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Abstract. Laplace noise addition is often advanced as an approach for satisfying differ-
ential privacy. There have been several illustrations of the application of Laplace noise
addition for count data, but no evaluation of its performance for numeric data. In this
study we evaluate the privacy and utility performance of Laplace noise addition for
numeric data. Our results indicate that Laplace noise addition delivers the promised
level of privacy only by adding a large quantity of noise for even relatively large sub-
sets. Because of this, even for simple mean queries, the responses for a masking mecha-
nism that uses Laplace noise addition is of little value. We also show that Laplace noise
addition may be vulnerable to a tracker attack. In order to avoid this, it may be neces-
sary to increase the variance of the noise added as a function of the number of queries
issued. This implies that the utility of the responses would be further reduced. These
results raise serious questions regarding the viability of Laplace based noise addition for
masking numeric data.

1 Introduction

Differential privacy [8][9] is a new privacy standard that has garnered consider-
able attention in the literature in recent years. Differential privacy attempts to
ensure that even if an intruder has knowledge of all but one observation in a
data set, an intruder, using the response to any query from the dataset should
not be able to distinguish between the presence or absence of an individual. In
this sense, differential privacy not only attempts to protect individuals who are
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present in a particular data set, but all individuals in the universe of possible
values for that data set. In addition, since differential privacy applies to any
query, it is applicable to both count data as well as numeric data.

Laplace noise addition is the primary method that has been advanced for satis-
tying the differential privacy. There have been several applications of using La-
place noise addition for count data. However, there have been few illustrations,
and no evaluation, of the application of Laplace noise addition to numeric data.
The objective of this study is to provide some such an evaluation.

This paper is organized as follows. The second section provides a brief intro-
duction into the concept of differential privacy and Laplace noise addition. In
the third section, we evaluate the utility of the responses resulting from a La-
place noise addition mechanism to numeric data. In the fourth section, we pro-
vide an illustration of the disclosure risk resulting from a Laplace noise addition
mechanism used to protect numeric data. In the final section, we provide the
conclusions.

2 Differential Privacy

Differential privacy is simply a privacy standard whereby the response to any
query including or excluding a particular observation is indistinguishable in a
probabilistic sense. Note that differential privacy operates in the realm of output
perturbation where it is assumed that the responses will be computed from the
original data and the resulting output will then be perturbed. The alternative
approach is source data perturbation where the original data is perturbed and
all responses are computed from the perturbed data.

In general terms, the requirement for differential privacy can be described as
follows [8][9]. Consider any two possible datasets D1 and D>, from a population of

values D '/ that differ by exactly one record. Let ki(D1) and ki(D2) be the responses

from datasets D1 and Dy, respectively, where k() represents a mechanism used
to respond to an arbitrary query f(). For k() to satisfy differential privacy, it is
necessary that

Plis (D1) = R]
= Plry(D;) = R]

—&

< e’ (D

where R represents the response.! Abowd and Vilhuber [1] interpret the the ra-
tio in the middle as the “knowledge gain ratio” for an intruder from one version

! Note that for continuous data, the ratio would be expressed as inequalities.
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of the data set (D1) over the other (D2) assuming, without loss of generality, that
the numerator is always larger. Differential privacy requires that the knowledge
gain ratio be limited to e¢. The ratio is better interpreted as an indistinguishabil-
ity ratio. The larger the ratio, the greater the probability that the response was
obtained from one data set than the other. As a decision tool, an intruder would
clearly favor the data set with the larger probability of providing the specific
perturbed response, even for moderately large values of the ratio such as 2.
Note that differential privacy is predicated on a query/response framework.
Since it would be very difficult (if not impossible) to show that differential pri-
vacy will be satisfied for every type of analyses that an intruder might employ
when microdata is released, adoption of differential privacy precludes the re-
lease of masked microdata.

