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Abstract. Certain methods of analysis require the knowledge of the spatial distances between
entities whose data are stored in a microdata table. For instance, such knowledge is necessary and
sufficient to perform data mining tasks such as nearest neighbour searches or clustering. However,
when inter-record distances are published in addition to the microdata for research purposes, the
risk of identity disclosure has to be taken into consideration. In order to tackle this problem, we
introduce a flexible graph model for microdata in a metric space and propose a linkage attack
based on realistic assumptions of a data snooper’s background knowledge. This attack is based
on the idea of finding a maximum approximate common subgraph of two vertex-labelled and edge-
weighted graphs. By adapting a standard argument from algorithmic graph theory to our setup, this
task is transformed to the maximum clique detection problem in a corresponding product graph.
A toy example and experimental results show that publishing even approximate distances could
increase the risk of identity disclosure unreasonably. We will concentrate on the perturbation of
the distances; the anonymization of the vertex labels will play only a minor role in our simulations.
Since the current version of our attack is not scalable, it can be launched only on datasets of sizes
up to few thousands records. In the future we intend to explore possible ways of pushing further
the limits of our approach.

Keywords. Anonymity, identity disclosure, linkage attack, maximum approximate common sub-
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1 Introduction
Enriching microdata with spatial information opens up numerous additional approaches for
analysis. In the area of epidemiology, this insight goes back at least to the middle of the 19th
century when John Snow identified a contaminated water pump in London as the source of
a cholera outbreak by linking the cases of mortality to their location and visualising these
locations and the positions of surrounding water pumps on a map [36].
In recent years, spatial analysis techniques have become increasingly attractive in the so-

cial sciences as well [32]. However, when personal microdata containing sensitive informa-
tion (e.g., gathered in a survey or health study) are published for research purposes, the
anonymity of the individuals has to be guaranteed. It has been pointed out in [16] that
location is often one of the critical pieces of information for a successful re-identification
attack. Therefore, in praxis usually only microdata that contain spatial information in an
aggregated form are released, which restricts the choice of applicable techniques for analysis
drastically.
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In particular, distance calculations that are based on aggregated data become difficult and
imprecise [3], especially for entities that are spatially close to each other. Since many data
mining techniques and methods in spatial analysis require accurate distance computations,
it is necessary to investigate the extent to which additionally published (approximate) inter-
record distances influence the risk of identity disclosure and how a possible non-acceptable
increase of this risk can be prevented. Our work presented in this article provides a novel
approach for tackling these questions.

Contributions of the paper
We introduce a flexible natural graph model for microdata with known inter-record distances.
The search for a maximum common subgraph between two such graph models is interpreted
as a novel kind of linkage attack on such microdata. We discuss the relative merits of our
method in comparison to the usual linkage attacks on the basis of a small-scale example
(Example 9 in Section 4).
Furthermore, in the special case of geographical distances, it is shown that, on the basis

of simulated data, a non-negligible risk of identity disclosure exists if N (0, σ2)-distributed
Gaussian noise is added to the input coordinates for too small values of σ. For larger values
of σ (which lead to sufficiently anonymized data), however, the data become nearly useless
for further analysis. These results reflect a trade-off between data utility and disclosure risk
through the proposed attack.
Note that we will focus on the effect of distance perturbations during our experimental

study. The effect of quasi-identifier anonymization (via the concept of k-anonymity) will be
investigated also in Section 5 but plays only a minor role.

Organisation of the paper
In Section 2, we refer to related work. The preparatory work is given in Section 3 as well as
a graph model for microdata in a metric space which forms the basis of the graph theoretic
linkage attack introduced in Section 4. In Section 5, this attack is evaluated by means of a
simulation study. In this experimental section, the scalability of our attack is discussed as
well. We conclude and discuss the possible directions for future research in Section 6.

2 Related work
Statistical disclosure control and privacy preserving data mining
As already indicated in the introductory section above, the original motivation for the work
presented in this article stems back to the wish to make the wide variety of distance-based
methods (e.g., from spatial statistics) applicable for microdata that are published for scien-
tific purposes. Since it is intuitively compelling that naive release of the exact distances be-
tween individuals can increase the risk of deanonymization, the question of interest, however,
is how the knowledge of approximate distances might change the risk of identity disclosure,
i.e. the data snooper’s chance of success.
In general, the analysis of such deanonymization attacks on microdata and the development

of tools for their anonymization is a central topic of statistical disclosure control [22]. It is
universally acknowledged that a necessary but insufficient first step during the process of
anonymization consists in the removal of all attributes that can be used to identify an
individual entity unambiguously (this step is usually referred to as deidentification). Such
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attributes (e.g., social insurance number) are called (direct) identifiers, in contrast to
quasi-identifiers, which do not have the power to nullify an individual’s anonymity on their
own, a distinction which has to be ascribed to Dalenius [13].
By using a combination of quasi-identifiers, however, it might be possible to assign an

entity from the underlying population to a specific record of a published microdata file
unambigously. For example, in [37] it was shown that based on 1990 US census data, 87% of
the population of the United States are uniquely determined by their values with respect to
the quasi-identifier set {5-digit ZIP code, gender, date of birth}. This fact motivates
a mode of attack that is commonly referred to as linkage attack [15]: In this scenario, it
is assumed that a data snooper has access to an external auxiliary microdata file (called
identification file) containing both direct identifiers and quasi-identifiers as attributes. By
making use of the quasi-identifiers, the snooper attempts to identify entities by linking
records from the identification file to records from the published microdata file (termed
target file). A real-life example of linkage via quasi-identifiers is due to Sweeney [38]: She
was able to detect the record corresponding to the governor of Massachusetts in a published
health data file by linkage with a publicly obtainable voter registration list.
Even though theoretical results on linkage attacks were recently obtained in [30], the con-

