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Abstract. Due to the emergence of geolocated applications, more and more mobility traces are gen-
erated on a daily basis and collected in the form of geolocated datasets. If an unauthorized entity can
access this data, it can use it to infer personal information about the individuals whose movements
are contained within these datasets, such as learning their home and place of work or even their social
network, thus causing a privacy breach. In order to protect the privacy of individuals, a sanitization
process, which adds uncertainty to the data and removes some sensitive information, has to be per-
formed. The global objective of GEPETO (for GEoPrivacy Enhancing TOolkit) is to provide researchers
concerned with geo-privacy with means to evaluate various sanitization techniques and inference
attacks on geolocated data. We describe our experiments conducted with GEPETO for comparing
different inference attacks, and evaluating their efficiency for the identification of point of interests,
as well as their resilience to sanitization mechanisms such as sampling and perturbation. We also
introduce a mobility model that we coin as mobility Markov Chain, which can represent in a compact
yet precise way the mobility behaviour of an individual. Finally, we describe an algorithm for learn-
ing such a structure from the mobility traces of an individual and we report on experimentations
performed with real mobility data.
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1 Introduction

A geolocated system is an object or device which has an associated location. For instance, it can be a
smartphone or a GPS-equipped vehicle. Usually, a geolocated system belongs to an individual (or
to a group of individuals, such as a family) and as such its location corresponds to the location of its
owner(s). Geolocated data is already publicly available and sometimes easy to obtain. For instance,
some people diffuse publicly, almost in real-time, their current location via social application such
as Twitter which in turn can be collected to predict whether or not they are currently at home1.
Other applications, such as Google Latitude2, allow to track the movements of friends’ cellphones
and display their position on a map. Apart from these social applications, there are also other public
sources of information that can be exploit by a potential adversary for causing a privacy breach,

1http://pleaserobme.com/
2http://www.google.com/latitude
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such as free and easy access to geographic knowledge with Google Maps3, Yahoo!Maps4 and Google
Earth5.

We have started to explore, study and axiomatize the different types of inference attacks on geolo-
cated data and basically our main finding is that among all the Personal Identifiable Information (PII),
learning the location of an individual is one of the greatest threat against his privacy. For instance, the
spatiotemporal data of an individual can be used to infer the location of his home and workplace, to
trace his movements and habits, to learn information about his center of interests or even to detect a
change from his usual behaviour. We provide a brief overview and classification of inference attacks
on geolocated data in Section 2. Through the combination of several inference attacks, the adversary
can potentially gather gradually more and more information about the mobility behaviour of an in-
dividual. We also describe some sanitization algorithms and methods for preserving geoprivacy in
Section 2.4. In Section 3, we introduce a mobility model that we coin as mobility Markov Chain, which
can represent in a compact yet precise way the mobility behaviour of an individual.

One of the main challenge for geoprivacy is to balance the benefit for an individual of participating
to a geolocated application with the privacy risks he incurs by doing so. For example, if Alice’s
car is equipped with a GPS and she accepts to participate in the real-time computation of the traffic
map, this corresponds to a task that is mutually beneficial to all the drivers but at the same time
Alice wants to have some privacy guarantees that her individual locations will be protected and not
broadly disclosed. In practice, we clearly advocate to follow the “privacy by design” paradigm which
explicitly takes into account the privacy issues in the design process of a geolocated application,
rather than simply deploying it and wait for the possible disastrous consequences.

We emphasize that simply removing the identifiers of individuals or replacing them by a pseudonym
is usually not sufficient to protect their privacy. Instead, a sanitization process, which adds uncertainty
to the data and removes some sensitive information, has to be performed. This loss of data, incurred
by the sanitization process, comes with a dilemma: it certainly brings some privacy guarantees but
at the cost of a decrease of utility due to the quality degradation of the data. For instance, the well-
known k-anonymity procedure [28] ensures through generalization and suppression operations on
attributes that each individual is in a group of at least k−1 other individuals sharing the same profile.
However, this process also leads to a loss of information, thus almost surely hurting the utility of the
application that will use this data. Therefore, there is often a trade-off between the utility of the
global task and the privacy protection of individuals. In Section 4, we describe our ongoing work on
GEPETO (for GEoPrivacy Enhancing TOolkit) [7], a flexible open source software which can be used
to visualize, sanitize, attack and measure the utility of a particular geolocated dataset. Afterwards,
in Section 5, we report on experimentations conducted on geolocated data through the GEPETO
framework before finally concluding with a brief discussion in Section 6.

2 Inference Attacks on Geolocated Data

An inference attack is an algorithm that takes as input some geolocated data D, possibly with some
auxiliary information aux, and produces as output some additional knowledge [12]. For example,
an inference attack may consist of identifying the house or the place of work of an individual. The
auxiliary information reflects any a priori knowledge that the adversary might have gathered (for
instance through previous attacks and by accessing some public data source) and which may help
him in conducting an inference attack. We propose to classify the inference attacks according to (at
least) three dimensions such as the type of data it works on, the objective of the attack as well as the
specific technique used. We also briefly review some geosanitization mechanisms that can be used to
protect the privacy of geolocated data and limit the applicability and efficiency of inference attacks.

3http://maps.google.com/
4http://maps.yahoo.com/
5http://earth.google.com/
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2.1 Geolocated Data

Nowadays, the rapid growth and development of geolocated applications has multiplied the poten-
tial sources of geolocated data. The geolocated data generated by these diverse applications varies in
its exact form and content but it also shares some common characteristics. Regarding the type of data,
we differentiate mainly between mobility traces and contact traces. A mobility trace is characterized
by:

• An identifier, which can be the real identifier of the device (e.g. “Alice’s phone”), a pseudonym
or even the value “unknown” (when full anonymity is desired). A pseudonym is generally used
when we want to protect the true identity of the system while still being able to link different
actions performed by the same user.

• A spatial coordinate, which can be a GPS position (e.g. latitude and longitude coordinates), a
spatial area (e.g. the name of a neighbourhood in a particular city) or even a semantic label (e.g.
“home” or “work”).

• A time stamp, which can be the exact date and time or just an interval (e.g. between 9AM and
12AM).

• Additional information such as the speed and direction for a vehicle, the presence of other
geolocated systems or individuals in the direct vicinity or even the accuracy of the estimated
reported position. For instance, some geolocated systems are able to estimate the precision of
their estimated location as a function of the number of GPS satellites they are able to detect.

Contact traces are a specific form of mobility traces which consist in the recording of encounters be-
tween different devices. This kind of trace is composed of the identifiers of the devices and a time
stamp. It may be recorded for instance by a device which has no integrated capacity for geoposition-
ing but is capable of probing his neighbourhood to detect the presence of other devices (e.g. using
Bluetooth neighbour discovery).