We would also like to briefly address the use of the term “¢ differential priva-
cy” when referring to a procedure that satisfies equation (1). In reality, a proce-
dure that satisfies the ratio in equation (1) actually provides “e¢ differential pri-
vacy” since the intruder’s knowledge gain is e¢. In our opinion, a procedure that
satisfies “& differential privacy” should satisfy the requirement specified by the
following [3]:

Phy@) =Rl _ 4 2)
Plry(D;) = R
It is true that when ¢ is zero or very small, e¢ = (1 + €). However, the two
measures diverge quite quickly. Even when ¢ = 0.20, et exceeds (1 + €) by at least
a non-negligible 10%. It is easy to see that, as ¢ increases, the two values diverge
considerably. Considering that we see specifications of ¢ much larger than 0.20,
special care should be exercised to ensure that users do not overestimate the
privacy provided by equation (1). For example when “e = 2” as in [1], the true
ratio equals e? = 7.389. Similarly, if the “overall ¢ for the procedure was 8.6” [11],
the true ratio is e®¢ = 5432. In order to avoid any confusion, we suggest the use
of the term “e¢ differential privacy” when privacy is evaluated as shown in
equation (1) and the term “e differential privacy” when privacy is evaluated
using equation (2). Since Dwork [8] defines privacy as shown in equation (1), for
the remainder of the paper, we will be using the term “et-differential privacy.”
In order to satisfy differential privacy, Dwork [8] suggests the use of Laplace
based noise addition, again assuming a query/response situation. Assume that
the intruder issues the query f(X) on a data set X for which the true response is
a. Let a differential privacy satisfying mechanism k() be implemented for this
data set and that the response from the system is R. Dwork [8] suggests that the
masked response ky(X) = R = a + y where y represents a noise term from a La-
place distribution with mean 0 and scale parameter b = Af/e where Af represents
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the maximum difference in the value of f(X) when exactly one input to X is changed.
This accounts for the situation, for example, when the intruder’s data differs from that of
the data set X by exactly one record.

The value of Af represents the global sensitivity for the query f(X). To deter-
mine Af one must consider all possible values for D1 and D2 in the population of

values D and not just the specific values that may exist in the current dataset

X that is being protected. Hence, in order to implement the globally sensitive
version of the Laplace noise addition procedure, it is necessary to determine the
value of Af.

In binary databases where the queries are always assumed to be “count” que-
ries, it is easy to see that the value of Af =1 since the maximum difference in the
count between D1 and D2 is always 1. For numeric data, it is not even certain

that we can determine the global sensitivity for an arbitrary dataset D and an

arbitrary query f(X). Consider for instance, a numerical variable such as insur-
ance claim that was used by Sarathy and Muralidhar (2009). Let us also assume
that a simple sum query was issued. Since we have to protect the universe of
possible income values, it would be necessary to determine the global sensitivi-
ty of the insurance claim variable for the sum query. But there is no simple ap-
proach to do this. Even assuming that insurance claim is a positive variable, we
now have to answer the question “What is the largest possible insurance claim
that could exist in the universe of insurance claim values?” Without answering
this question, it is simply impossible to implement any procedure that satisfies
differential privacy (not even Laplace based noise addition). )>. Wasserman and
Zhou [14] also note this issue when they state that “In particular, it is difficult to
extend differential privacy to unbounded domains.”

In summary, in order to satisfy differential privacy, it is necessary that the upper
and lower bounds on the values in the database exist and are known. Without this
knowledge, it is impossible to compute Af for an arbitrary function f() and impossible to
implement the Laplace based noise addition procedure to satisfy differential privacy.
Arbitrary approaches such as bottom and top coding may be a convenient solu-
tion, but in our opinion, defeats the very purpose of differential privacy whose
primary objective is to protect even extreme values while simultaneously
providing meaningful responses. Even in cases where there are clearly defined
upper and lower bounds, there remains the question of the utility of the re-

2 In evaluating whether differential privacy is satisfied, we only consider the original definition of differen-
tial privacy [8]. We do not consider any relaxations such as found in [12] as satisfying true e® differential
privacy.
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sponses resulting from a Laplace based masking mechanism. In the following
section, we investigate this issue.

3 Utility of Responses from a Masking Mechanism
using Laplace Noise Addition

The concept of differential privacy was motivated based on potential privacy
breaches through auxiliary information using the example of Terry Gross’
height [8] or Turing’s height [9] as follows:

Suppose one’s exact height were considered a highly sensitive
piece of information, and that revealing the exact height of an in-
dividual were a privacy breach. Assume that the database yields
the average heights of women of different nationalities. An ad-
versary who has access to the statistical database and the auxilia-
ry information “Terry Gross is two inches shorter than the aver-
age Lithuanian woman” learns Terry Gross” height, while anyone
learning only the auxiliary information, without access to the av-
erage heights, learns relatively little.

