruteser and Grunwald in
[10]. The discussion on the related work is presented in two sections. First, loca-
tion based privacy in snapshot systems is discussed. Then, location based priva-
cy in continuous querying system is discussed. In location based snapshot sys-
tems, a location based query is submitted once to the location based server. For
example, “Where is my nearest bus stop?” In location-based continuous queries,
the same query is submitted at discrete time points. For example, “Continuously
send me Groupon coupons that are redeemable at least 2 miles from my current loca-
tion?”

21 Location based snapshot queries

The main shortcoming of privacy aware snapshot systems is that if K-1 other
requests cannot be found, the query is discarded because the desired privacy
cannot be provided. Current anonymization techniques [3, 5, 6] are ineffective
if K-1 other users or requests cannot be found. In these works, if K-1 other que-
ries cannot be located within the QoS constraints, the query is dropped. This is
where our research on snapshot system privacy is focused: on improving the
success rate. Thus, in this work, all requests sent to the AS can be anonymized
safely without being dropped. We evaluate the success rate of the proposed
approach compared with previously proposed work.

In [10], the value of K in K-anonymity is static and uniform for all mobile users
in the system. The framework of a personalized value of K was first introduced
in [8] by Gedik and Lui. In this model, each user defines their personalized val-
ue of K as opposed to the static approach in [10] where all the users share the
same K value.

The authors in [11] neglect to use anonymization servers, instead relied on a
client-server technique called “SpaceTwist”. In [11], the authors defined the con-
cept of demand space and supply space. The demand space is the space yet to
be explored and the supply space is the space already explored. The true loca-
tion of the client is only known by the client. The client then sends a request
using a false location to the server. On receiving the request, the server then
replies with a response. The client incrementally sends more requests to the
server increasing its supply space and reducing its demand space. When the
supply space totally covers the demand space, the algorithm completes and the
client is guaranteed to have received a correct response. We identify two obvi-
ous pitfalls with such an algorithm. The first is excess communication cost. Sec-
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ondly, if an adversary has background knowledge that a person is at a particu-
lar spatial point re-identification is possible.

In [11, 12, 13, 14], strict client-server approaches are considered instead of us-
ing anonymization servers. Chow’s work in [21] is based on the peer to peer
approach for privacy preservation.

The proposed work is different, we concentrated on the trusted third party ar-
chitecture with the anonymization server. Below, the four most relevant works
to the proposed algorithms are discussed. The four most relevant works are
Interval Cloaking [10], Clique-Cloaking [8], Casper (Pyramid Based) [19], and Priva-
cyGrid [15].

— Interval Cloaking [10] - This cloaking technique iteratively divides the
region into quadrants. The region before division is called gy . If after
division the quadrant that the user resides contains more than K users,
then iterative division continues. If after division the quadrant that us-
er resides contains less than K users, then gy is returned as the cloak-
ing box.

— Cligue-Cloaking [8] - A clique in a constraint graph is identified. The
nodes in the graph are messages and the edges are formed between
two messages if the cloaking region of the messages overlaps to in-
clude the messages. Messages can be cloaked together if they are
neighbors in the graph and the K requirement can be satisfied. If mes-
sages cannot be cloaked they are expired and dropped. Also, users
tend to be close to edges of the minimum bounding rectangle.

— Casper [19] — Casper maintains an anonymizer and a privacy aware
query processor. For anonymization and cloaking, a pyramid structure
is maintained. The cells in the region contain the number of mobile us-
ers active in the cell. If the current region/cell of user cannot satisfy the
value of K or Awinthen a neighboring cells are considered. Casper has a
superb run time performance. However, Casper does not return the
smallest cloaking region and also it is expensive (updates and cloaking)
to maintain the pyramid structure. The same authors of [19] also intro-
duced TinyCasper [18]. TinyCasper is solely for wireless sensor net-
works. We evaluated the proposed work against Casper [19].

— PrivacyGrid [15] - PrivacyGrid guarantees a small CR by using a Bottom-
up, Top-down, or Hybrid approach. In the Bottom-up approach, the mo-
bile user’s cell is expanded to meet the K-anonymity and L-diversity
requirement. For a given cell it may expand to its immediate neighbor
east, west, north or south. The next cell to be chosen is the cell with the
highest mobile user count. This cell will be included in cloaking box.
The Top-down approach selects the largest possible cloaking box that
satisfies the users QoS requirement. If K users cannot be found in this
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cloaking box, the query cannot be satisfied. If K users are found, then
the algorithm attempts to prune the cloaking box to a smaller cloaking
box and verifies if K mobile users are still present. The Hybrid approach
makes a decision to use bottom up or top down, depending on the val-
ue of K and the QoS (i.e. spatial tolerance). The Hybrid scheme com-
bines the strengths of both the top down and the bottom up approach-
es.

We evaluated the effectiveness of the proposed algorithms against, Casper, Pri-

vacyGrid’s Bottom up, PrivacyGrid’s Top down, and PrivacyGrid’s Hybrid

schemes.

2.2 Location based continuous queries

Most of the current work focused on snapshot queries. Since the cloaking set for
the same mobile user may be different at distinct time stamps, a snapshot solu-
tion may not be sufficient in a continuous querying environment. An aggrega-
tion or intersection of multiple snapshots in a continuous query can lead to pri-
vacy breaches [29].

Work on location based continuous queries includes [28, 29]. In [29], the same
set of mobile users are aggregated and submitted to the location based system
by the anonymization server for each request from a mobile client. The main
shortfall of this model is the possible reduction of quality of service for subse-
quent mobile requests from the same mobile client. The quality of service prob-
lem of [29] was addressed in [28], and [28] assumes that the transportation
mode can be determined from a set of GPS points [33]. Thus, in [28], they anon-
ymize each local and global candidate set by considering similar transportation
modes using a dynamic cloaking strategy.

Since current snapshot solutions are not applicable for privacy reservation in
continuous querying systems, a robust and effective model for location based
privacy preservation for continuous queries is proposed in this work.

Dummies were first introduced by Kido [12]. The proposed work is different,
realistic and diverse dummy request are generated on the anonymization server
with respect to K-anonymity. The dummy related work in [12] uses the strict
client server architecture without the anonymization server. Additionally, [12]
did not consider K-anonymity or diversity constraints.

3 Preliminaries

To define the problem of privacy preservation in mobile location based services,
first, we need to define the privacy information that we are interested in pre-
serving. Second, the threat model or background knowledge that an adversary
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may use to attack the privacy of users in a location based system. Variations in
formulation of these issues may lead to different versions of privacy preserva-
tion in mobile location based systems. In this paper, we discuss a version which
we believe is useful in many location based systems.

In this section, we will present formal definitions, requirements, architecture,
threat model, and adversaries” knowledge.

3.1 Formal definitions

Definition 1.1 (LBS Quasi-Identifier) A set of attributes {ql, . ., qn} of a mobile
query is called a LBS quasi-identifier if these request parameters can be linked
with external data to uniquely identify at least one mobile client in the system.
One example of quasi identifier (QI) in location based systems is the location
{latitude, longitude} of the mobile user submitting the request.

The above definition recalls the definition of QI introduced in relational data-
bases [31].

Definition 1.2 (Location-based snapshot query) A location-based snapshot
query Qenapshet s g Jocation based query submitted at time t. Such a query will
not be submitted at time t+n, Yn > 1,t = 0.

Definition 1.3 (Location-based continuous query) A location-based continuous
query Qontinvous  js 3 sequence of snapshot queries submitted at discrete time
pOil‘ltS. thontinuous = { Qtsnapshot , Qmsnapshot, Qt+zsnapshot, Qn_lsnapshot, Qnsnapshot } For exam-
ple, “Continuously send me information on public passenger buses that are within five
minutes from my current location?”

Definition 1.4 (Region request) A region request Rt is a group of queries that are
anonymized together to satisfy the K-anonymity requirement, an area encompassing all
the queries is submitted to the LBS service provider. Each region request ‘R is formal-
ized as:

Rt = (Rig, Qser, Lt)
where R;q is the identifier of the region request, Qge¢ is the set of queries contained in

Rt and £; = (E;_, E;_, 0., E§,+) is the location of the bounding rectangle for
{Qll QZ; . Qn_l, Ql’l} at tlme t

Definition 1.5 (Local K-anonymity) A region request (R:) satisfies local K-
anonymity (Kiocar) if it contains at least Kiocat different location based requests.

Definition 1.6 (Global K-anonymity) A continuous query Qontinuous satisfies
global K-anonymity if the number of requests in intersection of the region re-
quests or snapshots in the continuous query is at least Kgioba. Therefore, for n
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region requests Ri, Rz ... Rn in the continuous query |RiNRzn ... Rn | >= Kglobal
and Kglobul <= Kiocal.