A geolocated dataset D is a dataset which contains mobility traces of individuals. Technically, this
data may have been collected either by recording locally the movements of each geolocated system
for a certain period of time, or centrally by a server which can track the location of these systems
in real-time. A trail of traces is a collection of mobility traces that corresponds to the movements
of an individual over some period of time. A geolocated dataset D is generally constituted by an
ensemble of trails of traces from different individuals. The Crawdad project6 is an example of a
public repository giving access to geolocated datasets, which can be used for research purpose.

2.2 Objective of the Attack

An adversary attacking some geolocated data may have various objectives ranging from identify-
ing the home of the target to reconstructing his social network, or even obtaining knowledge of his
favourite jogging tracks. More precisely, the objective of an inference attack may be to:

• Identify important places, called Points Of Interests (POIs), which characterize the interests of an
individual [17]. A POI may be for instance the home or place of work of an individual or
locations such as a sport center, theater or the headquarters of a political party. Revealing the
POIs of a particular individual is likely to cause a privacy breach as this data may be used
to infer sensitive information such as hobbies, religious beliefs, political preferences or even
potential diseases. For instance, if an individual has been visiting a medical center specialized
in a specific type of illness, then it can be deduced that he has a non-negligible probability of
having this disease. However, some POIs like the home or the place of work can sometimes be
considered public data if they can be discovered by another mean such as googling the name of

6http://crawdad.cs.dartmouth.edu/

TRANSACTIONS ON DATA PRIVACY 4 (2011)
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a particular individual or by browsing through the Yellow Pages. In this case, the main privacy
risk is that this data can be used to deanonymize a particular individual whose name has been
replaced by a pseudonym in a sanitized dataset but in which the combination of some of his
POIs still uniquely characterizes him (see thereafter the linking attack for a similar argument).

• Predict the movement patterns of an individual such as his past, present and future locations [12].
From the movement patterns, it is possible to deduce other PII such as the mode of transport,
the age or even the lifestyle7. According to some recent work [10,26], our movements are easily
predictable by nature. For instance in [26], the authors have explored the limits of predictability
in human mobility by analyzing mobility patterns of 50000 individuals within an anonymized
geolocated dataset obtained from a mobile phone company that has more than 10 million users.
By measuring the entropy of individual’s trajectories, these authors have found a 93% potential
predictability in user mobility.

• Learn the semantics of the mobility behaviour of an individual from the knowledge of his POIs and
movement patterns. For instance, some mobility models such as semantic trajectories [2, 27] do
not only represent the evolution of the movements of an individual over time but also attach a
semantic label to the places visited. From this semantic information, the adversary can derive
a clearer understanding about the interests of an individual as well as his mobility behaviour
than simply from his movement patterns. For instance, the adversary might be able to infer
that on a typical weekday the individual considered generally leaves his home (POI 1) to bring
his kid to school (POI 2) before going to work (POI 3), which is a more deep knowledge than
simply knowing the movement pattern “POI 1⇒ POI 2⇒ POI 3”.

• Link the records of the same individual, which can be contained in different geolocated datasets
or in the same dataset, either anonymized or under different pseudonyms. This is the geopri-
vate equivalent of the statistical disclosure risk where privacy is measured according to the risk
of linking the record of the same individual in two different databases (e.g., establishing that
a particular individual in the voting register is also a specific patient of an hospital [28]). In
a geolocated context, the purpose of a linking attack might be to associate the movements of
Alice’s car (contained for instance in dataset A) with the tracking of her cell phone locations
(recorded in another dataset B). As the POIs of an individual and his movement patterns con-
stitute a form of fingerprinting, simply anonymizing or pseudonymizing the geolocated data is
clearly not a sufficient form of privacy protection against linking or deanonymization attacks.
Indeed, a combination of locations can play the role of a quasi-identifier if they characterize al-
most uniquely an individual in the same way as the combination of his firstname and last name.
For example, Colle and Kartridge [9] have shown that even the pair home-work becomes almost
unique per individual, and thus acts as a quasi-identifier, if the granularity is not coarse enough
(e.g., if the street is revealed instead of the neighbourhood).

• Discover social relations between individuals by considering for instance that two individuals
that are in contact during a non-negligible amount of time share some kind of social link (of
course false positive may happen) [16]. This information can also be derived from mobility
traces by observing that certain individuals are in the vicinity of each other on a frequent basis.

2.3 Inference Technique

We describe thereafter some learning algorithms and methods that can be used as inference tech-
nique:

• Clustering is a form of unsupervised learning that tries to group objects that are similar in the
same cluster while putting objects that are dissimilar in different clusters. A clustering algo-
rithm needs a distance measure (or a similarity metric) to quantify how far/similar are two ob-
jects relative to each other and to drive the clustering process. A natural distance between two

7See for instance http://www.sensenetworks.com/.
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locations is simply the Euclidean distance but of course more complex metrics can be used, such
as the length of the shortest path according to the existing roadmap. For instance, k-means is an
iterative clustering algorithm that outputs k clusters as well as their respective centres (which
are effectively the average of the locations within each cluster). This algorithm can be used
straightforwardly to discover the POIs of one particular individual if it is fed only with his
data [4], or the generic hotspots if it is given the geolocated data of a whole population. Hoh,
Gruteser, Xiong and Alrabady have performed a study [15] on the geolocated data of vehicles
within the Detroit area (Michigan, USA). The goal of their study was to automatically discover
the home of the vehicles’ drivers. The authors have used a clustering algorithm to automatically
identify the houses and their findings is that among the 2 neighbourhoods and the 65 persons
on which the authors have focused, the estimated houses correspond at 85% to the houses that a
human would have recognized8. More complex techniques such as density-based clustering [6]
can be used instead of k-means to overcome some of its shortcomings, such as k the predefined
number of clusters and the constraint that the shape of the clusters has to be spherical.

• Mobility models can be learned from the geolocated data of individuals, and then used either to
identify them among a geolocated dataset (even when they are anonymous) or to predict their
next movements. For instance, Lio, Fox and Kautz [20] have shown that it is possible to train
a relational Markov network, so that it can predict with a relatively good accuracy the next
location of an individual or his current activities. Another possibility is to use an algorithm for
tracking the movement of targets [25] to reconstruct the paths followed by several individuals
in a geolocated dataset even if they are anonymous. Some mobility models [2, 27] also attach a
semantic to the places visited, thus enriching the knowledge extracted.

• Heuristics gives also good results in practice [19] for identifying POIs at a relatively low cost. An
heuristic can be as simple as choosing the last stop before midnight or the average (or median)
of several stop locations for identifying the home or the most stable location during the day for
finding the place of work.

• Data coming from social applications is a possible source of information that the adversary might
draw on to attack the privacy of individuals. The website “Please Rob Me” is a striking ex-
ample of how it is possible from publicly available information in the form of Twitter’s posts
(i.e. tweets) to build a classifier that can predict whether or not somebody is currently at home.
Another example of social application is Google Latitude that offers the possibility of following
in real-time on a map the movements of siblings and friends who have previously agreed to
this service by confirming this on a SMS received on their phone9. However, some social ap-
plications such as Locaccino10 tries to integrate explicitly the privacy issues in their design, by
giving the possibility to a user to choose how he wants to disclose and share its location with its
friends, and helping him understand what are the potential privacy risks that he might incur.