cept of k-anonymity had already been proposed as a remedy against linkage attacks in [35].
The basic idea of k-anonymity is to modify the records in the released microdata such that
every record coincides with at least k− 1 other records with respect to the quasi-identifiers.
For this reason, an unambiguous linkage between the identification and target file will not
be possible. The graph theoretic linkage attack introduced in Section 4 contains the classical
linkage attack via quasi-identifiers as a subroutine, however, it provides a way to resolve at
least some of the ambiguous matches.
Several papers on privacy preserving data mining have already discussed privacy issues

with respect to the distance-preserving transformations of microdata: However, only specific
kinds of distances have been considered (e.g., `1-distance in [34] or the Euclidean (i.e. `2-)
distance in [29]). Moreover, in these articles it is generally assumed that the considered
distances can be directly calculated from the microdata, whereas our focus is on microdata
enriched with supplementary distances between the entities that cannot be calculated from
the microdata itself. Thus, in our scenario, an attack can only be based on the distances
themselves and not on the knowledge of data from which they are calculated (e.g., perturbed
geographical coordinates).
In contrast, the attack proposed in this paper is not limited to a special distance function

but can be applied to any kind of distance function. For example, distances between partici-
pants of a health or social science survey could be either measured as geographical distances
or as travelling distances. The only assumption we make is that an attacker has the ability
to compute the considered distances as well.
Furthermore, a distance-preserving technique for the anonymization of binary vectors is

discussed in [24]. In contrast to our approach, in that article the distance information alone
is not assumed to increase the risk of identity disclosure.

Location privacy and geographical masks
There is a vast literature on the problem of identity disclosure when dealing with spatially
referenced data. The opportunities and challenges with regard to spatial data in the context
of social sciences are discussed in great detail in [20] and [21].
Articles [6] and [12] give illustrative examples of how naive publishing of spatially referenced

data can lead to a violation of anonymity: In both cases, the respective authors were able to
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reconstruct many of the original addresses successfully from published low resolution maps.
A currently flourishing branch of research deals with anonymization techniques for datasets
containing mobility traces of individuals [18] (e.g., obtained via mobile phone tracking).
This topic is usually referred to as location privacy [27].
In this article, however, we consider the deanonymization risk that arises from the knowl-

edge of the (approximate) distances between fixed spatial points assigned to the entities in a
microdata table. Various methods for the anonymization of geographic point data (not nec-
essarily taking additional covariates into consideration as in our case) have been discussed
under the term of geographical masks. [1] and [31] provide comprehensive outlines of the
existing methods.
A noteworthy method is due to Wieland et al. [40], who developed a method based on

linear programming that moves each point in the dataset as little as possible under a given
quantitative risk of re-identification. However, the aim of nearly all proposed anonymization
techniques for spatially referenced data consists in distorting the spatial distribution with
respect to the underlying geographical area as little as possible, whereas attempts predom-
inantly focusing on the preservation of distances have not yet been discussed in the context
of spatial data. It appears to be obvious that neglecting the underlying geographical area
might yield more accurate results regarding distance calculations.

Social network anonymization
The use of a graph model in this article might suggest a strong connection between our
approach and the methods discussed in the area of social network anonymization [41]. How-
ever, we model the microdata with known inter-record distances using a complete graph
with vertex labels and edge weights, which is a very specific model in contrast to the more
general graph models commonly used in social network analysis.
Indeed, the graphs modelling social networks are usually a long way off from being complete

and their edges are not usually weighted. For example, in [8] the underlying graph model
considers discrete edge labels instead of real valued weights only.
Furthermore, active attacks (consisting in the addition of nodes to the published network

by an intruder) as in [2] do not seem to be sensible when investigating the risk of identity
disclosure for published microdata. However, the active attack proposed in [2] is related
to the one in this paper because it also makes use of graph algorithmic building blocks. It
consists in the detection of a subgraph in a larger graph, whereas the attack in this paper
is based on finding the common subgraphs of two different graphs.

Pattern recognition
To the best of our knowledge, this paper is the first one to make use of a graph model for a
microdata file and the distances between its records. Finding a matching between two such
graph models constitutes the basic principle of the graph theoretic linkage attack proposed
in this article and is an often considered problem in the pattern recognition field and its
various areas of application (see [9] as a source providing an extensive outline).
Fundamental to our presentation is the article by Levi [28], which motivates to transform

the problem of finding the (maximum) common subgraphs of two graphs into a (maximum)
clique detection problem, and its adaption in [17] where the original approach by Levi has
been relaxed in order to deal with approximate common subgraphs as well. This transfor-
mation to the maximum clique detection problem is of particular interest due to its various
fields of application (e.g. biochemistry [17]). The problem of finding a maximum clique in a
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graph is known to be NP-hard [19] and a great deal of attention has been paid to the devel-
opment of techniques for solving this problem either exactly or at least approximately [5].
For the simulation study in Section 5 of this paper, we made use of the maximum clique
detection algorithm introduced by Konc and Janežič in [25]. Their algorithm is based on a
colouring algorithm with dynamical bound evaluation. A critical discussion of the scalability
of this algorithm with regard to our attack is given in Section 5 as part of our empirical
study on simulated datasets.

3 A graph model for microdata in a metric space

Preliminaries

A metric space is a pair (X, d), where X is a set and d is a (distance) function d : X×X → R
satisfying the following three conditions: (i) d(x, x) = 0 and d(x, y) > 0 whenever x 6= y,
(ii) d(x, y) = d(y, x) and (iii) d(x, y) ≤ d(x, z) + d(z, y).
We assume that the deduplicated microdata table T at hand contains information with

respect to an attribute set A := {A1, . . . , Am} about NT ∈ N entities from an underlying
population. The fact that the distances between the entities of T are known can be modelled
in mathematical terms by means of a function τ : [NT ] := {1, . . . , NT } → (X, d), i 7→ τ(i)
which maps the ith record/entity of T to a point τ(i) in a metric space X such that the
distance between records i and j of T is equal to dij := d(τ(i), τ(j)). The distances between
all the entities can then be stored in the N × N distance matrix D = (dij). Such a pair
(T,D) is hereafter referred to as microdata in a metric space.