Dwork [8] then goes on to provide describe differential privacy and the Laplace
based noise addition method to achieve the same. Although never explicitly
stated, this illustration leaves the impression that the Laplace based noise addi-
tion would protect Terry Gross. But we never actually see the implications of
using Laplace based noise addition and the level of protection it offers Terry
Gross. In this study, we illustrate this issue by using a similar definition in a
slightly different context.

For this illustration, rather than use height of women, we use a variable (in-
come) that is usually considered sensitive. Consider the situation where the fol-
lowing auxiliary information is available: “Mr. Gold Sack’s income is $5 million
more than the average American.” It is well known that the income of some
hedge fund managers exceed $1 billion [13]. In order to protect such individu-
als, it is necessary that Af must be at least 1 billion. Note that, in order to satisfy
differential privacy, it is better to be conservative in estimating Af. For the pur-
poses of this illustration, let us assume that for the sum query, Af =
1,000,000,000. For this illustration, all information was gathered from the 2006-
2008 American Community Survey at the U.S. Census Bureau web site
(http://factfinder.census.gov) [2]. We assume that the responses from this web
site represent the true values although it is likely that these values have them-
selves been masked prior to release. These “true values” are masked using La-
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place noise addition prior to release. In evaluating the responses from Laplace
noise addition, we consider three differential levels of privacy by specifying
three levels of € = 0.10, 0.25, 1.00 corresponding to a maximum knowledge gain
of approximately 10%, 28%, and 172%, respectively.

Our evaluation of the Laplace noise addition is restricted to the simple mean
query. The response may be obtained either as (Response to the Sum query/n)
or as a response to a direct Mean query with noise generated from Laplace(0,
Aff/en). n represents the number of records in the query and Af represents the
global sensitivity for the Sum query. Either approach would result in exactly the
same response distribution for the Mean query. We conducted the analysis at
two different levels: National (entire USA), State and County (Whitley County,
Kentucky).

3.1 Protecting Mr. Gold Sack’s Information

The primary objective of this analysis is to prevent disclosure of Mr. Sack’s in-
come. Consistent with the Terry Gross example [8], we have the auxiliary in-
formation that Mr. Sack earns $5 million more than the “average American.”
From the US Census Bureau web site, the average per capita income for 2008 is
provided as $27,466 (n = 143,195,793 and standard deviation =~ 275000). Thus, if
the auxiliary information is correct, we know that Mr.Sack’s income is
$5,027,466.

Now let us consider the impact of Laplace noise addition on this data. Note
that the scale parameter b of the Laplace distribution for the Mean query is giv-
en by Af/en and corresponding to € = 0.10, 0.25, and 1.00, the values of b = 69.83,
27.93, and 6.98, respectively. The variance of the noise added corresponding to &
=0.10, 0.25, and 1.00, equals 9750, 1560, and 97, respectively. The actual variance
of the income is approximately 2750002 or (7.56 x 10'). In other words, consider-
ing the variance of the data set, the Laplace noise added is negligible. The impact of
adding so little noise is evident when we consider the protection afforded to Mr.
Sack.

Even when ¢ = 0.10 (the highest privacy level), in 99% of the cases, the noise
added is less than $275. In other words, 99% of the responses would provide the
intruder with an estimate of Mr. Sack’s income that is within $275. Given that
Mr. Gold Sack’s income is over $5 million, the privacy afforded to Mr. Sack is
very small. The situation gets worse when we consider ¢ = 0.25 in which case the
intruder is able to estimate the income to within $110 in 99% of the cases. When
¢ = 1.00, the intruder is able to estimate Mr. Sack’s income to within $30 of the
true value. The distribution of Mr. Sack’s income based on the responses from
Laplace noise addition for all three levels of ¢ are provided in Figure 1 which
shows that an intruder gets an accurate estimate of Mr. Sack’s income even after
Laplace noise is added. Thus, when the intruder has the auxiliary information
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Evaluating Laplace Noise Addition to Satisfy Differential Privacy 7

that Mr. Gold Sack earns $5 million than the average American, adding Laplace
noise provides little protection against disclosure of the true income.

Figure 1. Distribution of Responses for Mean Income (Entire US)

I

$27,250 $27,466

$27,682
—&=0.10 —&=0.50 —c=1.00

3.2 Analysis of Data Subsets

Data such as income are often analyzed not just at the entire data set level, but
also for subsets of data. One simple illustration of this is the consideration of the
average income of a county (Whitley County) in Kentucky. From the Census
Bureau web site, we find that the average income of Whitley county is $16,708
(n =12,685 and standard deviation = 134,000). Given that this subset has 12,685
observations, one would expect that the response to the average income of this
county would be very accurate. With Laplace noise addition, this is not the case.