• Data coming from public sources is also a potential source of knowledge that can be exploited by
the adversary. For instance, by using Google Maps and Yahoo!Maps the adversary can easily
reconstruct the path followed by an individual between two consecutive mobility traces. More-
over, reverse geocoding tools exist that can transform a spatial coordinate into a physical address,
which in turn can be cross-referenced with the corresponding entries in the Yellow Pages.

Often, the inference process does not consist only in the application of one inference attack, but
rather is an incremental process in which the adversary gradually gathers more and more knowl-
edge through the combination of several inference attacks.

8As the exact identity of the drivers have been kept secret it was not possible for the authors to compare
directly the houses returned by the algorithm against the ground truth (i.e. the exact address of the drivers)
which explained why this particular evaluation method was chosen.

9An infamous use of Google Latitude is known as the shower attack where a suspicious husband waits for his
wife to take her shower, before sending the Google Latitude SMS to her cellphone, accepting this service on her
behalf on the cellphone and then erasing it thus leaving not clue for her that she is now tracked.

10http://locaccino.org/
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2.4 Geo-sanitization Mechanisms

A sanitization algorithm S takes as input a geolocated dataset D, introduces some uncertainty and re-
moves some information from this dataset to increase the privacy of individuals whose movements
are contained in the dataset. S produces as output D′, a sanitized version of the original dataset D.
The main idea behind sanitization is that, for a potential adversary, breaching the privacy of a partic-
ular user is harder when working on D′ than with D. A sanitization procedure usually comes with
some privacy guarantees. For instance, it can guarantee that at each time step, there is a minimum
number of individuals in each spatial area. Possible sanitization techniques include:

• Pseudonymization replaces the common identifier of several mobility traces by either a randomly
generated pseudonym (thus providing anonymity but not unlinkability) or by the unknown
value (thus theoretically granting full anonymity and unlinkability)11. Pseudonymization is
generally performed as the first step of a sanitization process but as such is often not sufficient
for protecting the privacy of individuals.

• Perturbation methods [3] modify the spatial coordinate of a mobility trace by adding some ran-
dom perturbation. For example, this noise can be generated uniformly or using Gaussian noise
within a sphere of radius r centered on the original coordinate. If the geography of the sur-
rounding area is not taken into account, it may happen that the perturbed coordinate corre-
sponds to a location which has no physical sense (e.g., in the middle of a river or on a cliff).

• Aggregation merges several mobility traces into a single spatial coordinate. For instance, this
spatial coordinate can be a surrounding spatial area such as a neighbourhood or the average of
the mobility traces. During data preprocessing, a clustering algorithm (such as k-means) can be
used to group traces that are close together into the same cluster while putting tracloakingces
that are significantly distant into distinct clusters. This can be used to detect which traces should
be merged together during an aggregation step. Another possibility is to detect traces occupying
the same spatial area (for instance the same neighbourhood) at a certain moment in time and to
replace each one of these individual traces by the coordinate of this spatial area.

• Sampling can be seen as a form of temporal aggregation. A sampling mechanism summarizes
several mobility traces into fewer traces, generally by representing an ensemble of traces, which
have occurred within some time window, into one median or average trace. By decreasing the
total number of traces, sampling has the additional benefit that it compresses the data and,
therefore, reduces the computational resources needed to further sanitize the data.

• Spatial cloaking [11] is an extension of the concept of k-anonymity [28] to the spatiotemporal
domain and a form of aggregation. The main idea is to ensure that at each time step, each indi-
vidual is located within a spatial area that is shared by a least k−1 other individuals. This spatial
area is disclosed instead of the exact location of these individuals, thus guaranteeing that even
if an adversary can target the group where an individual is located, his behaviour will be indis-
tinguishable from at least k − 1 other individuals (k is a privacy parameter of the algorithm).
A possible approach to achieve the property of spatial cloaking is to split recursively the space
into areas of different sizes, until further splitting violates k-anonymity. It is worth noting that
spatiotemporal cloaking and the k-anonymization of more structured movement patterns such
as trajectories [29] is a very active research topic. For instance in [1], a k-anonymity approach
has been proposed for the sanitization of trajectories. More precisely, similar trajectories that are
within a certain uncertainty radius of each other are clustered together such that each cluster
is of size at least k and only the representative trajectory of the cluster is published. Moreover,
trajectories that are deemed too “problematic” are erased from the sanitized data published.
Another method achieving trajectory anonymization has also been recently proposed [22]. This

11Anonymity can be defined as being able to perform a particular action without having to reveal his identity
whereas unlinkability is a stronger notion that involves not being able to link two different actions that have been
performed by the same user. Typically, performing different actions under a pseudonym (instead of using his real
name) provides anonymity but not unlinkability. See [23] for more details.
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method combines an approach ensuring k-anonymity on the trajectories with a reconstruction
algorithm that samples the (k-)anonymized dataset of trajectories and releases only “atomic
trajectories”.

• Mix-zones [5] are inspired from the concept of mix-nets due to Chaum. Mix-zones are spatial
areas where (1) no measurements about the locations of individuals are performed and (2) such
that each individual entering a mix-zone will have a different pseudonym when he exits the
mix-zone. The main purpose of a mix-zone is to make it more difficult to link the different
actions of an individual. Areas or buildings with a high traffic are usually good candidates for
mix-zones.

• Swapping consists in exchanging the mobility traces of two different individuals for a certain
period of time. For example, by swapping Alice’s and Bob’s traces during one day, their be-
haviours become more atypical and less predictable.

• Removing the mobility traces that are deemed too sensitive can also be considered as a saniti-
zation procedure. In the same spirit, it is also possible to add fake records (called dummies) [31]
inside the sanitized dataset to blend the true movements of individuals inside artificial data.

As sanitization leads to a loss of information, it is important to have a utility metric in order to compare
the utility of the original datasetD and the sanitized oneD′. The utility measure can either be generic,
for instance linked to some global statistical properties of the dataset, or application-dependent, in
which case it evaluates how well a particular application can be performed by using D′ instead of D.

3 Mobility Markov Chain

In this section, we introduce a form of mobility model that we coin as mobility Markov chain that can
represent in a compact yet relatively precise way the mobility behaviour of an individual. Basically,
a mobility Markov chain is a probabilistic automaton in which states represent POIs and transitions
between states corresponds to a movement from one POI (i.e. state) to another POI. The automaton is
probabilistic in the sense that a transition between one POI to another is not deterministic but rather
that there are a probability distribution over the transitions leaving from the current POI representing
the probability. Note that Markov networks are a popular technique used for the study of motion (see
for instance [30] for a recent work using hidden Markov networks to extract POIs from geolocated
data). We will describe in Section 4.3 an algorithm that can learn the mobility Markov chain of an
individual from his trail of traces.