Some terms from graph theory

Given a set S, we denote the set of its two-element subsets by [S]2. A (simple undirected)
graph G = (V,E) consists of a set V (whose elements are termed vertices) and a set E ⊆ [V ]2
of edges. The cardinality |V | of V is called the order of G. Two distinct vertices v and w of
V are adjacent if {v, w} ∈ E. The existence of an edge between v and w will sometimes be
denoted by vw ∈ E as a shorthand. A graph is called complete if any two of its vertices are
adjacent. A graph G′ = (V ′, E′) with V ′ ⊆ V and E′ ⊆ [V ′]2∩E is a subgraph of G = (V,E).
If E′ = [V ′]2 ∩ E holds, the graph G′ is called an induced subgraph of G or we say that the
subset V ′ of vertices induces G′ in G which is denoted by G′ = G[V ′]. A subset of the vertex
set V is a clique if the subgraph induced by these vertices is complete. A clique containing k
elements is termed a k-clique. A clique is maximal if it is not contained in a larger clique. A
clique is maximum if there is no other clique containing more vertices. Clearly, a maximum
clique is always maximal, but generally not vice versa. The notion of a vertex-labelled and
edge-weighted graph is of fundamental importance to the graph model for microdata in a
metric space introduced below. This notion is just a special case of the more general notion
of an attributed graph which is frequently used in the pattern recognition community [7].

Definition 1. Let LV be a set of vertex labels. A vertex-labelled and edge-weighted graph is
a four-tuple G = (V,E, λ, ω), where V is the vertex set, E ⊆ [V ]2 the edge set, λ : V → LV
the vertex-labelling function and ω : E → R a weight function which assigns real numbers
to the edges.
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The graph model

Let (T,D) be microdata in a metric space and NT the number of records in T as above.
An associated vertex-labelled and edge-weighted graph G = G(T,D) = (V,E, λ, ω) can
be defined as follows: Set V = {1, . . . , NT }, E = [V ]2 and define ωE : E → R via
ωE(ij) = dij := d(τ(i), τ(j)); the labeling function λV : V → LV assigns a certain part
of the information stored in T for a record to the corresponding vertex of the graph G (see
Example 2 below). Note that the simple undirected graph Gsimple := (V,E) obtained from
G by forgetting vertex labels and edge weights is the complete graph KNT with NT vertices.
This graph theoretical structure appears adequate for modeling microdata in a metric space:
Loops, i.e. edges linking a vertex with itself, are not necessary because dii = 0 for any vertex
i ∈ V and undirected edges are sufficient for reflecting the distance from the corresponding
edge weights due to the symmetry dij = dji of the distance matrix D = (dij). Obviously, it
would be easy to widen this model, e.g. by introducing directed edges, if this were necessary
for a specific application.

Example 2. Consider the imaginary microdata provided by Table 1 containing personal
microdata with respect to the attributes name, sex, birth location and year of birth
(yob). The function τ maps each individual to the geographic coordinates (longitude λ
and latitude θ in degrees) of the correspoding birth location with respect to the World
Geographic System WGS 84, i.e.

τ(1) = (−0.1198244, 51.51121) (Alice was born in London)
τ(2) = (2.3522219, 48.85661) (Bob was born in Paris)
τ(3) = (−3.7037902, 40.41678) (Eve was born in Madrid)
τ(4) = (13.4049540, 52.52001) (Walter was born in Berlin)

Computing pairwise distances between these points yields the following distance matrix D:

D = (dij) =


0 343.6 1264.0 930.9

343.6 0 1052.9 877.5
1264.0 1052.9 0 1869.1
930.9 877.5 1869.1 0

 .

The corresponding graph model is then given by V = {1, 2, 3, 4}, E = [V ]2 and the edge
weights are defined via ω(ij) = dij = dji. We define the vertex labelling function by
assigning the information regarding the attributes sex and yob to each vertex, i.e. formally,
we have λV : V → dom(sex)× dom(yob).

The resulting vertex-labelled and edge-weighted graph can be visualised as in Figure 1.
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name sex birth location yob
Alice f London 1978
Bob m Paris 1965
Eve f Madrid 1943

Walter m Berlin 1931

Table 1: Example microdata table. The ta-
ble contains the attributes name, sex, birth
location and yob.

344

1264

931

1053

877

1869

1978

1965

1943

1931

Figure 1: The graph model for the example
microdata. The attribute sex is indicated
by the colour of the vertex labels.

4 A graph theoretic linkage attack

Prerequisites for the attack

In order to make any kind of linkage attack with the objective of identity disclosure, we
have to at least presuppose that an appropriate external microdata file is available to the
data snooper.

Assumption 3. The snooper is in possession of an identification file containing direct
identifiers.

Under this assumption, classical linkage attacks based on comparisons considering the
quasi-identifiers of the identification and target file can be conducted. As already mentioned
in Section 2, in the literature on the deanonymization of microdata, these represent an
important mode of attack aimed at identity disclosure. In order to perform a linkage attack
that goes beyond the ordinary ones described above by also taking the information given by
the pairwise distances between the records into consideration, we have to expand the setup
by a second assumption.

Assumption 4. The snooper is able to calculate the distances between the entities in the
identification file.

Although in some cases Assumption 4 might not be fulfilled, it is easy to find examples of
when this would indeed be the case. For instance, when the target file containing survey
data is enriched by the geographic distances between the respondents’ residences, we assume
that the snooper can geocode the addresses of the individuals in the identification file and
calculate the corresponding distance matrix. In this example, there will be some dependence
on the methods used for geocoding and distance calculation, a fact which has to be considered
in the creation of an attack mode. Analogously, any modification of the distances in the
target file to be carried out by the data holder for the purpose of anonymization will have
to be taken into consideration.