3.2 Requirements

— When a mobile user submits a location based request, she should be giv-
en the option to hide her location. The location is an identifier in loca-
tion based services. Let qm (x, y) be a query g submitted by mobile user m
from a point (x, y) where latitude = x and longitude =y. The request gm is
converted to some qm ((x1, x2), (y1,y2)), where qu is the new query and
(x, y) € ((x1, x2), (y1,y2)) such that ((x1, x2), (y1,y2)) is a region encom-
passing the point (x, y).

— When a mobile user submits a sensitive query, the query should not be
linkable to the mobile user. For example, a query such as “Where is the
closest parking lot to the HIV rehabilitation center?” should not be linkable
to the mobile user that submitted the query. This kind of query is sensi-
tive query and may be embarrassing to the sender if the query is re-
vealed.

— Queries should not be discarded if K-1 other mobile clients or mobile
requests cannot be found. In previous work [8, 15], if K-1 other mobile
queries cannot be found, the query is discarded. Any privacy model that
suffers from this pitfall is referred to as “best effort”. On the other hand,
MobiPriv is a guaranteed service, and all queries can be anonymized
successfully without a delay. Let N be the total number of mobile re-
quests sent by mobile clients to the anonymization server. The number
of mobile request that can be anonymized successfully by the anony-
mization server is Mt. The anonymization server ensures that:

IN|
IM¢|

* 100 = 100%

This implies that all the queries sent to the system will be anonymized
successfully and none will be dropped. In our evaluations we refer to
this property as the success rate of the privacy algorithms.

— Using historical data such as past queries should not influence query
linking. This is frequent in continuous querying systems where the ad-
versary can aggregate all the regions that he suspects a mobile client vis-
its and use this information to link queries to the mobile client. Assume
that mobile user ux submits multiple requests with a privacy require-
ment of K from points in the regions Ri, Rz, Rs...Rn. Then,
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R, NR, N Ry N R, N..R, # uy

— When a mobile user submits a request, if K-1 other requests are not
available at the time of request, the system should not wait for these re-
quests to become available. Some location based services provide emer-
gency and lifesaving functionalities, therefore delays cannot be tolerated.

3.3 System architecture

The system consists of mobile devices with positioning capabilities, location
based services (LBS), wireless networks, and the proposed algorithms running
on a privacy aware middle-ware called an anonymization server (AS). Below,
we discuss each component. See Figure 1 for a layout of the architecture.

Mobile device (clients): Mobile device includes mobile phone, PDA, and other
devices such as laptops with positioning capabilities. First, each mobile device
computes its physical location from the GPS or Wi-Fi component on the device.
Mobile users specify the privacy requirement that they desire from the user in-
terface of their mobile device in the proposed system. Both the personalized
privacy requirement and the query containing the location data is forwarded to
the anonymization server. Observe, for a typical query the location component
of the query may not be the current mobile user’s location. For example, Alice is
at Point A and Alice submits a query requesting the closest buses to Point B. In
this case, there is no need for Alice to reveal that she is at Point A.

Anonymization server (AS): The anonymization server knows the location of
all the mobile users. The physical location computed by the mobile device is
sent to the anonymization server with the query. The role of the anonymization
server is to privatize location and the request before submitting it to the location
based system. We assume that anonymization server is the trusted third party,
the adversaries loiter between the anonymization server and the location based
system.

Secure communication service: The communication link between the mobile
clients and the anonymization server is assumed to be wireless connections that
are secure.

Service provider (LBS): The service provider provides location based services
to its subscribed mobile users. On receipt of a request from the anonymization
server, the location based server processes the request and returns a response to
the anonymization server. The service provider has the ability to process a given
cloaked region and also process an exact point. The service provider is not re-
sponsible for privacy policies of the mobile clients.

Operation flow: Mobile users submit requests incorporating positioning in-
formation such as current location (latitude and longitude) as a parameter of the
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request to the AS. The AS then cloaks the client’s query location point into a
region containing K-1 other mobile user request.

The AS then forwards the aggregate region request to the LBS. The LBS pro-
cesses the query and sends a response. This response sent by the LBS is generic
and should be filtered to get precise results. Filtering can be done on the AS or
by the mobile client. Filtering on the mobile device may be costly due to limited
battery power and processing capabilities. A diagram depicting the architecture
is shown in Figure 1.

One novelty about our approach is, if K-1 other mobile user request cannot be
found we generate realistic diverse dummies instead of dropping the query as
in previous anonymization approaches that uses the trusted middle-ware.

N

3o
o33

Tia

)

clients |Q AS LBS

Figure 1- LBS with Anonymization Server (AS)
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3.4 Threat model and adversary’s knowledge

To evaluate the privacy protection of the proposed system, we consider the fol-
lowing threat model. Mobile users communicate precise personal location in-
formation, while adversaries” intention is to decipher the physical location of the
mobile clients.

Additionally, as the mobile clients may submit sensitive queries, adversaries
intend to infer which mobile user has submitted current or past queries. For
example, if a person submits a query such as “Where is the less expensive bar in
the red light district closest to Downtown Chicago?” Then, this query should
not be linked to the sender.

In summary, the adversaries have two main goals: (1) Discovering the location
that the submitted requests are related to, (2) Correlating a sensitive query to a
mobile user. Adversaries loiter between anonymization server and location
based server and is aware of the time that the mobile users may submit the que-
ries.

Adversaries may “look up” the correlated street address corresponding to a
mobile user location (latitude, longitude) or query location (latitude, longitude)
using reverse geocoding techniques and they are aware of the location of some
mobile users. Moreover, adversaries may observe the region sent by the anon-
ymization server to the location based server and determine the number of que-
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ries in that region request. Furthermore, the adversary may have background
knowledge about the victim. Background knowledge includes home address,
office address, etc. Additionally, adversaries may perform query linking by ob-
serving the location component inside a query. Advance adversaries may also
listen over time and correlate multiple queries sent by the same mobile users.
These assumptions are realistic. Below me model some of the adversaries’ capa-
bilities and we will show that the proposed approach is resilient to these capa-
bilities

— Count (R) — Given a region R, with multiple mobile users or mobile re-
quests {ri, 12, 13...1%1, 1}. The adversary can determine the number of
queries in R. Thus, from R, the adversary can determine an integer value
corresponding to |{ri, r2, r3...1%1, 1} |

— Lookup (lat, lon) — Given a location point (latitude, longitude), the ad-
versary can perform reverse geocoding and determine the high level
street address.

— Intersect (R, R, R3, R4 ... Ru1, Ru) — Correlates multiple requests from the
same sender. Given (Ri, Rz, Rs, R« ... Ru1, Ru), the adversary can perform {R:n
R:nR3NR4 ... Rein Ry} and determine common requests across regions.

4 Dummy requests

We define the term dummy request, or dummies, to be a fake mobile request Ua
automatically and realistically generated by the system. Dummies should be
generated in a way that an adversary cannot differentiate a dummy from a real
user request Ur. In LBS systems such as road navigation systems, mobile users
send continuous position queries. If dummies are generated randomly, then
adversaries can easily find the difference between the real user and the dum-
mies. For example, real requests tend to be related to road networks and dum-
mies may wonder off into the Euclidian space if they are randomly generated.
In our algorithm, the dummies are generated relative to the temporal and spa-
tial property of the real user request. The identification numbers of the realistic
dummies are taken from the dummy profile. The proposed dummies requests
are also diverse and are different from the mobile user request.

This paper is not the first to use dummies as a concept to increase privacy in
location based systems. However, it is the first to consider dummy request gen-
eration on the anonymization server (AS). Kido et al [12] introduced the concept
of dummy location generation in location based systems but did not consider K-
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anonymity. In [12], the client sends the true position along with the dummy
positions to the LBS. The LBS then responds with answers to both the true posi-
tion and the dummy position. The proposed work is different as [12] did not
consider the anonymization server instead only considered the client server
architecture. We also considered dummy query generation and not dummy
location generation as described in [12]. One disadvantage of the approach in
[12] is the high processing cost on the mobile device to filter the results that
were returned by the LBS. The excess filtering cost on the mobile client nega-
tively affects the short battery life and limited processing power of hand-held
mobile devices. Consequently, MobiPriv filters on the anonymization server.

Further, if an adversary has knowledge of history then a user may be re-
identified in [12] by taking the intersection of the regions that the mobile user
sent the requests from. Thus, [12] is not useful in a continuous query environ-
ment.

41 Dummy profile

In MobiPriv, the dummy profile is a file containing a list of all mobile users in
the system along with corresponding dummy user identification numbers. We
define profileCount to be the number of dummies associated with a real mobile
user on the dummy profile. We initialize profileCount to be the maximum K val-
ue allowed in the system and construct the dummy profile as follows. For each
possible real user Urin the system, we associate a set of dummies with the real
user identification. To generate dummy requests for a particular user, we first
consult the dummy profile and take the dummies from the dummy profile in
topological order. We generate dummy requests to satisfy the local anonymiza-
tion groups which then become candidates to prevent query linking in continu-
ous queries. The proposed work (i.e. MobiPriv) is the first to consider realistic
diverse dummy user generation on the anonymization server.