When ¢ =0.10, the variance of the noise added is over 7000% of the variance of
the original data. For € = 0.50 and 1.00, the variance of the noise added as a pro-
portion of the variance of the data set are over 1000% and 72%, respectively.
This implies that even for very low privacy levels (¢ = 1.00), the probability of
observing a response that is within + $10,000 is less than 12%. In 88% of the cas-
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es, the Laplace noise added response would be outside the $10,000 range. When
€ = 0.25 and 0.10, the probability of observing within +$10,000 reduces to ap-
proximately 3% and 1%, respectively. This implies that when & = 0.10, 99% of the
responses to the query “What is the mean income of individuals in Whitley
county?” would be outside +$10,000 of the true income. In other words, in most
cases, the responses are of little value for analytical purposes since they are so
different from the true income.

Figure 2 provides the response distribution for the mean income of Whitley
county for all three ¢ levels. The wide range of the response distribution means
that the Laplace noise added responses will be of little use to the legitimate user.
This response distribution is particularly striking when compared with the re-
sponse distribution in Figure 1. At the subset level, the distribution varies be-
tween approximately +$3 million while at the overall dataset level (making the
response useless for a legitimate user), the responses vary only by a meager
+$250 (providing little protection for Mr. Gold Sack).

Figure 2. Distribution of Responses for Mean Income (Whitley County)

L

-$3,000,000 1,000,000 16708

$1,000,000 $3,000,000

—e=0.10 —e=0.50 —=1.00

3.3 Summary of Analysis

The analysis in this section addresses two important aspect of the Laplace noise
addition procedure. It shows that when n is large (such as the case when the
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entire US population is considered), the privacy that is offered is very small.
Consequently, when an intruder has the auxiliary information “Mr. Gold Sack
earns $5 million more than the average American,” Laplace noise addition of-
fers very little protection against disclosure of confidential information. Howev-
er, using the same parameters, when we consider smaller subsets, the level of
noise added is so large as to make practically all responses from the system use-
less for the legitimate user. These weaknesses arise from the fact that that unlike
traditional noise addition where the noise added is proportional to the variance
in the data set, the noise added to satisfy differential privacy is independent of
the actual data set and is based only on the value of Af. In particular, this reflects
an inherent characteristic of differential privacy in that it seeks to protect even
extreme values. When the data set is skewed resulting in very large Af, the noise
variance can be very large compared to the variance of the data set. Consequent-
ly, the level of noise added to satisfy differential privacy can be of orders of
magnitude greater than the variance in the data set, reducing the utility of the
responses. The result is little or no protection for large data sets, while for small
data sets the noise added is so large that the responses are practically useless. In
contrast, traditional noise addition methods would only add noise that is pro-
portional to the actual variance of the data set that is likely to provide more
meaningful responses. The trade-off is that they would not satisfy the require-
ments of differential privacy.

4 Evaluating Laplace Noise Addition for Multiple
Queries

For any procedure that satisfies differential privacy, it is assumed that since the
intruder’s knowledge gain is limited to the probability ratio in equation (1), dis-
closure is avoided. However, this evaluation relates to a single response and
does not consider the case of a tracker who issues multiple queries and uses the
responses from these queries to disclose one or more observations [7]. In this
section, we show that the Laplace noise addition mechanism to satisfy differen-
tial privacy may be vulnerable to a tracker attack.

For the purpose of this illustration, let us assume that the data set consists of
real numbers between the limits 0 and 1. For simplicity and without loss of gen-
erality, we will limit our discussion to the Sum query and & = 1. For this data, set
the global sensitivity Af = 1. In order to satisfy et-differential privacy, the noise
term for the Sum queries must be generated from a Laplace distribution with
mean 0, scale parameter b = Af/e = 1 (and resulting noise variance = 2b? = 2).
Consistent with the description in [8], we assume that the details of the pertur-
bation (g, Af, etc.) are provided to the users. We generated a dataset X with 50
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observations and we assume that the intruder has 49 observations (2, 3, ..., 50)
in the dataset (Table 1). The intruder’s objective is to estimate the unknown ob-
servation x;.