More formally, a mobility Markov chain is a transition system composed of:

• A set of states P = {p1, . . . , pn}, in which each state pi corresponds to a POI (or a set of POIs).
These POIs may have been learned for instance by running a clustering algorithm on the trail
of mobility traces from an individual or simply by collecting the locations that he has posted
on a geolocated social network such as Foursquare or Gowalla. Each state (i.e. POI) is therefore
associated with a physical location. In the mobility Markov chains considered in this paper, it
will often happen that p1 is the “home” of this individual and p2 is his “work”. Therefore, it is
often possible to attach a semantic label to the states of the mobility Markov chain. The states are
ordered by decreasing importance of the POIs they embody and the last state is often made of
what we call the ”infrequent POIs”, which are POIs that have been visited several times by an
individual but not on a frequent basis.

• A set of transitions, T = {t1,1, . . . , tn,n}, where each transition ti,j represents a movement from
the state pi to the state pj . Each transition ti,j has a probability assigned to it that corresponds to
the probability of moving from state pi to state pj . Sometimes an individual can move from one
POI, go somewhere else (but not to one of his usual POIs) and come back later to the same POI.
For example, an individual might leave his house to go wash his car in a facility near his home
and come back 30 minutes later. This type of behaviour is materialized in the mobility Markov
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chain by a transition from one state to itself. For instance, according to the previous example if
p1 is the home of the individual then the transition t1,1 would be assigned a non-null probability.
The sum of the probabilities of the transitions leaving one state is equal to one, meaning that∑n

j=1
ti,j = 1. Note that the probability of going from state pi to state pj (for i 6= j) is generally

different from the probability of going from stage pj to state pi (e.g. the probability of going
from “home” to “grocery” is not symmetric with the probability of going from “grocery” to
“home”), therefore in general ti,j 6= tj,i. Once the states of the mobility Markov chain have
been learnt from a trail of traces, the transition probabilities can be easily estimated by simply
counting for each state the number of movements leaving to each other state and then dividing
by the total number of movements leaving from this state.

The mobility Markov chain can be represented either as a transition matrix or as a directed graph in
which nodes correspond to states and there is a directed weighted edge between two nodes if and
only if the transition probability between these two nodes is non-null. The sum of all the edges’
weights leaving from a state is equal to 1.

Figure 1: Mobility Markov chain from user 1.

For instance, consider for illustration purpose, an individual, that we refer thereafter as “user 1”, who
has a set of 4 important POIs that he visits often (extracted by a clustering algorithm) plus some other
POIs that are less important to him. Therefore, we could define a mobility Markov chain composed
of 5 states, one for each important POI plus a last one that will contain all the infrequent POIs. Thus,
we have P = {p1, p2, p3, p4, p5}. Suppose now that we have been able to learn the following mobility
Markov chain (Figure 1) for this individual from his trail of traces. As additional information, in this
Markov chain each state also has a weight associated to it in the form of an integer. We will see how
to compute explicitly this weight in Section 4.3 but let suppose for now that this weight is given and
is related (but not directly proportional) to the time spent by an individual in this state. As such
the weight of a state gives an indication of the importance of a state and the states are ordered in
decreasing importance of their weights, except the last state that is composed of all the infrequent
POIs and his weight is not considered as meaningful.

Simply by looking at the structure of the Markov chain, it is easy to realize that the state p1 is the only
one that can be reached from all states. Moreover, this happens often with a relatively high probability
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(except from state p5). If we combine these observations with the high weight of state p1, then we
can infer with a relatively good confidence that p1 might be the “home” of user 1. Afterwards, if
we want to identify the place of “work” of user 1 and considering as a rule of thumb that “people
often go from home to work and vice-versa”, we can infer that state p2 is a good candidate to be the
“work” (which is also corroborate by the high weight of this state). Regarding state p3, we can see
that it is either reached from home or work and that a transition leaving this state is likely to take
user 1 back to home. Applying now the rule of thumb that “at the end of the afternoon people often
go to sport after work before coming back to home”, we can infer that state p3 is a place where user
1 plays sport on a regular basis. Finally, state p4 can only be reached from home and can only lead
back to home, therefore it makes a good candidate for an activity done on a regular basis during the
week-end such as leisure or shopping to a nearby supermarket for instance. To summarize, we can
attach the semantic label “home” to p1, “work” to p2, “sport” to p3 and “leisure” to p4 and by default
“infrequent POIs” to p5. Taking into account these labels and disregarding the weight of the states,
we can now equivalently represent the mobility Markov chain of user 1 as the following transition
matrix.

P1 - Home P2 - Work P3 - Sport P4 - Leisure P5 - Inf. POIs
P1 - Home 0.321 0.469 0.049 0.037 0.124
P2 - Work 0.86 0.093 0.047 0.0 0.0
P3 - Sport 0.714 0.143 0.143 0.0 0.0

P4 - Leisure 1.0 0.0 0.0 0.0 0.0
P5 - Inf. POIs 0.2 0.02 0.0 0.0 0.78

Figure 2: Mobility Markov chain of user 1 represented as a transition matrix.

Figure 3: Mobility Markov chain of user 1 displayed on a real map.
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Moreover, we can also take the abstract structure of the mobility Markov chain and put it on a real
map (disregarding the “Infrequent POIs” state), which gives the following result (Figure 3). The mo-
bility Markov chain is a data structure representing the mobility behaviour in a compact yet accurate
manner and as such it can be used to perform several inference attacks. For instance, the states them-
selves directly represent the most significant POIs of an individual and therefore they can be used to
derive information about his center of interests. Moreover, if the adversary knows the current posi-
tion of the individual and if this position corresponds to a state of the Markov chain, he can predict
the next movement of the individual by randomizing over the transition probabilities leaving from
the current state. The same kind of reasoning can be used to predict the past locations visited by an
individual or even guess his actual position. If a semantic label can be attached to some states of the
mobility Markov chain (obtained for instance with the help of a reverse geocoding tool), then the mo-
bility behaviour can be analyzed in a much deeper way. Imagine for instance that the adversary has
been able to learn the mobility Markov chain of an individual and that he knows that this individual
is also contained inside a geolocated dataset that has been pseudonymized. The pseudonymity of
the individual can be lift fairly easily by finding inside the dataset the individual whose mobility
Markov chain is the most similar to the one learnt previously. Of course, this either requires to com-
pute a metric measuring how two different mobility Markov chains are similar to each other or to
evaluate the likelihood that a specific trail of traces is compatible with the Markov chain. It is even
possible to imagine to use the Markov chain as a generative model for synthetizing artificial data of
trail of traces.

4 GEoPrivacy Enhancing TOolkit (GEPETO)

In this section, we report on our ongoing work towards building a generic toolkit for evaluating both
sanitization methods and inference attacks on geolocated data. In particular, we introduce the ar-
chitecture of the toolkit and we describe some clustering algorithms, which can be used as inference
attack, and evaluate their efficiency for the identification of POIs, even after the application of sani-
tization mechanisms such as sampling and perturbation. We also describe an algorithm for learning
mobility Markov chains. All these algorithms are currently implemented within the toolkit.