We will now explain how to generate realistic dummy requests. Figure 3 shows
a diagram of a cloaked request. The parameters dx and dy are the user defined
spatial tolerances, and coordinates x, y represents the location (latitude and lon-
gitude) of the request. From dx, dy, x, and y we build the bounding box such that
parameters x1 and x2 are the regions x-coordinates. Likewise, y and y2 are the y-
coordinates.
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dx
y2
Request,
y K=3 dy
y1
x1 X x2

Figure 2-Dummy request generation

First, the following offsets are defined; (1) Xoftset, and (2) yottset. The values for the-
se offset are computed based on the spatial properties (i.e. x and y) of the incom-
ing request as shown below.

Xoffser = Min (x2 —x,x —x1)/2

Yoffset = min (Y2 —y,y —y1)/2

Let <0,1> means a random number between 0 and 1 inclusive. Given these off-
sets, we then use x +<0,1>* x,r5er and y + <0,1> * y, 740 as spatial properties
for the dummy requests. Therefore, for each dummy request, the following is
computed.

dummyrrser = X+ < 0,1 > Xorreer
dummygffSet =¥+ <01>* Yorsser

Where dummygy s, is the dummy’s x offset and dummygl rrser 1S the y offset.

The temporal property of the dummy requests can be ascertained similarly. Us-
ing this strategy, the dummy requests are related to the spatial and temporal
properties of the real request. Hence, the dummy requests may be perceived as
real requests by adversaries.

The dummy generation algorithm is presented (see Algorithm 1). In line 4, pro-
fileCount is declared to be 50, likewise in the experimental evaluations. This im-
plies that the system generates at most 50 realistic dummy requests to satisfy the
privacy requirements. Line 6, the proposed work reads the dummy profile for
the mobile user that submits the request.
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From the dummy profile, the identification of any dummy request that will be
generated is known. In lines 7- 18, it is guaranteed that the total number of re-
quired dummies is less than profileCount and the proposed work generates all
the dummy identifications from the dummy profile (line 12). Likewise, the tem-
poral and spatial properties of the dummies are related to the mobile user (line
9,10, 11).

[* Algorithm 1: Realistic-Dummy-Generation*/
1. precondition: mobileUserld!=null, total Dummies>0

2. input: mobileUserld, total Dummies,C /* C is query™/

3. method:

4. profileCount «-50, count < 0 ,Xoffset , Yofiset, toffset, dummies []
5./ * Xoftset , Yoffset, tofiset are computed as shown in Section 4.1 */
6. profile [] = read_dummy_profile(mobileUserld,totalDummies)
7. if(totalDummies <= profileCount)

8. while(count<total Dummies)

9. t=C.t +<0,1>* toffset

10. x = C.x +<0,1> * Xoffset

11.  y=Cy+<0,I>* yoffset

12. id = profile [count]

13 C' = diversify(C) /* diversifying the dummy query */
14. newDummy = createDummy(id,x,y,t,C")

15. dummies [count] = newDummy

16. count++

17. end while

18. end if

19. else

20. return dummies

21. end else

end

In line 13, to prevent the homogeneity attack, the query is diversified. For example,
if the mobile request is related to 1036 N. Michigan Ave in Chicago, the dummy
request may be related to 1038 N. Michigan Ave Chicago. The proposed work
ensures that the dummies” query point is not the same as the real mobile users’
query point. Instead, a different building or symbolic address in the region is
utilized. The algorithm then creates the new dummy request based on the time,
location, and query of the mobile user (line 14). In line 15, the new dummy is
added to the list of dummies. Finally, the candidate list of dummies is returned
in line 20.

In this algorithm, the dummy request becomes realistic and diverse by relating
its temporal, spatial, and query point properties to the real mobile user’s re-
quest.
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4.2 Dummy diversity

If all the K users in the region submit request to the same symbolic address such
as the same movie theater, K-anonymity fails, because the adversary can infer
that some people are interested in that symbolic address. This kind of attack is
referred to as the homogeneity attack [26]. For this reason the concept of diversity
is considered [26]. Diversity adds another dimension to the privacy level and
ensures that our query locations and query contents are diversified. For exam-
ple, request should span across different postal addresses or different buildings.
The dummy requests that are generated are diverse and are submitted
to different symbolic addresses using a reverse geocoding scheme.

Using reverse geocoding, the location point of interests of the user is converted
to a readable street address. Reverse geocoding is the process of converting a
location point to an address or place name. For example, reverse geocoding lati-
tude: 41.976216 and longitude: -87.90331, produces the address 99 Access Road
Chicago, Illinois, 60666, USA. Based on the address or place that is returned, the
proposed work constructs the dummies” point of interest. For example, a dum-
my point of interest for the aforementioned latitude and longitude would be at
100 Access Road, Chicago, Illinois, 606666, USA.

4.3 Query privacy in MobiPriv implies location privacy

We now show that anonymization with K-1 other mobile requests as done in
MobiPriv is a sufficient condition for location privacy. First, let’s define a query
gqm(x,y)(X,Y), where q is the query submitted by mobile user m, located at loca-
tion (X, y), and the location component of the POI in the query is (X,Y). Both x
and X corresponds to the latitude, y and Y corresponds to the longitude. We
have two types of queries (1) Type 1 - The mobile user location is a component
in the query. Therefore, (x, y) = (X, Y). (2) Type 2- The mobile user location is
not a component in the query. Therefore, (x, y) != (X, Y). Location privacy en-
sures that (1) The location (x, y) is not revealed or (2) The location (X, y) is re-
vealed and is indistinguishable from other mobile user location.
— Consider type 1 queries, the (x, y) location of the mobile user is
revealed in the query. In this case, the current mobile user location is a
component of the query. For example, the query “return the closest busses
to my current location?” In this case, the mobile user’s current location
constitutes the query. Therefore, (X, y) = (X, Y). In MobiPriv, we anony-
mize with regards to the query location point, in this case location (X,Y)
is expanded to find K-1 other mobile requests. Since (x, y) = (X, Y) and a
mobile user cannot submit multiple requests simultaneously, the loca-
tion (x, y) also become anonymous since the adversary only knows the
location of some of the mobile clients in MobiPriv. For example in Figure
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2 (a), the entire grid represents the LBS world as seen by the anonymiza-
tion server. The mobile users are M1, M2 and M3. They submit queries
Q1, Q2 and Q3 respectively. The (row, column) pair represents the loca-
tion of a mobile user or a location component of the query. Therefore,
the locations of M1, M2 and M3 are (4, 0), (4, 1) and (0, 0) respectively.
Likewise, the location component of the queries Q1, Q2 and Q3 are (4, 0),
(2, 2) and (2, 3) respectively. Observe, only Q1 is a type 1 query, the re-
mainder of this discussion is based on Q1. Mobile user M1 submits the
query QI to the AS, with K=2, we perform spatial expansion of the query
point to find other queries. The closest query is Q2; Q1 is therefore
cloaked with Q2. We therefore submit a region consisting of Q1 and Q2
to the LBS. The query privacy achieved is 1/K (1/2) as required. The loca-
tion of mobile client M1 cannot be deciphered by the adversary since we
submit a region and the adversary only knows the location of some mo-
bile users in the system.

0 1 2 3 4 0 1 2 3 4
o [E o[ws |

1 1

2 @ @ 2 Q@2 @
3 3

Figure 3 (a, b) - MobiPriv Query Privacy implies Location Privacy

Proof that query privacy implies location privacy for type 1 queries
For type 1 queries, the client’s location M is a part of the query N. The proof is
by contradiction, we assume to the contrary that protecting the query N would

not protect the client’s location M. Now, to protect N, the propose approach

expand all the location components in N until K-1 other requests are found.
Thus, the adversaries will observe that there are K interests in some location and
has a 1/K chance of correlating the interests. Now, since we expand the query
location points and M (i.e. the client’s location) is a component of the query,
then M too would have been expanded and protected up to 1/K. This contra-

dicts our initial assumption that protecting N would not protect M.

— Consider type 2 queries, where the location of the mobile user is not a

component of the query. For example, a mobile user submits a request
for the closest parking lot to Point B, and the mobile user is located at
Point A. In this case, there is no need for the mobile user to send his cur-
rent location (Point A) to our anonymization server; hence location pri-
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vacy is not breached. For example, in Figure 2 (b), Mobile user M1 sub-
mits a query Q2. Q2’s location point (2, 2) is not related to M1’s location
(4, 0). For query privacy, we expand the region around Q2 to find Q3
and submit a region containing Q2 and Q3. Since M1’s location is not
relevant to the query, M1’s location can be kept hidden.
This implies that regardless if the mobile user reveals their location in the que-
ry (i.e. type 1 queries) or not (i.e. type 2 queries), query privacy in MobiPriv al-
ways imply location privacy.