Note that the variance of the entire data set provided in Table 1 is 0.09339.
However, in order to satisfy differential privacy, it is necessary that the variance
of the noise distribution be 2. As noted earlier, unlike traditional noise addition
where the noise added is proportional to the variance of the data set, the noise
added to satisfy differential privacy can be of orders of magnitude greater than
the variance in the data set, especially for skewed data sets, reducing the utility
of the responses. In addition, since the range of the variable X is between (0, 1),
the user knows that the sum of (x; + x;) must be in the range (0, 2). However,
due to the large noise variance and the fact that the Laplace distribution is un-
bounded, a large proportion of the responses (21 out of 49) are outside the
meaningful range of (0, 2). This is a problem for most datasets.

The intruder issues the following series of queries (x; + X;), (X1 + X3), ..., (X +
Xs50) resulting in a total of 49 queries. Let a2, a3, ..., aso represent the true response
to the queries, respectively. Let y2, y3, ..., yso represent the noise terms generated
from a Laplace(0,b) to the queries. Let R2 = (x; + X;) + y2, R3= (x; + X3) +y3, ..., Rso
= (x1 *+ Xs50) + ys0 represent the responses from the system to the queries. These
values are provided in Table 1 as well. Since the intruder knows the true values
of X,, X3, ..., X50, the intruder can simply subtract the respective value from the
response to result in an estimate of xi1 as follows:

=R - x;, i=2,3,...,50. 3)

For example, Rz = 1.88222, x, = 0.85490, and hence )’2% =1.02732. Table 1 provides
the results of all 49 queries. The resulting variable from this process %, is an iid
Laplace(x;,b) random variable.

Now consider X;the mean of (%;). Let q represent the number of queries is-
sued. In this illustration q = 49. From the central limit theorem, when q is large,
we know that X;~ Normal(xi, 2b%/q). Even when q is small, since &; is IID La-
place(x;, b), we know that the mean and variance of X; are x; and 2b?/q, respec-
tively, although we do not know the exact distribution of X;. Thus, even when q
is small, the variance of the resulting estimate is smaller by a factor of q com-
pared to the variance of the original Laplace distribution.

The intruder now simply estimates the true value of x; as the mean of

Rl,i=2,3,..,50. From the data in Table 1, we know that xSt = Z% = 0.97262.
Now consider the following probabilities,

P[RE 2 0.97262|%, = 1] = P[%F* 2 0.97262|Normal (1,2)| = 0576 (4
P[REt 2 0.97262|%, = 0] = P[%F** 2 0.97262|Normal (0, 2)] = (5 x10712).(5)

TRANSACTIONS ON DATA PRIVACY 4 (2011)