4.1 Architecture of GEPETO

The global objective of GEPETO (for GEoPrivacy Enhancing TOolkit) [7] is to provide researchers con-
cerned with geo-privacy with means to evaluate various sanitization techniques and inference at-
tacks on geolocated data. GEPETO has an interface for the management of geolocated data and
offers several ways to manipulate this data such as sanitization mechanisms, inference attacks and a
visualisation tool to display this data on a world map. The main idea is to offer a generic and flex-
ible tool so that anyone can easily plug a new sanitization technique or inference attack. Moreover,
the utility and visualization components provide means to evaluate the benefits of sanitization with
regard to the success of inference attacks. To the best of our knowledge, there is almost no previous
work that have tried to integrate all these features into a unified approach, with the exception of tools
developed within the GeoPKDD project (and now the subsequent MODAP project) [8]. Another no-
table exception is [21] that tries to model formally the knowledge of the adversary with respect to the
locations of individuals, and the possible counter-measures that these individuals might apply.

GEPETO is designed following a multi-layer architecture with the intended goal of making the sys-
tem functional, efficient, scalable, easily modifiable and reliable. First, the data layer is a set of classes
managing the communication with the database server for inserting, updating and deleting geodata.
A control layer is in charge of the presentation, the local management and control of the data and
provides a model of the data. The application layer is where the utility functions, the inference at-
tacks and sanitization techniques are implemented. Finally, the visualization layer constitutes the
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graphical user interface of GEPETO in which the user can load geolocated data, apply inference at-
tacks and sanitization mechanisms and visualize the corresponding results. This layered architecture
is targeted to provide a clear separation between data access and data presentation, so that it is easy
to implement new algorithms in the application layer without worrying about how the control and
the presentation layers will access and visualize data. In GEPETO, the presentation layer uses exter-
nal web-services for the visualization of the data such as Google Maps or Yahoo Maps. The design
choices behind this architecture imply both benefits and drawbacks; GEPETO cannot be used offline
as it needs access to the database server as well as to the Internet in order to visualize data, but the
implementation and maintenance are handled more easily this way, with a clear separation between
the database and the visualization parts.

4.2 Description of the Clustering Algorithms

We describe thereafter succinctly the clustering algorithms that we are currently implemented within
GEPETO and that we have evaluated during our experiments.

• Density-Joinable cluster (DJ Cluster) [24] is a clustering algorithm taking as input a minimal num-
ber of points minpts, a radius r and a trail of mobility traces M . This algorithm works in three
phases. First, the preprocessing phase discards all the moving points (whose speed is above ε,
for ε a small value) and then, squashes series of repeated static points into a single occurrence
for each series. The speed of each point is computed by measuring its Euclidian distance di-
vided by its time difference with its predecessor. Then, the second phase clusters the remaining
points based on neighbourhood density. More precisely, the number of points in the neigh-
bourhood must be equal or greater than minpts and these points must be within radius r from
the centroid of a set of points. Finally during the last phase, the algorithm merges the clusters
which share at least one common point.

• Density-Time cluster (DT Cluster) [14] is an iterative clustering algorithm taking as input a dis-
tance threshold d, a time threshold t and a trail of mobility traces M . First, the algorithm starts
by building a cluster C composed of all the consecutive points within distance d from each
other. Afterwards, the algorithm checks if the accumulated time of mobility traces within range
is greater than the time threshold t and created a cluster added to the list of POIs outputted if
it is the case. Finally as a post-processing step, DT Cluster merges the clusters whose centroids
are less than d/3 far from each other.

• Time-Density cluster (TD cluster) is a novel clustering algorithm inspired from DT Cluster. The
main motivation behind this algorithm was to design a clustering algorithm inspired from DT
clustering algorithm but more resilient to distortion. The TD clustering algorithm takes as input
parameters a radius r, a time window t, a tolerance rate τ , a distance threshold d and a trail
of mobility traces M . The algorithm starts by building iteratively clusters from a trail M of
mobility traces that are located within the time window t. Afterwards, for each cluster, if a
fraction of the points (above the tolerance rate τ ) are within radius r from the centroid, the
cluster is integrated to the list of clusters outputted, whereas otherwise it is simply discarded.
Finally, as for DT Cluster, the algorithm merges the clusters whose centroids are less than d far
from each other. See Algorithm 1 for a brief description of this method.

4.3 Learning Mobility Markov Chains

In this section, we describe an algorithm for learning mobility Markov chains that we have imple-
mented within GEPETO. At a high level, the algorithm (Algorithm 2) starts (line 1) by applying a
clustering algorithm on a trail of traces of an individual in order to identify clusters of locations that
are significant. Then, in order to reduce the number of resulting clusters, the algorithm merges clus-
ters whose medoids are within a predefined distance d of each other (line 2). This merging is not
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Algorithm 1 TD clustering algorithm
Require: Trail of (mobility) traces M , time window t, radius r, tolerance rate τ , distance

threshold d
1: Initialize N has being the number of records in the trail of traces M (i.e. M.length) and
cumulT ime = 0

2: Set L, the list of POIs found, has being the empty list
3: Create a empty cluster C
4: for i = 0 to N − 1 do
5: cumulT ime = cumulT ime+ (M [i+ 1].time−M [i].time)
6: if cumulT ime ≤ t then
7: Add the mobility trace M [i] to cluster C
8: else
9: Compute the centroid of C

10: nbPtsOut = 0
11: for j = 0 to C.nbP ts do
12: if distance(C[j], C.centroid) > r then
13: nbPtsOut = nbPtsOut+ 1
14: end if
15: end for
16: if nbPtsOut/N < τ then
17: Add the cluster C to L
18: end if
19: Reset cumulT ime to 0 and create a new empty cluster C
20: end if
21: end for
22: Merge clusters of L whose distance between centroids is less than d
23: return L, the list of POIs discovered (which are effectively the centres of the clusters)
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Algorithm 2 Mobility Markov chain learning algorithm
Require: Trail of (mobility) traces M , merging distance d, speed threshold ε, time interval

threshold mintime
1: Run a clustering algorithm on M to learn the most significant clusters
2: Merge all the clusters that are within d distance of each other
3: Let listPOIs be the list of all remaining clusters
4: for each cluster C in listPOIs do
5: Compute the time interval and the density of C
6: end for
7: for each cluster C in listPOIs do
8: if C.time interval > mintime then
9: Add C to freqPOIs (the list of frequent POIs)