5 MobiPriv: System overview

MobiPriv is a three tier model similar to the trusted third party mechanism dis-
cussed earlier. The proposed suite of algorithms runs on the anonymization
server. The first step is a request submission phase where the user submits a re-
quest. The request contains the percentage privacy level required by the user.
Next, is the transformation phase where this personalized user percentage of pri-
vacy is converted to some value of K by a mapping function. Other phases in-
clude the perturbation phase whereby we form a region based on the spatial res-
olution from the request. The real user is then placed in the region. Next, we
have two anonymization options, CloakLessK and CloakedK.

In CloakLessK, once the AS receives a mobile user’s request it (i.e. the AS) quick-
ly generates K-1 dummies in the perturbed region, and then sends the request to
the LBS. In CloakedK, once a mobile user’s request is received, before dummies
are generated, the algorithm first verifies if other requests are close enough to
this mobile user’s request and can be cloaked together. Finally, if after cloaking
with neighbor requests, K-1 real mobile user requests are still not in the region,
the proposed solution will generate realistic dummies as the remaining re-
quests. Finally, the region request is sent to the LBS. The proposed algorithms
maintain the following good contributions.

— All queries are given a response. In previous privacy models, some que-
ries may not be given a response because K-1 queries are not available to
meet the QoS required, or K-1 users are not available in the system. In
these models [6, 8, 15, 19, 29], the mobile user defines their own person-
alized spatial tolerance, temporal tolerance, and privacy requirement. If
the query requirement demanded by the mobile clients cannot be satis-
tied, the queries are dropped from the system. In MobiPriv, we have a
drop rate of 0%. In the evaluation by experiments, success rate is used as
a matrix to measure reliability.
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— Elimination of the temporal cloaking problem present in [8, 15, 19],
whereby the system waits for K-1 other requests to be available before
anonymizing the request. Some LBS systems provide emergency ser-
vices and cannot tolerate delays.

— Elimination of the spatial cloaking problem whereby the system contin-
ues to extend the region to find K-1 other queries. The maximum size of
the region is defined by the mobile user (i.e. dx and dy) from the query
submission phase. We cannot expand the region beyond this restriction.

— Communication Cost Reduction, the proposed work presents two priva-
cy aware models CloakLessK and CloakedK. CloakLessK has a fixed com-
munication cost regardless of the number of mobile users submitting re-
quest. CloakedK has a much lower communication cost, the communica-
tion cost of CloakedK improves much more than CloakLessK as the num-
ber of request increases.

— Query linking in continuous queries is eliminated. The algorithms gen-
erate realistic and diverse dummy requests using a dynamic dummy
profile strategy. This strategy eliminates this kind of attack. Experi-
mental results revealed that the proposed work is resilient to this catego-
ry of attack.

5.1 Mobile request

In MobiPriv, a mobile user submits a request in the form <user_id, msg_num, {t, x,
y}, {dx, dy, dt} ,P, C>. The user_id is the unique identification of the user

and msg_num to be the message identification. The combination of user_id and
msg_id is unique for all messages. Also, {t, x, y} is the temporal and spatial prop-
erty of the request. Additionally dx, dy , dt are the spatial and temporal resolu-
tion demanded by the mobile user. P is the percentage of privacy desired, and C
is the request or query content. Recall, large spatial tolerances produces less
accurate responses and high temporal tolerances result in longer message de-
lays.

The point request above is converted to a region request of the form <user_id’,
msg_num’, {x1,x2}, {y1,y2}, {t1,t2}, C> where user_id’, msg_num’ are hashed ver-
sions of user_id, and msg_num respectively. The parameters x1, x2 are the re-
quest region’s x coordinates, y1, y2 are the request region’s y coordinates, 1 and
t2 represents the request region z coordinates. The three coordinates are used to
form the cloaking box. C is the request content that should always be preserved.
The size of the cloaking box is bounded as follows:

x2-x,x-x1<=dx

y2-yy-yl<=dy
12 - tl1 <=dt
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We refer to this process of converting a request from an exact point to a rectan-
gular region as spatial and temporal cloaking.

Mobile request example:

<user_101, msg_num_004, {11:15am,-87.653, 41.85}, {60m, 50m, 5s}, 90% Privacy,
“Shortest route from current location (latitude = -87.653, longitude = 41.85) to XXX
rehab center (latitude =-87.6215, longitude = 41.210)”>

5.2 Transformation and mapping function

MobiPriv allows mobile users to define the percentage value of privacy that
they desire. Then it uses a mapping function to determine a suitable value of K
based on the desired percentage privacy specified. The conversion from a per-
centage level of privacy to a suitable value of K is referred to as the transfor-
mation phase. AS administrators are not limited to one mapping function, they
may define their own mapping function. A mapping function may reflect the
nature of the underlying location based system. For example, in the proposed
algorithm, a mapping function such that percentage privacy is related to the
certainty with which an association between a user and a message can be ascer-
tained is considered. Let P be the percentage of privacy desired by a real user
U, a corresponding K-anonymity value is computed as follows:

K = ceiling (100/ (100-P)), P <100

6 Algorithms

We presented the realistic dummy generation algorithm in Section 4.1. Next,
two other algorithms in MobiPriv, CloakLessK (i.e. Algorithm 2) and CloakedK
(i.e. Algorithm 3) are discussed.

6.1 CloakLesskK

First, the mobile user submits a request to the anonymization server (line 2). In
line 4, we hash the user identification and the message identification. Each re-
quest contains the personalized privacy requirement of the mobile user that is
converted to some K. This step is referred to as the transformation phase (line 5).
The proposed algorithm then creates regions depending on dx, dy, dt (spatial
and temporal tolerance) of the user request. The total number of users (real user
and dummy users) in the region is determined by K from the transformation
phase.

TRANSACTIONS ON DATA PRIVACY (2012)



352 L. Stenneth, P. S. Yu

The real user is randomly placed in the bounding region (line 7), the AS then
generates K-1 dummies (line 8). The dummies generated are realistic and di-
verse. Realistic diverse dummies are used to protect against the corollary histo-
ry attack. However, this protection comes with a cost (see experimental results).
Finally, the cloaked region request is sent to the LBS for processing in line 9.

[* Algorithm 2: CloakLessK */

. pre-condition: request!null

. input: request <u_id,msg_num {t,x,y}{dx,dy,dt},P,C>
. method:

. hash (u_id ,msg_num )

. K= transformation (P)

. createGrid(request.dx, request.dy ,request.dt)
. insertRealUser()

. insertDummies (request.u_id, request.K-1)

. sendRegionRequestToLBS()

10. end

© 00O N O Ui WIN =

Next, CloakedK, an algorithm that reduces the communication cost of Cloak-
LessK is discussed.

6.2 CloakedK

The principal difference between CloakLessK (Algorithm 2) and CloakedK (Algo-
rithm 3) is the addition of line 8 in the algorithm shown below. The input to the
algorithm is a mobile user’s request in line 2. In line 4, we hashed the identifica-
tion parameters such as user_id and msg_num. The percentage of privacy de-
manded by the mobile client from line 2 is transformed to a suitable value of K
in line 5. We create the bounding rectangle (region) around the location point in
the request in line 6 and line 7.

Additionally, at line 8, of the CloakedK algorithm, instead of sending one real
mobile user request along with dummies in a region request, the AS now ag-
gregates multiple real user’s requests in the same cloaking region before send-
ing to the LBS. Only if real mobile users are less than K-1, then dummies are
considered.

We now discuss the cloaking methodology of line 8. Once a user submits a re-
quest to the LBS, we generate a perturbed box as discussed in Section 5.1. The
size of the box is dependent on dx, dy, dt. Before inserting any dummies inside
the box, we query if this mobile query can be aggregated with other mobile que-
ries currently in the system. Two mobile queries can be aggregated only if they
are intersectable. If they can be aggregated, we then take a constraint on box
size for the two queries. In line 9, the system verifies if the number of real mo-
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bile user request (real_user_request_cnt) in the cloaked region is less than the pri-
vacy requirement (K) of the mobile user that submitted the request. If re-
al_user_request_cnt is less than K, the proposed algorithm generates the remain-
ing request as realistic diverse dummy request. Finally, in line 12, the request is
sent to the LBS for processing. The LBS processes the request and send the re-
sponse to the AS, the AS then filters the response and sends the results to the
client.

[ *Algorithm 3: CloakedK */
1. pre-condition: request!null
2. input: request <u_id,msg_num {t,x,y},{dx, dy, dt},P,C>
3. method:
4. hash (u_id ,msg_num )
5. K = transformation(P)
6. createGrid(request.K, request.dx, request.dy, request.dt)
7. insertRealUser()
8. intersectAndMerge()
9. if (real_user_request_cnt < K)
10.  insertDummies()
11. endif
12. sendRegionRequestToLBS()
13. end

6.3 Complexity analysis discussion

In this section, the asymptotic complexity of the algorithms is discussed. Let n
be the total number of requests in the system and K be the privacy requirement
of a single mobile user submitting a new location based request.