Evaluating Laplace Noise Addition to Satisfy Differential Privacy

Table 1. Data and computations for the example

Individual X (x, +x,) | Random # y; (x +R;(5 ry, Esé}r?(z?te
1 0.97032
2 0.85490 | 1.82522 | 0.52770 0.05700 1.88222 1.02732
3 0.72936 | 1.69968 | 0.07910 -1.84387 -0.14419 -0.87355
4 0.06435 | 1.03467 | 043122 | -0.14799 0.88668 0.82233
5 042397 | 1.39429 | 0.79758 0.90427 229856 1.87459
6 0.75934 | 1.72966 | 0.89064 1.52000 3.24966 249032
7 0.67422 | 1.64454 | 0.52139 0.04372 1.68826 1.01404
8 0.62075 | 1.59107 | 0.93254 2.00312 3.59419 2.97344
9 0.66039 | 1.63071 | 026885 | -0.62044 1.01027 0.34988
10 0.54600 | 1.51632 | 0.70928 0.54225 2.05857 1.51257
11 0.22039 | 1.19071 | 0.50533 0.01072 120143 0.98104
12 098132 | 1.95164 | 0.56455 0.13822 2.08986 1.10854
13 022174 1 1.19206 | 0.76173 0.74119 1.93325 1.71151
14 0.88548 | 1.85580 | 0.92787 1.93619 3.79199 290651
15 095191 | 1.92223 | 0.18962 -0.96957 0.95266 0.00075
16 0.65780 | 1.62812 | 0.80%40 0.96445 2.59257 1.93477
17 0.88826 | 1.85858 | 0.63536 0.31569 2.17427 1.28601
18 0.74429 | 1.71461 | 0.73987 0.65344 2.36805 1.62376
19 0.12368 | 1.09400 | 035452 | -0.34386 0.75014 0.62646
20 0.59708 | 1.56740 | 0.10678 | -1.54385 0.02355 -0.57353
21 0.03746 | 1.00778 | 0.76936 0.77376 1.78154 1.74408
22 0.82311 | 1.79343 | 0.14070 -1.26801 0.52542 -0.29769
23 0.03147 | 1.00179 | 0.81132 0.97456 1.97635 1.94488
24 0.32822 | 1.29854 | 040197 -0.21823 1.08031 0.75209
25 020763 | 1.17795 | 0.87744 1.40601 2.58396 237633
26 0.57210 | 1.54242 | 0.50602 0.01211 1.55453 0.98243
27 0.66724 | 1.63756 | 0.07235 -193313 -0.29557 -0.96281
28 0.36904 | 1.33936 | 0.26919 | -0.61921 0.72015 035111
29 0.83805 | 1.80837 | 0.79157 0.87498 2.68335 1.84530
30 0.72112 | 1.69144 | 0.85190 1.21672 290816 2.18704
31 0.98357 | 1.95389 | 0.83221 1.09189 3.04578 2.06221
32 0.23028 | 1.20060 | 0.56917 0.14890 1.34950 1.11922
33 0.09613 | 1.06645 | 0.04275 | -2.45934 -1.39289 -1.48902
34 0.00538 |1 0.97570 | 0.13981 -1.27435 -0.29865 -0.30403
35 046984 | 1.44016 | 0.56482 0.13886 1.57902 1.10918
36 0.96043 | 1.93075 | 0.31687 -045610 147465 0.51422
37 0.20283 | 1.17315 | 022134 | -0.81491 0.35824 0.15541
38 0.60845 | 1.57877 | 030995 | -047820 1.10057 049212
39 045104 | 1.42136 | 0.13421 -1.31520 0.10616 -0.34488
40 0.63254 1 1.60286 | 0.95061 2.31488 391774 3.28520
41 049287 | 1.46319 | 0.62664 0.29205 1.75524 1.26237
42 047326 | 1.44358 | 0.87987 1.42603 2.86961 2.39635
43 0.87437 | 1.84469 | 0.17758 | -1.03516 0.80953 -0.06484
44 0.01190 | 0.98222 | 0.86866 1.33681 231903 230713
45 0.89823 | 1.86855 | 0.53223 0.06663 1.93518 1.03695
46 0.54942 | 1.51974 | 042995 -0.15095 1.36879 0.81937
47 0.03274 | 1.00306 | 0.03394 [ -2.68988 -1.68682 -1.71956
48 0.61882 | 1.58914 | 0.36316 -0.31976 1.26938 0.65056
49 0.30366 | 1.27398 | 0.17065 | -1.07496 0.19902 -0.10464
50 0.33108 | 1.30140 | 0.40338 | -0.21474 1.08666 0.75558
Average
Of Estimates 0.97262
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0575992308 _

(5 x10712)
(1.17 x10') » e! = 2.7182. Thus, the ratio of the two probabilities does not
satisfy the requirements of e¢-differential privacy (but does satisfy ed-
differential privacy as we discuss later).

Note that 0.97262 is an excellent point estimate of x; (0.97032) for such a rela-
tively small sample size of 49. For more realistic situations such estimates are
expected to be very close to the true value and would result in extremely sharp
interval estimates with high confidence. By most standards of statistical disclo-
sure control, this would be considered an unacceptable breach of confidentiality
and privacy. Even with only 50 observations, if we assume that the intruder has
49 observations, the intruder is not limited to 49 queries. The intruder can also
issue all possible combinations of queries involving x1 and the remaining known
observations. One such possible query is (x; + X, + X3). From the response to this
query, the intruder can get the estimate of x1 simply as the Response — (x; + x3).
Even when n is relatively small, the intruder can issue a very large number of
queries to the system in this manner, resulting in very large q resulting in (2b%q)
o 0 and X' @ x,. Thus, with increasing q, the intruder gets a very accurate es-
timate of the true value of x;. Since this result is true for x;, similarly we can
show it to be true for any value x;.

In summary, when the intruder has information regarding the (n — 1) observa-
tions, they can use this information to issue a series of (tracker) queries in order
to estimate the value of the missing observation with a great deal of accuracy.
This type of phenomena has been addressed previously in the statistical disclo-
sure limitation literature [4][5][7], and others. It is interesting that this result is
also consistent with the observations of Dinur and Nissim [6] who showed that
an intruder, with no prior information, given an unlimited number of queries, can
reconstruct the value of the entire database. What these results indicate is that,
when we assume that the intruder has (n — 1) of the n observations, then only the
first query will provide the desired level of privacy. All subsequent queries will result in
a reduction in privacy.