10: else
11: Add C to infreqPOIs (the list of infrequent POIs)
12: end if
13: end for
14: Sort the clusters in freqPOIs by decreasing order according to their densities
15: for each cluster Ci in freqPOIs (for 1 ≤ i ≤ n− 1) do
16: Create a state pi in the mobility Markov chain
17: end for
18: Create a state pn representing all the clusters within infreqPOIs
19: Let M ′ be the trail of traces obtained from M by removing all the traces whose speed is

above ε
20: for each mobility trace in M ′ do
21: if the distance between the trace and the state pi is less than d and the state pi is the

closest state then
22: labelled the trace with “pi”
23: else
24: labelled the state with the value “unknown”
25: end if
26: end for
27: Squash all the successive mobility traces sharing the same label into a single occurrence
28: Compute all the transition probabilities between each pair of states of the Markov chain
29: return the mobility Markov chain computed
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performed in an agglomerative manner but rather a first pass is make on the clusters to determine
which clusters are within d-distance from each other and then they are merged within a single global
step. Each resulting cluster can be considered as a POI, for instance by taking the centroid or the
medoid of the cluster to be the physical location of this POI. For each cluster (lines 4 to 6), we com-
pute the number of mobility traces inside the cluster (which we call the density of the cluster) and
the time interval (measured in days) between the earliest and the latest mobility traces of the cluster
(line 5). The POIs (i.e. clusters) are then split (lines 7 to 13) into two categories; the frequent POIs
that correspond to POIs whose time interval is above or equal to a certain thresholdmintime and the
infrequent POIs whose time interval is below this threshold mintime. In the set of frequent POIs (line
14), we sort the POIs by decreasing order according to their densities. Therefore, the first POI will be
the denser and the last POI the less dense.

Now, we can start to build the mobility Markov chain by creating a state for each POI within the set
of frequent POIs (lines 15 to 17) and also a last state representing the set of infrequent POIs (line 18).
As evoked in Section 3, each state is then assigned a weight that we set to its density. Afterwards (line
19), we come back to the trail of traces that have been used to learn the POIs and we remove all the
moving points (whose speed is above ε, for ε a small value). Then, we traverse the trail of traces in a
chronological order (lines 20 to 26) labeling each of the mobility traces either with the tag of closest
state (POI) of the mobility Markov chain (line 22) or with the tag “unknown” if the mobility trace
is not within d-distance of one of the frequent or infrequent POIs (line 24). From this labeling, we
can extract sequences of locations that have been visited by the individual in which all the successive
mobility traces sharing the same label are merged into a single occurrence (line 27). For example, a
typical day could be summarized as the following sequence “p1(home)⇒ p2(work)⇒ p3(sport)⇒
“unknown′′ ⇒ p1(home)”, which is quite similar in spirit to the concept of semantic trajectory [2,27].
From the collection of sequences extracted, we can estimate the transition probabilities between the
different states of the mobility Markov chain by counting the number of transitions between each pair
of states and then normalizing these probabilities (line 28). If we observe a subsequence in the form
of “pi ⇒ “unknown′′ ⇒ pi” then we increment the count from the state pi to itself (which translates
in the graph representation by a self-arrow).

5 Experimentations

For the sake of demonstration, we begin by illustrating how GEPETO can be easily used to infer
some private data about the taxi drivers of San Francisco, such as their home address for example.
This geolocated data is available on the Crawdad repository. At first, GEPETO can simply be used
to visualize the various mobility trails, and to characterize the geolocated data. When visualizing the
data on the San Francisco map, one can easily recognize some hotspots, such as the San Francisco
International Airport or various train and taxi stations. These hotspots being places where the taxi
drivers usually wait for customers during some period of time, many traces correspond to plots on
these spots. GEPETO can thus be used to “manually” perform inference attacks by visualizing and
mining geolocated data.

5.1 Playing with Heuristics

The first step was to explore the use of heuristics. For instance, by considering that the beginning and
ending locations of the taxi drivers, for each working day, might convey some meaningful informa-
tion. This is the purpose of the begin and end location finder inference attack [7]. This attack is a simple
heuristic assuming that the first and last recorded locations in a working day correspond to the de-
parture and arrival points from a POI. The intuition is that when there is no mobility trace measured
during a period longer than a given time threshold τ , this means that the individual had a “mobility
break” and the place where he took this break is likely to be a POI. If τ is chosen sufficiently large

TRANSACTIONS ON DATA PRIVACY 4 (2011)



Show Me How You Move and I Will Tell You Who You Are 117

(e.g., 6 hours), this POI may be the home of an individual where he went to sleep after his work. First,
we parse the mobility trails by looking for such breaks and extract the mobility traces that occurred
right before and right after.

We must say that this attack has been very fruitful. A first interesting inference was the identification
of location of the taxi company main parking. Indeed, many taxi drivers depart and arrive to this
location after their working day, as they park their cab at the company headquarters. We were able to
formally verify this statement simply by using the San Francisco Yellow Pages. The second category
of statements that could be inferred from this attack directly concerns private information of the
individual taxi drivers12. During this study, we examined the trails of 90 individual taxi drivers
chosen at random in the dataset. We used GEPETO to visualize the data of these 90 taxi drivers after
applying the begin and end location finder inference attack, manually picking those whose geolocated
data seemed the most vulnerable. For 20 of these 90 taxi drivers, the visualization of the resulting
data result in a narrow neighbourhood for their homes with a pretty high confidence. Note however
that, as we do not have the real addresses of the taxi drivers, we were unable to formally validate
these statements. However, we were able to some public data sources, such as Google Maps and
Street View, to validate some of the inferred data. Indeed, for 10 of the 90 taxi drivers checked, the
attack resulted in an address (or a small portion of a street) where the taxi was parked during most
of the breaks. This address is most probably the home address of the taxi driver. Figure 4 shows
the result of a successful attack, together with a Google Maps view and a StreetView of the address.
For the remaining 70 taxi drivers examined, the begin and end location finder inference attack simply
already identified hotspots (taxi stations, . . . ) that were already known.

Figure 4: A successful begin and end location finder inference attack.

12It is worth noting that for protecting their privacy, we blurred their address. However, the interested reader
can obviously find the actual information by applying the same algorithms we did on the original dataset.
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5.2 Experimenting with Clustering
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Figure 5: Precision-recall with sampling.

The next step was to implement two clustering algorithms described in the literature (Density-Joinable
Cluster [24] and Density-Time Cluster [14]) and then to compare them with the Begin-end heuristic
and to our own novel clustering algorithm (Time-Density clustering).

These four algorithms (the Begin-End heuristic and the DJ, DT and TD clustering algorithms) were
implemented within GEPETO and applied to the taxi dataset for identifying POIs. We used both the
original and sanitized versions of the taxi dataset to evaluate the resilience of the inference attacks
against sanitization. More precisely, we applied both sampling and perturbation techniques (cf. Sec-
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Figure 6: Precision-recall with perturbation.

tion 2.4) with various ranges of parameters. In each situation, we evaluate the recall and precision of
the produced POIs.