Transactions on Data Privacy 8 (2015)



224 Martin Kroll

Approximate common subgraphs
Due to Assumptions 3 and 4, a data snooper can create a vertex-labelled and edge-weighted
graph as defined in Section 3 for both the target and identification file. At this step, the
snooper will only consider the common quasi-identifiers of both files for the definition of
the vertex labels because a comparison of records can only be based on such attributes.
Hereafter, the resulting graphs will be referred to as the target and identification graph.
Hence, classical linkage attacks consist in trying to find vertices in the target graph for

each vertex in the identification graph that result in matches for the accompanying vertex
labels. In the parlance of graph theory, this approach is equivalent to the search for common
subgraphs of order 1, a notion which will be made precise below. This course of action will
usually (e.g., if the target file satisfies k-anonymity for some k > 1) lead to ties, that cannot
be broken without extra information.
However, due to the additional information given by the edge weights in the graph model,

the snooper is able to search for complete common subgraphs of order > 1, which forms the
essence of our attack. It is intuitively apparent that taking edge weights into consideration
increases a snooper’s chances of evaluating the credibility of potential matches. For instance,
if we consider vertices v1, v2 in the target graph G1 = (V,E, λV , ωE) and w1, w2 in the iden-
tification graph G2 = (W,F, λW , ωF ) such that λV (v1) = λW (w1) and λV (v2) = λW (w2), we
observe coincidence regarding the vertex labels. If the corresponding edge weights ωE(v1v2)
and ωF (w1w2) are at least approximately equal (denoted by ωE(v1v2) ≈ ωF (w1w2)), this
fact will augment the credibility of the two matches (v1, w1) and (v2, w2). Conversely, a
large distortion with respect to the corresponding edge weights will reduce this credibility:
In this case, at least one of the considered matches should be false. These considerations
can easily be generalised to more than two matches and all accompanying edge weights. The
more potential matches preserve all the accompanying edge weights, the more the credibility
of all these potential matches will increase. This motivates the snooper to identify nearly
identical substructures in both graphs which are as large as possible.
We want to emphasize that we will use the distances between the records only as a means

for re-identifications and in particular to resolve ties that arise when only quasi-identifiers
are considered (throughout the paper we assume that the information given by the quasi-
identifiers only is not sufficient for re-identifications by the data snooper). However, we do
not deal with the case where the distance information itself is sensitive and needs to be
concealed (this will usually not be the case for databases arising in social or health surveys
where the location information is given by the present residence or the place of birth).1
As indicated above, it seems convenient to allow some deviation with respect to the edge

weights in this context due to deviations which cannot be circumvented by a snooper (as
mentioned in the special case of geographic distances above). All of these considerations
can be dealt with rigorously using the notion of an approximate common subgraph of two
vertex-labelled and edge-weighted graphs. This notion is made precise by means of the
following definition:

Definition 5. Let G1 = (V,E, λV , ωE) and G2 = (W,F, λW , ωF ) be two vertex-labelled and
edge-weighted graphs in the sense of Definition 1. An approximate common subgraph of G1
and G2 is given by subsets S ⊆ V , T ⊆W and a bijection ϕ : S → T such that the following
two statements are true:

1The following example might appear when tracking data of mobile phone users are published in an
anonymized manner: If the location indicates the current location at some time t and it is revealed that
Alice (who is married to Bob) is at the same place with David (who’s married to Alice’s best friend Carol),
then such information may be sensitive.
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(i) λV (s) = λW (ϕ(s)) for all s ∈ S.

(ii) ωE(s1s2) ≈ ωF (ϕ(s1)ϕ(s2)) for all distinct s1, s2 ∈ S.

The interpretation of ≈ in Definition 5 has to be made precise depending on the prevailing
situation and especially on the possible perturbations of the distances caused by the data
holder before publishing the microdata. This issue will be dealt with in detail in Example 9
in this section and the simulation study in Section 5. It would have certainly been possible
to allow some amount of deviation regarding the vertex labels as well by introducing a
similarity measure on the set of vertex labels. For example, if numerical values such as
height belong to the quasi-identifiers, one could allow some tolerance by permitting also
matches between records with height 185 cm in the identification file and height values in
the target file between 183 and 187 cm. In this paper, however, we do not deal with this
aspect. We require exact coincidence for the labels of two vertices to be matched since we
are primarily interested in the effect of how publishing (perturbed) distances influences the
risk of identity disclosure.

The product graph
In order to tackle the problem of finding approximate common subgraphs of two vertex-
labelled and edge-weighted graphs G1 and G2, we transform this problem to a clique detection
problem in an appropriately defined simple undirected graph G⊗, the product graph of G1
and G2.

Definition 6. Let G1 = (V,E, λV , ωE) and G2 = (W,F, λW , ωF ) be two vertex-labelled and
edge-weighted graphs as in Definition 1. The product graph G⊗ = (V⊗, E⊗) of G1 and G2 is
a simple undirected graph defined through

V⊗ = {(v, w) ∈ V ×W : λV (v) = λW (w)} and

E⊗ =
{
{(v1, w1), (v2, w2)} : v1 6= v2, w1 6= w2 and ωE(v1v2) ≈ ωF (w1w2)

}
.

The announced transformation of the maximum approximate common subgraph problem
into the maximum clique problem is achieved via the following theorem:

Theorem 7. Consider the setup of Definition 6. There is a one-to-one correspondence
between the approximate common subgraphs of order k and k-cliques of G⊗.

Proof. Let an approximate common subgraph of G1 and G2 of order k be given by the
vertex sets S = {v1, . . . , vk} ⊆ V and T = {w1, . . . , wk} ⊆ W , respectively. Without loss
of generality, we assume ϕ(vi) = wi for i ∈ {1, . . . , k} under the corresponding subgraph
isomorphism ϕ. Condition (i) in Definition 5 yields (vi, wi) ∈ V⊗ for i = 1, . . . , k. Condition
(ii) in Definition 5 implies that ωE(vivj) ≈ ωF (ϕ(vi)ϕ(vj)) = ωF (wiwj) and (vi, wi) and
(vj , wj) are adjacent in G⊗. Because i, j were chosen arbitrarily, C := {(v1, w1), . . . , (vk, wk)}
forms a k-clique in G⊗.