In the case of CloakedK, the time complexity is bounded by the number of re-
quests in the system. In line 8 of CloakedK, a linear search is performed to find
at least K-1 other requests that are compatible with this incoming request. After
this linear search if K-1 other requests cannot be found, then the outstanding
requests are generated as dummy requests. Hence, the worst case complexity of
CloakedK is O (n+( *¢)), where ¢ is the time to generate a single dummy re-
quests, and B is the number of outstanding requests to be generated.

In the case of CloaklesskK, a search for other requests is not performed. Instead,
the CloaklessK algorithm quickly generates K-1 other dummy requests instan-
taneously. Therefore, the complexity of CloaklessK is bounded by the time that
it takes to generate the K-1 dummy requests (i.e. O((K-1) €)). Consequently,
CloaklessK should have a much better run time performance than CloakedK,
especially for small K, and for large values .

TRANSACTIONS ON DATA PRIVACY (2012)



354 L. Stenneth, P. S. Yu

6.4 Proof of correctness for MobiPriv in snapshot queries

We will show that MobiPriv can satisfy any privacy requirement. By induction
on the size of K, we will show that the proposed algorithm stays with the opti-
mal solution, hence can guarantee high levels of location based privacy.

Let S = {r, 13, 14,... 111, 1} be the set of requests that are chosen to be anony-
mized with r1 by the proposed algorithm for a privacy requirement K. Also, let
T ={r2, 13, rs"...11, 1} be the set of requests chosen by the optimal solution to be
anonymized with ri. That is, for the request r1, the optimal solution chooses the
requests 12, 13, r4"...11" and r«.

For the case of K=1, the mobile client does not wish for their request be anon-
ymized with other requests. In this case, both the optimal solution and the pro-
posed solution would submit request 11 only to the location based server. As-
sume true for the case of K > 1, that the proposed algorithm can satisfy a priva-
cy requirement up to and including K (inductive hypothesis). Thus, for a privacy
requirement of K, the hypothesis assumes that {ri, 12, 13, 14, ... 11, 1} is satisfied
for a snapshot. Now, for a privacy requirement demand of K+1, the optimal
chooses a new request rw+1' to be added to T. As a result, if we added 1" to the
set S (i.e. {ry, 12, 13, 14...1%1, 1%}) that was chosen by the proposed work according
to the hypothesis, the privacy requirement of K+1 is satisfied correctly. Howev-
er, for the (K+1)* privacy demand, the proposed algorithm will generate a new
dummy request ri+1 to satisfy the privacy requirement. Therefore, the inclusion
of 1w to {r1, 12, 13, 14,... 1K1, 1} (i.€. inductive hypothesis) will satisfy the privacy
requirement of K+1.

7 Evaluation

We performed experimental evaluations of the proposed algorithms (CloakLessK
and CloakedK) against the three PrivacyGrid approaches (Bottom Up, Top Down,
Hybrid) [15] and also against the pyramid based approach such as Casper [19].
First, the three PrivacyGrid techniques [15] are briefly discussed. In the bottom-
up cloaking the mobile user cell is expanded to meet the K-anonymity and di-
versity requirement. Mobile users are considered for the K-anonymity count
and static objects e.g. gas stations, supermarkets are used for the diversity
count. For a given cell it may expand to its immediate neighbor east, west,
north, or south. The next cell to be chosen is the cell with the highest mobile
user count. This cell will be included in cloaking box. The top-down approach
first selects the largest possible cloaking box that satisfies the users QoS re-
quirement. If K users cannot be found in this cloaking box the query cannot be
satisfied. If K mobile users are found, the algorithm will attempt to prune the
cloaking box to see if K can still be satisfied. If K can still be satisfied in a smaller
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cloaking box then the latter and smaller cloaking box is chosen. The hybrid ap-
proach makes a decision to use the bottom up, or top down, depending on the
value of K and the QoS. Hybrid combines the strength of both (top down and
bottom up) approaches.

The pyramid based scheme used [19] is now discussed. In [19], for anonymiza-
tion and cloaking a pyramid structure is maintained. The cells in the region
maintain the number of mobile users present in each cell. If the current cell of
user cannot satisfy the value of K, then neighboring cells are considered. A cell
is considered a neighbor if they have the same parent. If expansion to neighbors
does not satisfy the user requirements, then the parent expansion is considered.
One can envision a balance quad-tree where the users are leaves in the system.

7.1 Evaluation criteria

In this Section, the evaluation criteria that we used to evaluate the efficiency and
effectiveness of MobiPriv and previously proposed algorithms are discussed.

7.1.1 Success rate

One of the most important evaluation criteria is the success rate. The main goal
of any anonymization server is to maximize the number of messages that can be
successfully anonymized with the personalize quality of service and privacy
requirement desired. The success rate is measured as the ratio of the number of
successful anonymized request, by the total number of incoming mobile re-
quest.

A success rate of 100% implies that all the requests that are sent by the mobile
clients are safely anonymized. In some systems [8, 15, 19, 29], the request is
dropped because the privacy requirement cannot be satisfied. Let N be the total
number of mobile requests send to any cloaking algorithm CloakM. Then, the set
of mobile requests that can be successfully anonymized with the personalized
quality of service and privacy requirement can be calculated as {m: | m: = CloakM
(ms), ms € N} where ms is the request sent to CloakM (ms). The success rate of any
algorithm CloakM (ms) is given by:

m, | m, = CloakM (m; € N
Successrate=<|{ el me ] (ms )}|>* 100

7.1.2 Performance measure

The run time performance of the algorithms is measured as the cloaking time.
The cloaking time of an algorithm is the time taken to perturb and privatize the
mobile requests. An algorithm with a lower cloaking time does better, because
the cloaking time is a measure of the temporal complexity. Efficient cloaking
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implies that the algorithm spends less time processing the incoming mobile re-
quests from the mobile clients. We define a function startTime (cloaking Algo-
rithm), that returns the time the cloaking algorithm start the anonymization pro-
cess. Also, endTime (cloakingAlgorithm), which returns the time the cloaking algo-
rithm completes the anonymization process.

cloaking time = endTime(CloakM(ms)) — startTime(CloakM(ms))

7.1.3 Communication cost

We were interested in measuring the communication cost of the proposed algo-
rithm and previously proposed algorithms. The communication cost is a meas-
ure of the number of messages sent by the anonymization server to the LBS. For
example, in CloakLessK, for each request received from the mobile client, the
algorithm immediately aggregates that request with dummy requests and then
forwards the aggregated request (i.e. region request) to the LBS. Therefore, if N
requests are submitted to the anonymization server, then we also have N region
requests being submitted to the LBS. In the case of other cloaking algorithms
such as Casper [19], CloakedK, or PrivacyGrid [15], for N requests sent to the
anonymization server, the anonymization server may send less than N region
requests to the LBS. In these schemes, multiple real requests can be aggregated
together and forwarded to the LBS. Let N be the total number of mobile request
submitted at time f by the mobile clients. The number of region requests submit-
ted by the anonymization server (AS) for the N incoming request is m, 1<=m<=N.
We measure the communication cost as the ratio:

m
communication cost = N ,1<m<N

714 Quality of service

Some QoS evaluation variables considered are spatial tolerance and anonymity
level. Spatial tolerance is the user defined spatial resolution that should be satis-
fied in conjunction with the anonymity level. The anonymity level is the user
defined K-anonymity requirement.

7.2 Experimental setup and road network

The experiments are conducted on a Windows machine running the P8400 Intel
DUO 2.27 GHz processor with 4GB of RAM. The six algorithms (Bottom up Pri-
vacyGrid, Top down PrivacyGrid, Hybrid PrivacyGrid, Casper Pyramid ap-
proach, MobiPriv CloakLessK, MobiPriv CloakedK) were implemented using
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Java. We refer to these algorithms as B, T, H, Py, CLK, and CK respectively in the
experiments.

The mobile object generator that was considered is an extension of mobile ob-
ject generator used in [8, 15]. A map of Chamblee in the state of Georgia USA
was used for the experiments. The map covers a region of 160 km?, see Figure 4.
Moving object traces were generated based on real world traffic volume data
extracted from [10] for 10,000 cars traveling along the road network. Three types
of roads are considered in the simulation; expressway, arterial, and collector
roads (see Figure 4). Cars are placed randomly on the road network initially,
and then continue to move along a road trajectory making a decision at each
intersection. The properties of each road type considered in the experiment are
shown in Table 1. Each car (mobile user) generates multiple requests to the
anonymization server (AS) running MobiPriv algorithms. The anonymization
server then anonymizes the request before forwarding it to the service provider

(LBS). The experimental results using the previously described evaluation ma-
trices are discussed next in Section 8.