This recall-precision evaluation requires to be able to judge whether or not a POI is “correct”. To
automatize this process, we defined 6 areas in San Francisco that make good candidates for real POIs
and, which are at the same time generic enough: the taxi company parking lot, the main train station,
the airport, the city center and three entertainment areas (the Castro district, Fisherman’s Wharf
and the Golden Gate recreational park). The precision is defined as the ratio between the number of
correct POIs and the total number of POIs returned by an algorithm. In our experiments, a POI is
considered “correct” if it falls inside one of the 6 ground truth areas. The recall is the ratio between
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the number of area detected (i.e. hit by at least one POI) and the total number of areas. According
to these definitions, an algorithm randomly generating many POIs would have a high recall and a
low precision, as it would probably identify all the areas but many POIs would fall outside many of
them. An “ideal” algorithm, displaying a high recall ad high precision, would generate 6 POIs, one
for each area.

Figure 5 measures the recall-precision trade-off of the 4 algorithms against a sampling technique.
We also evaluated “Natural”, a naı̈ve algorithm that directly outputs all the points of the dataset as
POIs, which results in a low precision but a high recall. In Figure 6, the evaluation is performed for
the 4 algorithms against random perturbation. These experiments have shown that the Begin-End
heuristic has an excellent recall, due to the high number of POIs generated and an average precision
but is sensitive to sampling. Indeed, when the sampling rate reaches the size of the time window of
the begin-end heuristic, it considers all the traces as POIs and is as precise as the “Natural” algorithm.
On the other hand, the begin-end heuristic is not too impacted by perturbation and even under large
distortion, it stays one of the more precise algorithm. DJ Cluster displays a terrible behaviour in the
presence of sampling, and even a worst one with respect to distortion. Indeed, the first phase of the
algorithm removes the moving traces to focus on those where the individual is not moving. With
sampling, the probability is high that static traces are removed by the sanitization process. Moreover,
under the action of perturbation, every single trace implies some movement. Henceforth, all the
traces are removed during the first phase of the algorithm and DJ Cluster does not output any POI.
DT Cluster is highly resilient against sampling, with a high recall and the best precision, but displays
a bad recall against distortion. However, the precision of the remaining POIs is still good under
moderate distortion. Finally, TD Cluster seems to be a good compromise. For instance, its behaviour
is comparable or just below DT Cluster in the presence of sampling with average to good recall and
precision. Moreover, under distortion, it seconds the Begin-end heuristic with an average recall and
a high precision.

To summarize, the efficiency of the inference attack depends strongly on the sanitization process that
has been performed on the target data. For instance, in the presence of sampling, the DT cluster
algorithm offers a high recall and a good precision, but its performance degrades significantly with
respect to distortion. Therefore, if the sanitization process is only based on sampling, then the adver-
sary can directly choose the DT cluster algorithm for performing an efficient inference attack. On the
other hand, TD cluster seems to be a reasonable alternative for both sampling and distortion as as its
performance remains good under these two type of perturbations.

5.3 Semantic Analysis of Mobility Behaviours

In principle, any clustering algorithm might be a valid candidate for building the initial clusters
during the first part of the algorithm but in practice we have observed that out of the 3 clustering
algorithms mentioned in Section 5.2, DJ cluster was the one that leads to the most meaningful results.
In the rest of the section, we report on experiments conducted on mobility data gather through the
Phonetic project [18]. The aim of this project is to build realistic mobility models out of real data
as well as to study the privacy risks associated with this type of data. Therefore, the goals of this
project are closely related to the ones of GEPETO. In this project, Nokia 5800 smartphones have been
distributed to registered participants. These smartphones are equipped with a a GPS chip, an ac-
celerometer, a compass, a WiFi and a bluetooth interface. The Phonetic software installed on the
smartphones measures every minute the GPS position of the owner of the smartphone as well as the
bluetooth neighbourhood. Actually, the example used in Section 3 to illustrate the concept of mobil-
ity Markov chain was learnt from the mobility data collected from one of the user of Phonetic. In the
rest of this section, we discuss the mobility Markov chains learnt from three other users of Phonetic
that we refer thereafter as “user 2”, “user 3” and “user 4”. Contrary to the previous quantitative
experiments conducted on the mobility traces of the taxi drivers of San Francisco, the following eval-
uation has a more “qualitative flavour” in the sense that we really focus on the study of the mobility
of a few individuals through their mobility Markov chains. The mobility Markov chains have been
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learnt with a merging distance d of 200 meters and a value of the time interval threshold mintime
of 25 days. Previously, we have also tried to learn the mobility Markov chains of taxi drivers but as
we expect the Markov chains we obtained were quite complex and difficult to interpret, with a big
number of states mainly corresponding to hotspots in the city of San Francisco frequently visited by
tourists.

Figure 7: Mobility Markov chain from user 2.

Figure 7 shows the mobility Markov chain learnt from the trail of traces of user 2. Contrary to user
1, the number of frequent POIs is much higher, thus indicating potentially a more complex mobility
behaviour. However, it remains fairly easy to identify the home (state p1) as the POI that has the
biggest number of arrows pointing to it. The work (state p2) can also be inferred straightforwardly
by looking at the transition leaving from the home that has the heaviest weight. Some states such as
p3, p4, p5, p6 and p7 are more difficult to interpret although they both have a high density. However,
it is still possible to use a reverse geocoding tool such as Googlemaps to find the name of the closest
physical address associated with the coordinates of this states. For state p3, we obtain the address
of a house in a small village approximately 150 kilometers from the home of user 2, which could
be indicative of the home of some relative. The confidence in this guess could be strengthen if state
p3 is mainly visited during the week-end or holidays periods. For state p4, the physical address
corresponds to a plaza in the middle of the city in which user 2 lives, which could be for instance a
frequent rendezvous where user 2 regularly meets with his friends. States p5 and p7 are located inside
the university and can be accessed from home or work, which could be an indication that user 2 is
either a student or a professor. Finally, state p6 corresponds to the entrance of a park in a residential
area close to which there are a few shops and schools and therefore is more ambiguous and difficult
to interpret.

As shown by Figure 8, user 3 seems a priori to have a very complex mobility behaviour. We can start
the analysis of this mobility Markov chain by labeling the state p1 as “home” but then we are faced
with the dilemma that state p2 does not seem to be a valid candidate for “work” as the transition
probability from state p1 to p2 is very low. Rather, it seems that state p3 is a more likely candidate
although, it is less dense that p2, as the transition probability from p1 to p3 is greater than the tran-
sition probability from p1 to p2. To clarify this situation, we have used the reverse geocoding tool
and observed that actually the states p1 and p2 are located in two different countries. Therefore, in-
stead of being considered as “home” and “work”, they should be labelled as “home from country 1”
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Figure 8: Mobility Markov chain from user 3.