Conversely, let C be a k-clique in G⊗ given by vertices (v1, w1), . . . , (vk, wk) ∈ V⊗. We
define S = {v1, . . . , vk}, T = {w1, . . . , wk} and ϕ : S → T via ϕ(vi) = wi. Then ϕ is a
bijection and we obtain λV (vi) = λW (wi) = λW (ϕ(vi)) for i = 1, . . . , k. Thus, condition (i)
in Definition 5 is satisfied. The validity of the second condition follows from the fact that
we have ωE(vivj) ≈ ωF (wiwj) = ωF (ϕ(vi)ϕ(vj)).

Transactions on Data Privacy 8 (2015)



226 Martin Kroll

Corollary 8. The problem of finding a maximum approximate common subgraph of two
vertex-labelled and edge-weighted graphs is equivalent to the problem of detecting a maximum
clique in the associated product graph.

We now put all the ingredients collected so far together and formulate the overall graph
theoretic linkage attack.

Overview
Graph Theoretic Linkage Attack on Microdata in a Metric Space

INPUT Target data (T1, D1), identification data (T2, D2)
OUTPUT List of matches between records from T1 and T2

1. Build target graph G1 from (T1, D1).
2. Build identification graph G2 from (T2, D2) (possible under Assumptions 3 and 4).
3. Build product graph G⊗ (requires reasonable definition of ≈).
4. Find a maximum clique Cmax in G⊗ (using some maximum clique detection algo-

rithm).
5. Extract matches from Cmax.

Let us make a brief comment on Step 4 of the attack: As already indicated in Section 2,
there is a vast literature concerning the problem of maximum clique detection in graphs. A
systematic comparison of the prevalent techniques to tackle this problem in the context of
our application goes beyond the scope of this paper and is postponed to future research.
To conclude this section, we illustrate the process of the proposed graph theoretic linkage

attack using a small-scale example which makes use of the data summarised in Appendix A.

Example 9. Consider microdata Table 9 in Appendix A, which contains information about
various important European poets. This table is anonymized by removing the direct iden-
tifier name, generalizing the attribute yob (year of birth) to cob (century of birth) and
removing the information about the birth location (loc). The attribute language remains
unchanged. This yields anonymized Table 10 in Appendix A.
While the spatial information loc has been deleted from this table, the distance matrix
D1 (see Appendix A) containing the geographic distances between the birth locations is
meant to be published in addition to Table 10. We assume that the snooper is in possession
of the identification microdata in Table 11, i.e. the attributes cob and language serve as
quasi-identifiers. By geocoding the birth locations and calculating the geographic distances,
the snooper obtains the distance matrix D2. Graph models G1 and G2 for the target and
identification data can be built by using this information and are visualised in Figure 2.
Table 2 lists all the possible matches if the snooper takes only the vertex labels into consid-

eration. These eleven matches form the vertex set of the product graph as well. Note that
this set would already constitute the final outcome of a linkage attack where the distances
are not taken into consideration.
For the construction of the product graph, we allow an absolute deviation of five kilometers

with respect to the edge weights, i.e. we define ωE(v1v2) ≈ ωF (w1w2) ⇔ |ωE(v1v2) −
ωF (w1w2)| < 5.2 This definition of ≈ leads to the product graph shown in Figure 3.

2We previously mentioned that allowing such a deviation is already necessary because of errors that
appear due to the fact that the data holder and snooper generally use different methods for geocoding and
distance computation. This fact was also addressed in this example by geocoding the birth locations of the
target microdata via Wikipedia and the birth locations of the identification file by means of the command
geocode provided by the R package ggmap [23].
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Figure 2: Graph models for target (left) and identification (right) microdata in Example
9. The layout of the graphs was chosen such that the edge lengths give an approximate
indication of the distances. The attribute language is indicated by the vertex label colour,
whereas the attribute cob is indicated by the vertex label itself.

vertex of product graph rownumber target file rownumber identification file
1 1 1
2 2 2
3 3 3
4 6 3
5 4 4
6 7 4
7 3 6
8 6 6
9 4 7
10 7 7
11 2 9

Table 2: Possible matches between Tables 10 and 11 with respect to the quasi-identifiers
cob and language only, i.e. vertex labels in the accompanying graph models.

As can be easily seen from Figure 3, the product graph contains a unique maximum clique
C := {1, 2, 3, 5}. Therefore, a snooper following the protocol of the graph theoretic linkage
attack would accept the potential matches in rows 1,2,3 and 5 in Table 2 as matches and
reject the remaining ones.

Although Example 9 is artificial, it illustrates some of the phenomena that also appear
when real-world data are taken into consideration:

• The definition of ≈ has to be chosen carefully. In the present example, distances
between cities scattered all over the European continent are considered so that even
the rather rough definition above (allowing for an absolute deviation of five kilometers)
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Figure 3: Product graph in Example 9.

will yield a useful result. In general, the definition of ≈ has to be chosen such that
as many common edges as possible of the target and identification graph are detected
correctly, i.e. not classifying too many edges as approximately the same that are
actually different. The definition of ≈ will be studied in greater detail as part of the
simulation study in Section 5.

• A successful match of the respective first records of both tables would have already
been possible unambiguously without the additional distance information because both
records are unique in their tables with respect to the corresponding quasi-identifiers.
Nevertheless, using the additional distance information increases the credibility for
this specific matching, which is now not only supported by the coincidence of the
quasi-identifiers but also by the coincidence of the distances to other matches.