It should be noted that Dwork [8] and other researchers have recognized the
tracker problem. In a recent paper, Dwork and Smith [10, page 139]
acknowledge the issue with multiple queries when they observe that:

If we now consider the ratio of the two probabilities above, we get

Differential privacy applies equally well to an interactive process,
in which an adversary adaptively questions the curator about the
data. The probability K(S) then depends on the adversary's strat-
egy, so the definition becomes more delicate. However, one can
prove that if the algorithm used to answer each question is e-
differentially private, and the adversary asks q questions, then
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the resulting process is qe-differentially private, no matter what
the adversary's strategy is.

This is precisely the result that was illustrated in this section. The implications
of this statement are far reaching than what it seems at first glance. Assume that
differential privacy based Laplace noise addition has been implemented on a
data set and some ¢ has been specified. The above statement implies that the
intruder’s knowledge gain for the very first query is ef; for the second query, it
is e%; ... for the q* query, it is e%. In other words, the intruder’s knowledge gain
increases exponentially with the number of queries. Consequently, after just a few
queries, the intruder’s knowledge gain is so large that differential privacy based Laplace
noise addition procedure offers no privacy at all.

One potential solution to eliminate the tracker problem is to increase the vari-
ance of the Laplace noise to compensate for the intruder’s increase in
knowledge. Since the privacy provided for the g™ query is e%, in order to
achieve the same privacy level for the q* query as for the first query, it would be
necessary that the scale parameter of the Laplace distribution for the q" query
equal (q x b), with resulting variance equal to (g x 2b?). In other words, in our
current example, for the 10% query, the variance of the noise added would be
200 units; and for the 50* query, the noise variance would be 5000. Adding
noise with variance of 5000 (or even 200) when the variance of the actual data
set is only 0.09339 makes the query responses practically meaningless. Table 2
shows the impact of increasing the noise variance to account for the reduction in
privacy. In generating this data, we have used exactly the same random num-
bers to generate the noise in this table as we did in Table 1. For instance, for the
query sum of (x1 + x47) where the true sum is 1.00306, we get a masked response
of -122.7312. Similarly, for the sum of (x1 + x40) where the true sum is 1.60286, the
response from the system is 91.8833. As observed earlier, since X is in the range
(0, 1), the sum of (xi + xj) must be in the range (0, 2). However, we observe in
Table 2 that as the number of queries increases practically none of the responses
fall in the meaningful range of (0, 2). Out of the total of 49 queries, only 5 fall in
the meaningful range. For any intelligent user who knows that the sum of two
observations must be in the range (0, 2), practically all the responses from the
system after the first few queries are useless. Hence, as shown in Table 2, in-
creasing the variance as the number queries increases may maintain privacy,
but makes the responses practically useless, and hence is simply not a feasible
approach.
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Table 2. Responses from the system with increasing noise variance