and “home from country 2”. Taking this new knowledge into account, we can label as “work from
country 1” and “work from country 2”, respectively the states p3 and p5 as they can be reached by
the heaviest transitions leaving from states p1 and p2. We can now separate the states depending
on whether or not they correspond to POIs of “country 1” or “country 2”. Of course, this can be
done straightforwardly with the help of a reverse geocoding tool but instead this could be learn also
directly from the structure of the mobility Markov chain. For instance, if we start a random walk
from state p1 (home of country 1) for a few steps then we are likely to end up in one of the following
states: p3, p4, p6, p7, p10 or p11. On the other hand, if we were to begin the random walk on state p2,
after walking for a few steps we have a high probability of ending in state p5, p9 or p12. This means
that from the structure of the graph we could potentially infer the existence of two highly connected
components, one for “country 1” composed of states p1, p3, p4, p6, p7, p10 and p11 and the other for
“country 2” composed of states p2, p5, p9 and p12. State p8 seems to be in none of the two components
and indeed a query to the reverse geocoding tool reveals it to be a house in a small village located
in “country 2” but quite far from the “home of country 2”. As for user 2, this may be the home of a
relative or close friend of user 3 that he visits either before or after going to “home of country 1” or
“home of country 2”. By using the reverse geocoding tool and combining it with the results of the
mobility analysis, we can find a name for each state of the mobility Markov chain of user 3 (except
state p6) as illustrated by the following table.
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State Label Country
p1 Home of country A A
p3 Work of country A A
p4 Sport A
p6 ??? A
p7 Parking A
p10 Restaurant A
p11 Nightclub A
p2 Home of country B B
p5 Work of country B B
p9 Shopping mall B
p12 Plaza in city center B
p8 House of relative or close friend B
p13 Unf. POIs

Finally, we finish by analysing the mobility Markov chain of user 4 (Figure 9). From the weight of the
different states of the Markov chain, it is easy to see that user 4 is an individual that has contributed
so far very seldom to the Phonetic project and thus displays a very simplified mobility behaviour.
Therefore, there is not much to be inferred from the his Markov chain except that state p1 is likely
to be his “home” and state p2 should be his “work”. If we query the reverse geocoding tool with
the coordinates of p3, we obtain a street in the town center around which there is a high number of
restaurants.

Figure 9: Mobility Markov chain from user 4.

We have also tested conducted some preliminary experiments for evaluating the behaviour of the
mobility Markov chain under some sanitization procedures such as perturbation and downsampling.
Basically, we have observed that the mobility Markov chain is relatively robust and that even under
significant perturbation or a low rate of sampling, it is still possible to identify the home and the place
of work of an individual simply by looking at the structure of the chain. However, it can happen that
the less dense states (i.e. POIs) are not preserved under high perturbation and also that the transition
probabilities are slightly different from the original ones. This is especially true in the situation in
which some states are not preserved and the probability mass of the transitions pointing to/leaving
from them is redistributed over the other existing transitions.
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6 Conclusion

From the point of view of the adversary, these experiments show that the behaviour of the clustering
algorithms can diverge significantly depending of the circumstances, for instance when sanitization
is applied. On the other hand from the point of view of the data curator looking for the best saniti-
zation method to protect privacy while preserving some utility in the geolocated datasets published,
the conclusion is different. For instance, both the DT and TD clustering algorithms are quite resilient
to sampling. Moreover, regarding perturbation, it seems that no clustering algorithm (among those
we evaluate) performs a better precision than 50% under a distortion of magnitude 400 meters. A
fundamental interrogation is whether or not the data remains useful with such a high level of dis-
tortion. As proof of concept, these experiments have demonstrated the usefulness of GEPETO as
a tool to evaluate various algorithms for attacking or sanitizing geolocated data, but of course this
is only a first step and more exhaustive experiments, with more sophisticated inference attacks and
sanitization methods, remain to be done. Moreover as briefly highlighted previously, there is a strong
interplay between the geolocated data of an individual and its social network in the sense that knowl-
edge about one can help infer new information about the other (and vice-versa). We plan to investigate
the inference attacks combining location and social knowledge and integrate them in GEPETO.

To summarize, rather than simply applying a particular sanitization mechanism with the hope the
privacy guarantees offered will be sufficient, curators can used GEPETO to guide them on how to
sanitize geolocated data before they release it publicly and to quantify how the sanitized data will be
robust in the face of particular inference attacks. Although this method is not perfect as it does not
capture all the possible inference attacks, GEPETO can be used to assess the privacy risks incurred
by releasing a particular sanitized dataset as well as the utility remaining in this data. An analogy
could be with be made with the security community in which usually when a particular information
system is deployed (or even before), its security level is evaluated by using methods such as software
for automatically detecting vulnerabilities or the use of red team. In order to avoid a “privacy by
obscurity” approach, we should assume that the adversary knows the particular sanitization process
used by the curator but that he does not have access to the internal random coins used by the curator
during the randomization process.

We have also seen that the mobility Markov chain is a highly compact yet relatively precise repre-
sentation of the mobility behaviour of an individual. By analyzing the structure of the Markov chain
(and this even without knowing the coordinates of its states), it is sometimes possible to derive non
trivial information about an individual such as his home (i.e. the state that can be reached from al-
most all the states) and his work (i.e. the state that can be reached with the heaviest transition from
the home). Moreover, more advanced knowledge might also be derived by looking for particular
patterns in the graph such as the presence of a particular cycle or the existence of two different highly
connected components that can indicate two different geographical areas. In the future, we plan to
investigate in a more systematic and theoretical manner the knowledge that can be inferred from the
mobility Markov chain of an individual. We also want to integrate the time dimension directly into
account in the design of the mobility Markov chain (and not indirectly just by looking at the transi-
tions between states). For instance, more information about time could be integrated on the edge in
the form of time interval during which the user is likely to take this transition or on the states to set
a probability distribution of the different periods of the day representing how likely the user will be
located on this state.

Being able to quantify privacy with respect to a particular geolocated dataset is another fundamental
issue as it can be used for instance to measure the privacy gained by using protection mechanisms
(such as sanitization algorithms). Despite several propositions that can be found in the literature, the
problem of finding relevant privacy metrics for geolocated data is still open for now. For instance,
is an individual hidden inside a crowd gathered in a small area really more protected in terms of
privacy than an individual alone in the middle of a large area such as a desert? Or should we rather
define privacy according to how much the behavior of an individual is indistinguishable from the
behaviors of other (or a group of) users? One possibility is to study how anonymity is defined in
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anonymous communication (e.g. the notion of anonymity set) [23] and how this applies to geolocated
data. Taking into account unlinkability in the privacy metric seems to be particularly crucial in this
context. Indeed, if the adversary can gather and link the movements of an individual during some
period, he can build a complete profile of his behaviour if combined with other inference attacks.

In this paper, we have mainly focused on describing how to protect geoprivacy with sanitization
procedures but of course other approaches are also possible. For instance by using cryptographic
primitives, ubiquitous systems can perform computations which depend on their geolocated data in
a secure manner such that only the output of the global computation is learnt (and nothing else).
Moreover, access-control mechanisms can be used to control how an external entity accesses the geolo-
cated data of individuals within a system. By auditing queries, it also can decide whether or not it
should disclose more information since this could cause a privacy breach. In some sense, these two
approaches are complementary to the sanitization one.
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