TABLE 1- Road Properties

. Road categories
Properties -
Expressway Arterial Collector
Mean speed (km/h) 90 60 50
Std. Dev (km'h) 20 15 10
Traffic volume (cars’h) | 29166 916.6 250
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8 Experimental results

The experimental results for the proposed algorithms compared against previ-
ously proposed algorithms are presented in this section. The algorithms” effec-
tiveness and efficiency under varying user requirements are studied.

8.1 High privacy requirement and high spatial tolerance

For these experiments, the algorithms’ performance when the mobile user de-
mands a high privacy level and a high spatial tolerance is studied. A high spa-
tial tolerance implies a low quality of service. In Figure 5, 6, and 7 we evaluate
the success rate, cloaking time, and communication cost with high spatial toler-
ance (i.e. 700m*700m) and high anonymity level (i.e. K=50). Figure 5 plots the suc-
cess rate with varying number of mobile requests sent to the anonymization
server. The x- axis represents the number of mobile request sent by the mobile
object generator to our anonymization server. The y-axis represents the success
rate (see Section 7.1.1) of the algorithms in percentage. We saw that MobiPriv
algorithms achieved 100% success rate. This implies that all the requests sent
can be safely anonymized with the MobiPriv algorithms.

The PrivacyGrid (top down, bottom up, hybrid) [15] and Pyramid approaches
[19] only anonymized 70%-80% of the mobile requests sent to the anonymiza-
tion server. PrivacyGrid and Pyramid schemes will drop some of the requests
because the QoS demanded by the client cannot be satisfied. An increase in the
number of mobile requests sent to the anonymization server showed a slight
increase in the success rate of the other algorithms (B, T, H, Py). This make
sense, since there are more requests in the system, it is easier to locate K-1 other
request to anonymize with even under tighter constraints.

Figure 6 expresses the run time performance against increasing number of
mobile requests sent to the anonymization server. We refer to the run time per-
formance as “cloaking time” (see Section 7.1.2). MobiPriv algorithms achieve fast
cloaking time. In particular, CloakLessK has a lower cloaking time than CloakedK
since it can quickly generate K-1 dummy requests instead of searching for real
requests initially. The fastest cloaking time under these settings is the pyramid
based in [19]. Also, MobiPriv algorithm's cloaking time is hardly affected by an
increase in the number of mobile requests. On the other hand, the cloaking time
of the PrivacyGrid schemes are severely affected by an increase in number of
mobile user request. As the number of requests increases from 200 to 1000, the
cloaking time of the PrivacyGrid schemes [15] increases rapidly. This is not the
case for the proposed MobiPriv algorithms.
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In Figure 7, the graph depicts the communication cost (see Section 7.1.3). We
saw that MobiPriv algorithms have a higher communication cost. More specifi-
cally, CloakedK does better than CloakLessK and continues to do much better
as the number of request increases.

We conclude the discussion of high anonymity level and high spatial tolerance
by claiming that MobiPriv algorithms guarantee that all messages can be anon-
ymized safely at a relatively fast speed for high anonymity level and high spa-
tial tolerance. MobiPriv algorithms on the other hand have higher communica-
tion cost. MobiPriv CloakedK has a better communication cost than CloakLessK.
Additionally, the other trusted third party schemes such as PrivacyGrid [15]
and Pyramid based [19] dropped 20%-30% of the user requests. In these
schemes, if the privacy requirement and QoS cannot be satisfied, the request is
dropped. MobiPriv algorithms on the other hand are a guarantee service, they
will never drop a request. Instead, MobiPriv always achieves 100% success rate.
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8.2 Lower privacy requirement and high spatial tolerance

For these experiments, the algorithms’ performance when the mobile user de-
mands a lower privacy level and a high spatial tolerance is studied. We evaluate
algorithms’ success rate, cloaking time, and communication cost with low aver-
age anonymity level (K=10) and high spatial tolerance (700m*700m) in Figures 8, 9,
and 10. The primary difference between these experiments and the previous
experiment (Figure 5, 6, and 7) is the fact that the privacy requirement is now
K=10 instead of K=50.

Figure 8 plots the success rate with different number of user requests. In gen-
eral, all cloaking algorithms should have a higher success rate with a reduction
in the average anonymity level (i.e. from K=50 to K=10). MobiPriv algorithms
still anonymized all the requests. This is not the case for the other algorithms (B,
T, H, Py). However, the three PrivacyGrid and the Pyramid based systems
showed an improvement in the success rate compared to Figure 5. This im-
provement in success rate is because it is less challenging to discover a smaller
number (K=10) of requests to cloak with than K=50. Pyramid scheme anonymiz-
es 98.5% of the total request received, this indicates that a few of the requests are
still discarded. MobiPriv algorithms achieve 100% success rate, it does not dis-
card requests.

In Figure 9, the graph shows the cloaking time (run time performance) on the
y-axis with increasing number of mobile request on the x-axis. The proposed
MobiPriv algorithms have good cloaking time. In particular, CloakLessK has an
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exceptionally fast cloaking time for low anonymity level (e.g. K=10) since it can
quickly generate dummies. While the run time performance of the other
schemes, such as PrivacyGrid’s top down and hybrid approaches is very high.

From Figure 10, all the privacy algorithms submit more region requests to the
LBS with an increase in the number of incoming requests. CloakLessK communi-
cation cost is not affected by a reduction in anonymity level. We end the discus-
sion of the algorithms under low anonymity level and high spatial tolerance by
concurring that MobiPriv algorithms still maintain a 100% success rate and also
the fastest cloaking time. However, we pay a price for communication cost.
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8.3 Lower privacy requirement and low spatial tolerance

For these experiments, the algorithms’ (i.e. B, T, H, P, CLK, CK) performance
when the mobile user demands a lower privacy level and a low spatial tolerance
is studied. A low spatial tolerance implies a high quality of service. We evaluate
the algorithms under low average anonymity level (i.e. K=10) and low spatial toler-
ance (100m * 100m) in Figures 11, 12, and 13. This experiment studies the algo-
rithms when the mobile clients demand high quality of service.

Given a low spatial tolerance (i.e. 100m * 100m) and low anonymity level, Fig-
ure 11 shows the success rate with different number of request. We make two
important observations. First, the success rate of the PrivacyGrid and Pyramid
approaches is less than 60%. This implies that these algorithms running on the
anonymization server dropped over 40% of the total mobile requests received.
This is undesirable, especially in critical location based systems. Secondly, Mo-
biPriv algorithms still maintains a 100% success rate even under such high per-
sonalized QoS requirements. This is one of the main strengths of MobiPriv, it
never discard a request. The main reason why the previous approaches [15, 19]
drops over 40% of the incoming location based requests is because the privacy
(i.e. K) and the QoS (i.e. spatial tolerance) requirements cannot be satisfied.

Figure 12 plots the run time performance (cloaking time) with varying number
of mobile requests. The most obvious observation is that the pyramid scheme
now has a very high cloaking time for low spatial resolutions. The MobiPriv al-
gorithms have a fast cloaking time. Specifically, CloakLessK does slightly better
than CloakedK. The runtime of the other algorithms (i.e. B, T, H, Py) are poor if
we consider that they only anonymized 60% of the total incoming mobile re-
quests.

Figure 13 highlights the communication cost. It is observed that CloakedK has a
better communication cost than CloakLessK. In general, MobiPriv algorithms
have a higher communication cost, it ensures that all the messages are anony-
mized. The other algorithms (i.e. B, T, H, Py) anonymize 60% of the requests.
Consequently, the other 40% was discarded, thus did not contribute to the
communication cost.

We end the discussion of low average anonymity level and low spatial toler-
ance by claiming that MobiPriv algorithms maintain a 100% success rate while
the PrivacyGrid and Pyramid based approaches achieved 60% success rate.
Thus, MobiPriv guarantees a 100 % success rate under high personalized quality
of service or privacy requirements. The proposed MobiPriv algorithms have a
fast cloaking time that is comparable to any of the algorithms that we studied.
Specifically, MobiPriv CloakedK does better in communication cost than Cloak-
LessK. Additionally, the communication cost of the other schemes (i.e. B, T, H,
Py) is better than MobiPriv’s.
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8.4 Privacy and Quality of Service (spatial tolerance)

For these experiments, we study the algorithms’ performance under variety of
spatial tolerances. In Figures 14, 15, and 16, the effects of spatial resolution
(QoS) on the success rate, performance (i.e cloaking time) and communication
cost is evaluated. The average anonymity level is set to K=50, and the number of
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mobile requests submitted to the anonymization server is 1000. Figure 14 plots
the success rate with the personalized spatial tolerance. Again, MobiPriv algo-
rithms achieve 100% success rate for any spatial tolerance, even extremely low
(i.e. less than 50m) spatial tolerance requirements. The PrivacyGrid and Pyramid
approaches all have very low success rate for low spatial tolerance (see Figure
14). For a spatial tolerance of 50m*50m, the PrivacyGrid (top down, bottom up,
hybrid) [15] and pyramid based (Casper) [19] dropped over 98% of the total
mobile requests sent to the anonymization server. With an increase in spatial
resolution to 100m*100m, PrivacyGrid and Pyramid schemes still drop 70% of
the total incoming location based requests.