R=
Individual X (x; tx7) Random # Vi & %)+ y;
1 0.97032
2 0.85490 1.82522 0.52770 0.0570 1.8822
3 0.72936 1.69968 0.07910 -3.6877 -1.9881
4 0.06435 1.03467 0.43122 -0.4440 0.5907
5 0.42397 1.39429 0.79758 3.6171 5.0114
6 0.75934 1.72966 0.89064 7.6000 9.3297
7 0.67422 1.64454 0.52139 0.2623 1.9069
8 0.62075 1.59107 0.93254 14.0218 15.6129
9 0.66039 1.63071 0.26885 -4.9635 -3.3328
10 0.54600 1.51632 0.70928 4.8802 6.3966
11 0.22039 1.19071 0.50533 0.1072 1.2979
12 0.98132 1.95164 0.56455 1.5204 3.4721
13 0.22174 1.19206 0.76173 8.8943 10.0863
14 0.88548 1.85580 0.92787 25.1705 27.0263
15 0.95191 1.92223 0.18962 -13.5740 -11.6517
16 0.65780 1.62812 0.80940 14.4668 16.0949
17 0.88826 1.85858 0.63536 5.0510 6.9096
18 0.74429 1.71461 0.73987 11.1084 12.8230
19 0.12368 1.09400 0.35452 -6.1894 -5.0954
20 0.59708 1.56740 0.10678 -29.3332 -27.7658
21 0.03746 1.00778 0.76936 15.4752 16.4830
22 0.82311 1.79343 0.14070 -26.6283 -24.8348
23 0.03147 1.00179 0.81132 21.4403 22.4421
24 0.32822 1.29854 0.40197 -5.0193 -3.7208
25 0.20763 1.17795 0.87744 33.7443 34.9223
26 0.57210 1.54242 0.50602 0.3027 1.8451
27 0.66724 1.63756 0.07235 -50.2613 -48.6237
28 0.36904 1.33936 0.26919 -16.7185 -15.3792
29 0.83805 1.80837 0.79157 24.4995 26.3078
30 0.72112 1.69144 0.85190 35.2849 36.9763
31 0.98357 1.95389 0.83221 32.7567 34.7106
32 0.23028 1.20060 0.56917 4.6158 5.8164
33 0.09613 1.06645 0.04275 -78.6988 -77.6323
34 0.00538 0.97570 0.13981 -42.0535 -41.0778
35 0.46984 1.44016 0.56482 4.7211 6.1613
36 0.96043 1.93075 0.31687 -15.9635 -14.0328
37 0.20283 1.17315 0.22134 -29.3368 -28.1636
38 0.60845 1.57877 0.30995 -17.6934 -16.1147
39 0.45104 1.42136 0.13421 -49.9775 -48.5562
40 0.63254 1.60286 0.95061 90.2804 91.8833
41 0.49287 1.46319 0.62664 11.6822 13.1454
42 0.47326 1.44358 0.87987 58.4673 59.9109
43 0.87437 1.84469 0.17758 -43.4769 -41.6322
44 0.01190 0.98222 0.86866 57.4829 58.4651
45 0.89823 1.86855 0.53223 2.9319 4.8004
46 0.54942 1.51974 0.42995 -6.7928 -5.2730
47 0.03274 1.00306 0.03394 -123.7343 | -122.7312
48 0.61882 1.58914 0.36316 -15.0285 -13.4394
49 0.30366 1.27398 0.17065 -51.5983 -50.3243
50 0.33108 1.30140 0.40338 -10.5222 -9.2208
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In summary, with the original specifications, the data administrator can be cer-
tain that es-differential privacy is satisfied only for the first query. For all subse-
quent queries, the value of ¢ increases and the privacy level decreases. If we
attempt to increase the noise variance to compensate for the reduction in priva-
cy, the resulting responses to queries are practically useless. Finally, while we
have illustrated this approach for a single data set, the intruder can adopt the
tracker approach for any data set of any size. Hence, the results in this section
can be generalized to any data set. The only solution to alleviate the above prob-
lem is to increase the variance of the noise added with the number of queries.
Unfortunately, as we have shown, this has the consequence of making the re-
sponses useless after just a few queries. Thus, after just a few queries, Laplace
noise addition results in either no privacy or no utility.

5 Conclusions

Differential privacy is often characterized by its proponents along the following
lines [10, page 137]: “Differential privacy is therefore an ad omnia guarantee, as
opposed to an ad hoc definition that provides guarantees only against a specific
set of attacks or concerns.” This characterization ignores the following very
practical issues highlighted in this paper:

(1) In many situations, it may not even be possible to implement differential
privacy since the numerical variable in question may not have known
natural lower and upper bounds.

(2) Even when upper and lower bounds are known, because of global sensi-
tivity,

a. For large subsets, the level of noise added may be so small that it
may not provide the desired level of protection for observations
of large magnitude.

b. For small subsets, the level of noise added may be so large as to
make responses from such a system meaningless for many que-
ries.

(3) Even if the above two requirements are satisfied, the intruder’s
knowledge gain will be limited to e only for the first query. For subse-
quent queries, the intruder’s knowledge gain increases exponentially, re-
sulting in practically no privacy after just a few queries.

(4) If we attempt to address the issue in (3) above by increasing the noise
variance, after just a few queries, the resulting noise variance is so large
as to make all responses to all queries meaningless.
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In conclusion, differential privacy and the associated Laplace noise addition
procedure may sound like a good idea in theory. However, when we actually
examine the applicability of this approach to numerical data as we do in this
paper, we find that it has very limited applicability offering either very little
privacy or very little utility, or neither. It is important to note that our criticism
is not necessarily of differential privacy as a privacy standard, but of Laplace
noise addition as the appropriate method to satisfy differential privacy. Our
results indicate that while Laplace may satisfy differential privacy in theory, it is
of little value in practice for numerical data.
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