• However, in certain cases unambiguous matching is only possible because of the ad-
ditional information about the distances. For example, record 3 of the target table
could be matched with records 3 and 6 of the identification table only by taking the
quasi-identifiers into consideration. This tie is resolved in our example by the extra
information given by the edge weights.

• Evidently, in practise there will be ties in the data that cannot be resolved by our
method either. In our example, the records 9 and 10 of the target file do not differ
according to their quasi-identifiers, however, they also cannot be distinguished by
considering the distances to these records because the corresponding point locations
(loc=Paris in both cases) coincide.

• Finally, the attack has reduced the number of matches from eleven in Table 2 to four.
These matches indeed correspond to the actual overlap of the target and identification
file.

Our toy example has shown that publishing inter-record distances might increase the risk
of identity disclosure for microdata files. We confirm this result in the following section
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by investigating the effect of random noise addition to the input coordinates, which is a
standard technique for the anonymization of spatial point data.

5 Experimental results

Data

The data for the simulation study were generated as follows: In the first step, addresses from
the German telephone book were sampled at random. Subsequently, geographic latitudes
and longitudes based on the World Geodetic System 1984 were assigned to these addresses
using the geocode command from the R package ggmap [23]. Finally, the geographic dis-
tances between the addresses were calculated to obtain the corresponding distance matrix.
We randomly assigned the points of the resulting metric spaces to example microdata

containing (besides an ID) attributes concerning gender and age, which served as quasi-
identifiers in our experiments. The attribute values were sampled in accordance with the
actual distribution of these attributes derived during the German census 2011.3
We generated data where both the size N1 of the target and N2 of the identification file

were equal to 500. The overlap Ncommon of common records was chosen equal to 50. The
target and the identification file are visualised in Figure 4. Note that the classification with
respect to age (eleven age intervals) is rather rough; this guaranteed the existence of many
duplicates with respect to the quasi-identifiers in our test microdata, which would result in
ties when performing a classical linkage attack. Indeed, the order of the resulting product
graph was equal to |V⊗| = 15517.
In order to study the scalability of our attack we also considered a slightly larger data set

with N1 = N2 = 2000 and Ncommon = 200. For significantly larger files we were not able
to perform our attack using the exact maximum clique algorithm of [25] any longer which
is in coincidence with the fact that the problem of finding a maximum clique of a graph is
NP-hard. More information including runtime results can be found below in the subsection
Scalability of the attack. In addition to the test for scalability we used this second pair of
files in order to test the effect of k-anonymization (for more details, see the next paragraph).

Perturbation

A standard technique for the anonymization of spatial point data consists in the addition
of random noise to their coordinates (see Section 3.2 in [1]). In this section, we consider
the performance of the proposed graph theoretical linkage attack under this anonymization
technique. To be more precise, N (0, σ2)-distributed Gaussian noise was added to the input
coordinates of the target file before the distance matrix was calculated. Different instances
of the standard deviation σ were considered.
In addition to the anonymization of distances we also investigated the anonymization of

the vertex labels systematically by means of the second data set. To be more precise, we
considered k-anonymization which was simply achieved by suppressing combinations of the
key variables sex and age that appeared less than the given predefined threshold k. We
considered values of k between 1 and 10.

3These demographic statistics can be downloaded from https://ergebnisse.zensus2011.de/
auswertungsdb/download?pdf=00&tableId=BEV_1_1_1&locale=DE.
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Figure 4: One of the data sets for the simulation study: Both the target (left) and iden-
tification file (right) contain 500 records of which 50 are common. Quasi-identifiers (age,
gender) were sampled according to the actual distribution of these attributes due to the
demographic statistics derived during the German census in 2011. Without the additionally
released approximate distances the target file can be regarded as sufficiently anonymized:
a classical linkage attack leads to a set of 15517 potential matches between the target and
identification file.

Fine-tuning of the attack
A suitable definition for the relation ≈ has to be found for the generation of the product
graph in the graph theoretical linkage attack. Following Kerckhoffs’ principle [33] (which
implies that the security of a cryptosystem/anonymization technique must not depend on
the concealment of the algorithm in use), we assume that the data snooper knows that
Gaussian noise is added to the geographic coordinates before the distances are calculated
and, furthermore, that the standard deviation σ is known to him (the latter assumption is in
conformance with [1], who emphasise that all useful spatial analyses of masked data require
some knowledge about the characteristics of the mask used).
Under the assumption of a Euclidean distance function, the effect of random perturbation

of the input coordinates on the squared distances can be studied theoretically, an approach
which has been considered in [24]. Such a rigorous mathematical analysis appears to be
more difficult in the case of geographical distances, i.e. distances on the sphere. For this
reason, we assume that the snooper performs a little simulation study by which she/he
investigates the effect of perturbation by Gaussian noise to the calculation of distances. To
imitate this course of action, we sampled 1000 pairs of points from the area of the Federal
Republic of Germany for each considered value of σ and compared the distances before and
after addition of Gaussian noise. Several sample quantiles of the deviation of the distances
(which is defined as d − d′ where d denotes the original distance and d′ the distance after
perturbation) have been gathered and are recorded in Table 3.
We use the empirical quantiles to define the interpretation of ≈: For a threshold parameter
α ∈ (0, 1), we define that two edge weights satisfy the relation ≈ if the corresponding
deviation d−d′ is greater than the empirical 1−α

2 -quantile and smaller than the 1+α
2 -quantile
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quantile
0.05 0.1 0.25 0.5 0.75 0.9 0.95

0.005 -1.1088 -0.8558 -0.4261 0.0226 0.4496 0.9256 1.2192
0.010 -2.3909 -1.7191 -0.8750 0.0798 0.9733 1.8218 2.2642
0.015 -3.3063 -2.4633 -1.2288 0.0810 1.4714 2.7492 3.4624
0.020 -4.6132 -3.6261 -2.0787 -0.0615 1.7278 3.4013 4.3512
0.025 -5.6147 -4.2924 -2.2826 -0.1592 2.2177 4.1254 5.3089