Figure 15 shows the cloaking time with different spatial tolerances. The Mobi-
Priv algorithms all have a higher cloaking time because all the mobile requests
that are sent to the anonymization server are anonymized successfully, unlike
the other algorithms (i.e. B, T, H, Py) that only anonymize a small fraction (i.e.
2%) of the total mobile requests.

Figure 16 highlights the chart of communication cost with different spatial tol-
erances. From Figure 16, it is obvious that the spatial tolerance does not affect
the communication of CloakLessK. As the spatial tolerance increases, the com-
munication cost of CloakedK decreases. This is related to the fact that more real
mobile users can be included in the region request. The other schemes, Priva-
cyGrid and Pyramid, all have low communication cost because most of the re-
quests that they received are discarded.

We conclude the study on the effects of low spatial tolerance on success rate,
cloaking time and communication cost. The study showed that under low spa-
tial tolerances (e.g. 50m*50m) PrivacyGrid and Pyramid schemes discard most
(98%) of the mobile request received. An example of a low spatial requirement
in real life location based system is a transit itinerary system where the user of
the system may request the shortest or fastest route from an origin to a destina-
tion and does not want to walk more than 50m. Additionally, apart from the
high success rate, the MobiPriv algorithms have good run time performance.
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9 Continuous queries

In this section, continuous queries are studied. We will show that current snap-
shot solutions cannot overcome the privacy challenges in continuous querying
systems. The proposed technique and experimental results for privacy preserva-
tion in continuous location based queries are presented.

9.1 Query linking in continuous queries

Some anonymization techniques that involve a trusted third party AS [8, 15, 19,
26] cannot protect against the corollary history attack. In these models, when a
user u submits a query to the AS there is a search for K-1 other requests. If the
K-1 other requests are not found immediately, the cloaking region is expanded
with the intention to locate these other requests. If u moves to another location
and submits another query, K-1 other requests have to be rediscovered again.
However, the K-1 requests in the latter region request may be different from the
former K-1 requests. Consequently, taking the intersection of the latter and the
former regions, enables the query to be linked to the mobile client u in such sys-
tems. Furthermore, rediscovery of the same user requests for subsequent re-
quests reduces the QoS as observed by Chow et al [29].
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Figure 17 (a, b, c) - Corollary history attack in continuous queries

Consider the following scenario in Figure 17 with 10 mobile clients (i.e. A, B, C,
D, E, F, G, H, I, ]). The queries are submitted by mobile client B and consist of
three discrete timestamp readings t0, t1, and t2 (i.e. Figure 17(a), Figure 17(b)
and Figure 17 (c)) respectively. The large rectangles in Figures 17(a, b, c) repre-
sent the map of the “world” where all the mobile clients reside. The small rec-
tangles represent a region request, it contains the mobile users that are anony-
mized together. The desired local anonymity level for mobile user B corre-
sponds to K=4 for explanation purposes.

At time t0 (i.e. Figure 17a), the K-anonymity value of 4 submitted by the mo-
bile client B is satisfied because mobile client B is anonymized with mobile cli-
ents A, G, and D as shown by the small rectangle in Figure 17 (a). Also, at time
ti, the local K-anonymity of the mobile client is satisfied (K =4). However, the
adversary may take the intersection of the two snapshots (t0, t1) and conclude
that only mobile clients B and G are present in both snapshots. Hence, the query
linking is reduced to %2. Further, at time t, if the intersection of all three snap-
shots (to, ti, t2) is taken, mobile client B will be positively linked to the query. We
refer to this query linking in continuous queries as the corollary history attack.
Many snapshot solutions [8, 15, 19, 26] cannot overcome this category of attack
since previous anonymize candidates are not taken into consideration by these
models. Then we will show how MobiPriv prevents this kind of attack.

9.2 Discussion on Kgiobal and Kiocal

For continuous queries users are expected to define two privacy requirement
parameters, Kgiobal and Kiocal. Kiocat is the local privacy for each snapshot, and Kgiob-
alis the global privacy across snapshots. In snapshot systems we refer to Kiocal as
K.

Given Kgobat and region requests Ry, R;...R,_1, R, MobiPriv ensures that the
following holds.

* |{RyN R,;N...R,_; N R} =K

*  Kiocal = Kgiobal YKiocal where Kjgcq is the local snapshot anonymity

global
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9.3 MobiPriv prevents corollary history attacks

Let U be the set of real users in the system. For each real user Ur € U, we main-
tain a dummy profile. This dummy profile associates U-with a set of profileCount
amount of dummy users A-. When a user submits the required privacy level as
a part of the request, we associate this privacy level with a value of K in K-
anonymity via a phase we refer to as transformation. If the derived of value K <
profileCount we generate K-1 dummies such that the K-1 dummies ¢ A-. an ex-
ample is discussed below.

Assume a user Ursubmits a query to the AS with a privacy requirement corre-

sponding to Kica=5. Let the privacy profile (dummy profile) of U:be the set {Uai,
Ua, Uas , Us , Uas, Uas, Uar , Uas } where profileCount=8. In the first region re-
quest Ri, we maintain the set {Ur, Ua1,Ua2,Uas, Uas }. Assume Ursubmits another
query in Rz, with a privacy requirement corresponding to Kiocal =6 we maintain
the set {Ur, Ua1, Ua2,Uas,Uas, Uas}. If Ursubmits a third query in cloaking
region 3 (R3) with a privacy requirement corresponding to Kiocal =7, we maintain
the set {U;, Ua1,Ua2,Uas,Uas, Uas,Uas }.
Observe, if the adversary takes the intersection of R1 » Rz n Rs= {Ur, Ua ,Uaz,Uas
,Uas }. This implies that the user has a 1/5 chance of been identified, regardless if
the adversaries can aggregate region requests across multiple regions. Clearly,
there is a correspondence between the lowest value of K specified by the user
and the chance of been linked to a query in MobiPriv.

In general, for region requests Ri, Rz, Rn1, Rn with corresponding privacy re-
quirements Klocal, K?ocal, K'ocal, and Kniocal the below constraint holds.

: 1 2 -1
|{R1 n R2 n... Rn—l n Rn}l < min (Klocal 'Klocal' e l%cal' Kl%cal)

We prove this by contradiction. Since Kiocal determines the number of elements
in R, the intersections cannot contain more than the number of elements in any
set. Let {RyNR,N...R,_; NR,} be the set of regions and
Kmin = minyci<n {IR;1}. Let A={Ry N R, N...R,_; N R,}. Suppose to the con-
trary |A| > Ky , we know that all elements of A are contained in all sets
R; 1 < i < n by the definition of intersection. Therefore, all sets R; 1 < i < n have
at least | Al elements, which contradicts |A| > K,in

9.4 Proof of correctness for continuous queries

We will prove by induction on the size of n, where n is the number of region
requests, that for any number of requests, MobiPriv can satisfy the global priva-
cy constraints. In previous sections of the paper, we proved that MobiPriv can
satisfy the local constraints using induction. For any value of n, the proposed
algorithm can guarantee both local and global privacy. Therefore, for n =
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[{Ry N Ry N...R,_1 N R, }| we will show that MobiPriv will preserve global
privacy across all the snapshots and also show MobiPriv algorithm is aligned
with the optimal solution.

Let S={Ry,R;,...Ry—1 Ry} denote the set of regions generated by the proposed
algorithm, and T = {R,",R,’,...R,,_1' R’} be the set generated by the optimal
solution. This is true for the case of n=1. For this case, we only have one region
request (i.e. Ri) been submitted by user urea. The optimal solution would have
anonymized with any Kio.a-1 amount of different requests if they are available.
Likewise, in MobiPriv, we generate at least Kuoca-1 different dummy requests for
the first snapshot (i.e. Ri). Thus, Kieca for the first snapshot is satisfied. For both
the optimal and the proposed algorithm, the global privacy is not taken into
account since n=1.

Assume that it is true for some value n > 1(inductive hypothesis). This implies
that the algorithm’s first n regions have properties of the optimal. That is, the
local K-anonymity is satisfied and the global anonymity is satisfied up to and
including R,,.

As a result, if we added R, (i.e. n+1" optimal region) to T {Ry,R,,...Ry_1 Ry}
(i.e. inductive hypothesis) we would not violate the local or global constraints. But
in the (n+1)™ region, the proposed algorithm generate the same set of dummies
as in previous regions (i.e. {Ry,R;,... Ry—1 Ry}) for the (n+1)" region. Hence, tak-
ing the intersection of hypothesis {Ry,R,,...R,—1 Ry} and R,,; will not violate
the local or global constraints.

9.5 Resilience in continuous queries

In this section, MobiPriv’s privacy preservation guarantee for continuous que-
ries is studied.

9.5.1 Resilience

This evaluation matrix is a percentage measure of the resilience to the corollary
history attack that causes query linking in continuous queries. As we explained
previously, corollary history attack is present if multiple mobile requests are
submitted by the same mobile user. Consider, a mobile user submitting requests
U with a privacy level of K=5. If for the first snapshot, we get (U, B, C, D, E),
where B, C, D, and E are other requests that request U is anonymized with. For
the 27 snapshot we get (U, B, C, G, H). Globally, we have an overlap of three
common mobile requests, U, B, and C. Therefore, the resilience to the corollary
history attack in this case becomes 3/5 or 60%. Formalized as follows; let the
personalized privacy requirement be K in K-anonymity. Also, let the number of
common clients in the different snapshots be given by the function intersect
(SN1, SN2, SN3...SNn), where SN1 is the first snapshot, and SNn is the last
snapshot submitted by the same mobile client.
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resilience = (lintersect (SN1, SN2, SN3...SNn)|/ K) * 100

In this section, the algorithms’ resistivity to the corollary history attack in con-
tinuous queries is evaluated. As mentioned previously, some anonymization
techniques cannot protect effectively against corollary attacks because these
algorithms greedily selects the nearest mobile requests, without any regard for
previous anonymized regions. Mobile requests from previous anonymized re-
gions should be used as selected candidates for future anonymized region re-
quests.

9.5.2 Resilience across snapshots

Figure 18 highlights the graph of resilience against the number of queries. The
number of mobile requests in the system is 10000, the average K value in K-
anonymity is 5 and the average spatial tolerance is 100m * 100m. Recall, for cor-
ollary history attacks to be possible, a single mobile user must submit multiple
requests at discrete time points to our anonymization server. In Figure 18, the
mobile user issues 5 distinct location based requests.
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Figure 18 - resilience across five snapshot queries within a continuous query

We measure the resilience of each request using previously anonymized re-
quests as candidates for the current request. From Figure 18, it is observed that
for the first query issued, the resilience of all the algorithms is 100% because
there are no previously anonymized entrants. In general, CLK algorithm has the
best resilience because it will always generate the same set of dummies for mo-
bile requests from the same mobile user. Also, for the other algorithms, the resil-
ience decreases as the number of queries increases since it becomes more chal-
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lenging for the intersection of the different region requests to contain the same
mobile requests.

9.5.3 Resilience and Quality of Service (spatial tolerance)

Figure 19 depicts the graph of average resilience against spatial tolerance. The
mobile client submits 5 mobile requests similar to Figure 18, and then we take
the average resilience of the 5 mobile requests under varying spatial tolerance.
The number of mobile requests in the system is 5000, the average K value =5,
and we vary the average spatial resolution from 50m*50m to 500m * 500m. First,
we observe that for high quality of service (low spatial tolerance) such as 50m *
50m, the resilience of B, T, H and Py is 0 because the privacy requirement (K=5)
and QoS (50m * 50m) desired cannot be satisfied, hence, the query is discarded.
More specifically, CLK algorithm has the best resilience for any QoS desired.
The CLK algorithm will never discard a request. Instead, CLK will always gen-
erate the same set of dummy requests for mobile requests from the same mobile
client. CLK maintain a 100% resilience against the corollary history attack in
continuous queries under any spatial tolerance demanded by the mobile client.
For the algorithms B, T, H and Py, an increase in spatial tolerance implies
stronger resilience against corollary attacks. In general, as the spatial tolerance
increases, it becomes easier to locate the same mobile clients that were used as
previous anonymization candidates.
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Figure 19 - resilience and quality of service
Additionally, CK also achieves high resilience when the spatial tolerance is
very low (Qos high). This is attributed to the fact that under low spatial toler-
ances (50m * 50m) the privacy requirement (K=10) may be difficult to achieve.
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However, instead of discarding the request, CK will generate the same set of
dummy requests, similar to CLK. The main difference between CLK and CK is
that CK will first make an attempt to anonymize with real mobile requests.
However, if there is limited real mobile requests, CK generate the same set of
dummy requests for mobile requests from the mobile client. On the other hand,
CLK does not search for real mobile requests. Instead, CLK quickly generates
the same set of dummy requests for mobile requests from the same client.

9.5.4 Resilience and global privacy requirement

In Figure 20, we evaluated the effects of K on the resilience of the algorithms.
We configured profileCount=10, this implies that the proposed algorithms (CLK,
CK) will not generate more than 10 realistic diverse dummy requests not ex-
ceeding K =10 from the dummy profile (see Section 4.1).
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For this study, 5000 mobile requests where submitted and the average spatial
tolerance is 200m * 200m. First, it is observe from Figure 20 that for very low
values of K (e.g. K=2), all the algorithms provided a high level of resilience to the
corollary attacks. In general, as K increases the resilience of the algorithms de-
crease. As K increases, it becomes difficult to locate the previous anonymized
candidates. For the CLK algorithm, we observe that as the privacy requirement
(i.e. K) surpasses profileCount, the resilience decreases (e.g. at K=12, K=14). It
therefore makes sense in the CLK algorithm to ensure that the profileCount sys-
tem parameter setting is configured to a large value.
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10 CloakLessK and CloakedK

We introduced the MobiPriv suite of algorithms. Both algorithms CloakLessK and
CloakedK are able to achieve the maximum (100%) success rate under any per-
sonalized or system wide anonymity level or spatial resolution. This is not the
case for previously proposed solution to the same problem. Instead, under cer-
tain circumstances as depicted by the experiments, these previously proposed
models will underperform.

Both algorithms (i.e. CLK and CK) can guarantee a very high success rate. In
terms of run time performance, CLK outperforms CK since there is no search for
K-1 other requests in CLK. Instead, CLK can quickly generate K-1 other fake
requests.

With regards to communication cost, CloakedK outperforms CloakLessK. More-
over, we saw that the communication cost of CloakLessK is not affected by spa-
tial resolution unlike CloakedK. The communication cost of CloakedK improves as
the anonymity level increases or if the spatial tolerance increases. CloakedK does
much better than CloakLessK as the number of request sent to our middleware
increases.

CloakLessK 1is effective for privacy preservation in continuous queries. The re-
silience of CLK is not affected by the number of continuous snapshot requests
sent or the quality of service demanded by the mobile client. CLK offers very
high resilience to corollary attacks even under increasing privacy requirement
(K) by the mobile user. When the privacy requirement of the mobile client sur-
passes profileCount, the resilience is reduced. It is therefore recommended that
the parameter profileCount be a very large value. For example, profileCount
could be the maximum K value allowed in the system.

In summary, the proposed algorithms are simple yet effective for privacy
preservation in snapshot and continuous querying systems. Additionally, we
satisfied both location and query privacy.

11 Conclusion

In this paper, we propose and evaluate a suite of privacy preserving algorithms
for location based systems called MobiPriv. MobiPriv is compared against pre-
viously proposed privacy preservation algorithms for mobile location based
systems [15, 19]. Results indicate that CLK and CK substantially improved the
success rate in location based privacy systems. Even with high quality of service
requirement, CLK and CK can achieve high success rate. With previously pro-
posed algorithms, under certain conditions, such as high quality of service re-
quirement, or high anonymity level, these privacy systems discard a number of
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mobile requests that cannot be anonymized. On the other hand, MobiPriv pro-
vides a “guaranteed service”, and all the mobile requests sent to our anony-
mization server can be anonymized. There is also no temporal delay for K-1 oth-
er clients to become available in the proposed work.

Further empirical evaluation showed that MobiPriv algorithms have a good
run time performance. In particular, for low anonymity level, MobiPriv's CK
supersedes the other privacy algorithms such as Casper [19] and PrivacyGrid
[15] in run time performance. This run time result conforms to the algorithm
complexity asymptotic analysis. The communication cost of MobiPriv algo-
rithms is higher. However, a communication cost reduction strategy is used in
MobiPriv’s CK.

Using a dynamic dummy generation strategy that preserves the K-anonymity
and diversity requirement, CLK and CK is effective in a continuous querying
environment and guarantees resilience against query linking via corollary histo-
ry attack. The experimental results indicate that MobiPriv’s CLK is the best pri-
vacy in continuous querying environment. These results also indicate that pre-
viously proposed snapshot privacy algorithms, such as Casper and PrivacyGrid
cannot overcome the privacy challenges in continuous queries. In general Mo-
biPriv is effective under everyday usage, it guarantees that all queries are suc-
cessfully anonymized in a fast time.

12 Future work

We intend to deploy the proposed MobiPriv system to be used as the middle-
ware for TransitGenie [20]. TransitGenie is a context aware transit itinerary
planner for the city of Chicago, Illinois USA. This deployment will provide
TransitGenie clients with privacy aware location based trip planning and rout-
ing.
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