σ 0.030 -6.4952 -4.9210 -2.5024 0.1763 2.9190 5.2730 6.6511
0.035 -8.3848 -6.2351 -3.0673 -0.0665 3.0206 6.0428 7.9411
0.040 -9.1530 -6.7866 -3.7315 -0.1884 3.4698 7.0085 8.7236
0.045 -11.0830 -8.2160 -4.1860 -0.0680 3.6953 7.6620 10.2638
0.050 -11.4906 -8.9544 -4.7386 -0.0057 4.5955 8.6728 11.4998

Table 3: Sample quantiles of the considered distance deviation d− d′ for different values of
σ.

for the current value of σ. In this case, the distances from the identification file take on
the role of d and the distances from the target file the one of d′. If ωE(v1, v2) = d and
ωF (w1, w2) = d′ an edge will be inserted in the product graph between (v1, w1) and (v2, w2)
if and only if d − d′ ∈ [q 1−α

2
, q 1+α

2
]. The threshold parameter α chosen by the snooper is

supposed to guarantee that a common edge of the target and identification graph is detected
by the snooper with probability approximately equal to α. Its effect will also be considered
within this section. In our scenario the difference between Euclidean and geographical
distances should be so small that it can be neglected. However, other kinds of distances
such as travelling distance (time needed to travel from one location to the other) could be
used and even be more senseful in some applications. Thus, we decided to demonstrate
the study of the effect of perturbation by means of a simulation study which can also be
performed in this more general case under the validity of Assumption 4.

Implementation
All the experiments reported here were performed using R and the exact maximum clique
detection algorithm proposed in [25].4 Thus the algorithm guarantees that a maximum
clique is indeed found and not only a large clique which might be the case for approximative
algorithms only. All the accompanying visualisations were created in R.

Evaluation of the attack
The matches and non-matches between the target and identification file gathered by the pro-
posed graph theoretical linkage attack were classified as true positives (successful deanonymiza-
tion), false positives (failed deanonymization), false negatives (records belonging to the same
entity have been missed) and true negatives (records have been correctly classified as belong-
ing to distinct entities). The quality measures considered are based on the number of true
positives (TP), false positives (FP) and false negatives (FN). More precisely, we consider

prec = TP
TP + FP (precision), and

rec = TP
TP + FN (recall),

4We adapted the C++ implementation of this algorithm, which is available from http://www.sicmm.org/
˜konc/maxclique/, for our purposes.
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which are two standard measures in the evaluation of data linkage processes [10].

Simulation design and results
In our experiments, we varied the noise parameter σ as well as the threshold parameter α.
For each parameter setup, the simulation was repeated n = 100 times for the first experiment
(N1 = N2 = 500) and n = 50 times for the second experiment (N1 = N2 = 2000). The
mean of precision and recall over all iterations for the chosen parameter setups can be found
in Tables 4– 7. Visualisations of some of these results can be found in Figures 5 and 6. In
addition, typical outcomes of the graph theoretic linkage attack are visualized in Figure 7.

σ
0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

0.1 0.7800 0.7215 0.3415 0.2752 0.3232 0.2193 0.1549 0.1571 0.1136 0.1584
0.2 0.9717 0.8929 0.8769 0.8229 0.7569 0.6121 0.5657 0.5094 0.4780 0.4785
0.3 0.9831 0.9513 0.9047 0.8502 0.8255 0.7728 0.6862 0.6567 0.6037 0.5975
0.4 0.9829 0.9558 0.9037 0.8700 0.8358 0.7766 0.7411 0.6651 0.6428 0.6410

α 0.5 0.9808 0.9458 0.9133 0.8721 0.8374 0.7834 0.7505 0.6832 0.6526 0.6274
0.6 0.9830 0.9436 0.9102 0.8725 0.8315 0.7780 0.7430 0.6974 0.6604 0.6229
0.7 0.9803 0.9405 0.9087 0.8675 0.8255 0.7707 0.7434 0.6948 0.6556 0.6086
0.8 0.9795 0.9373 0.9008 0.8539 0.8027 0.7666 0.7248 0.6894 0.6484 0.6065
0.9 0.9764 0.9304 0.8884 0.8351 0.7954 0.7513 0.7017 0.6605 0.6159 0.5876

Table 4: Average precision in dependence on the parameters σ and α over n = 100
repetitions while N1 = N2 = 500 and Ncommon = 50.

σ
0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

0.1 0.0664 0.0612 0.0302 0.0284 0.0326 0.0228 0.0168 0.0174 0.0130 0.0196
0.2 0.1166 0.1034 0.1126 0.1144 0.1120 0.0870 0.0864 0.0770 0.0714 0.0818
0.3 0.1586 0.1552 0.1556 0.1592 0.1642 0.1416 0.1398 0.1354 0.1292 0.1390
0.4 0.2084 0.2204 0.2112 0.2164 0.2162 0.1934 0.1966 0.1894 0.1828 0.2026

α 0.5 0.2774 0.2874 0.2754 0.2880 0.2722 0.2628 0.2526 0.2518 0.2404 0.2564
0.6 0.3622 0.3714 0.3308 0.3582 0.3364 0.3322 0.3166 0.3146 0.3084 0.3132
0.7 0.4402 0.4490 0.4250 0.4408 0.4198 0.4080 0.3976 0.3992 0.3754 0.3936
0.8 0.5638 0.5538 0.5420 0.5408 0.5096 0.5110 0.5204 0.5068 0.5104 0.4966
0.9 0.7202 0.7146 0.6960 0.6790 0.6568 0.6568 0.6838 0.6554 0.6658 0.6468

Table 5: Average recall in dependence on the parameters σ and α over n = 100 repetitions
while N1 = N2 = 500 and Ncommon = 50.

σ
0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

0.1 0.99 0.99 0.97 0.95 0.93 0.93 0.88 0.91 0.80 0.84
α 0.5 1.00 0.99 0.98 0.96 0.95 0.92 0.91 0.89 0.87 0.85

0.9 1.00 0.99 0.97 0.96 0.93 0.91 0.88 0.86 0.83 0.81

Table 6: Average precision in dependence on the parameters σ and α over n = 50 repeti-
tions while N1 = N2 = 2000 and Ncommon = 200.

Utility of the Perturbed Data
The simulations show that, in principle, a sufficient level of anonymity can be achieved
(even for our small datasets and the ideal preconditions for the attacker, i.e. target and
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σ
0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

0.1 0.04 0.04 0.03 0.04 0.04 0.03 0.03 0.04 0.03 0.04
α 0.5 0.19 0.21 0.20 0.21 0.20 0.20 0.19 0.19 0.18 0.20

0.9 0.65 0.65 0.63 0.62 0.61 0.60 0.64 0.61 0.64 0.62

Table 7: Average recall in dependence on the parameters σ and α over n = 50 repetitions
while N1 = N2 = 2000 and Ncommon = 200.
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Figure 5: Dependence of average precision (left) and recall (right) on the standard deviation
σ for different values of α (see Tables 4 and 5).
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Figure 6: Dependence of average precision (left) and recall (right) on the threshold parameter
α for different values of σ (see Tables 4 and 5).
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Figure 7: Typical results of the graph theoretic linkage attack for different combinations
of the noise parameter σ (chosen by the data holder of the target file) and the threshold
parameter α (chosen by the data snooper). Line segments between the target and identi-
fication file indicate matches made by the data snooper (the green lines indicate true, the
red ones false positives). Larger values of α lead to more matches and a increase in recall,
larger values of σ to a decrease in precision.
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Figure 8: Effect of anonymization: For three sets of points from Germany of different size
N the effect of the anonymization given by the threshold σ (on the x-axis) was evaluated as
the portion of correct nearest neighbour classifications (on the y-axis) after Gaussian noise
was added to the geographical coordinates before computing the distance matrix.

identification file are small and there exists a certain overlap between both files) by the
addition of random noise to the input coordinates before computing the distance matrix.
However, this anonymity is not free, which is illustrated by means of Figure 8, where the
portion of correct nearest neighbour classifications is plotted against the anonymization
parameter σ. In some cases the anonymization threshold σ would have to be chosen large
enough to guarantee at least some degree of anonymity that useful analyses based on the
distances would become difficult. For this reason, the development of distance modification
techniques that guarantee a certain degree of anonymity, and make it possible to also conduct
useful analyses on the anonymized data, will be an important aspect of future research.

Effect of k-anonymization of the vertex labels
As announced above, we studied the effect of vertex k-anonymization via suppression on our
attack. For this purpose, we considered a target and an identification file each containing
N = 2000 records. Again age and sex were chosen as quasi-identifiers but in contrast to
the first experiment the age was not given by an age interval (e.g., 25-29) but by one integer
number only. Then, k-anonymized versions for values of k between 1 and 10 were generated
by suppression of age/sex-combinations that appeared less than k times. Then the attack
was performed where only records from the target file were used for which the quasi-identifier
information was not suppressed (another option would have been to regard these records
as potential instances of every record in the identification file which, however, had lead to
an essential enlargement of the vertex set of the product graph, see the next paragraph
on the scalability of our attack). The results of the vertex anonymization experiment are
summarized in Figure 9. A discussion of these results is included in the subsection Discussion
below.

Scalability of the Attack
As already mentioned above we were not able to perform our attack when the size of tar-
get and identification file exceeded N1 = N2 = 2000 significantly. Since the runtime and
applicability of the algorithm from [25] depends on the size of the product graph only,
we generated random graphs of different size and connectedness and evaluated the algo-
rithm from [25] on these graphs. To be more precise, we generated random graphs with
n ∈ {10000, 20000, 30000}. Each edge was assumed to be existent randomly with probabil-
ity p ∈ {0.001, 0.01, 0.1} and existence of different edges was assumed to be independent.
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Figure 9: Dependence of average precision (left) and recall (right) on the anonymity param-
eter k. Note that for small values of σ the precision is close to 1 even for k = 10 whereas
he precision would be less than 0.1 if matching could only be based on the quasi-identifier
values. Experiments were performed using the datasets where both target and identification
file contained 2000 records, respectively.

For this purpuse, we used the command erdos.renyi.game(n, p) from the R package
igraph [11]. Then the exact maximum clique algorithm from [25] was applied to these
graphs. The obtained runtimes are summarized in Table 8. We stress that the algorithm
was not able to treat significantly larger graphs on a commercially available personal com-
puter. Thus, our attack is limited to the case when the resulting product graph is of limited
size which will be the case when both target and identification file are themselves of limited
size (both containing roughly 2000 records). The maximal product graph we were able to
deal with contained 30000 nodes and 44994803 edges. In that case the maximum clique
algorithm took 3078 seconds. Another realistic attack scenario would be to investigate the
case that the target file is very large and the identification file of moderate size. However,
also in this case only limited sizes for the identification file will be possible such that we
renounced a further investigation in this direction. Thus, our attack might not be applicable
when considering datasets originating from surveys of large populations but when the pop-
ulation is limited, for example when data about individuals with a rare illness or data about
infrastructure facilities are to be published.5 Hence a further aspect of future research could
be to investigate how the size of the product graph can be further reduced in a senseful
manner for our attack.

Discussion
The main effect of the threshold parameter α concerns the recall. The probability of detect-
ing a common edge of the target and identification graph is approximately equal to α. For
this reason, higher values of α lead to a higher recall (see Table 5 and Figures 5 and 6).
Simultaneously, the effect of α on the precision appears to be twofold: On the one hand,

for increasing α a larger portion of the overlap between the identification and target file can
be successfully detected by the snooper, which makes false positives less likely (leading to
a larger precision). On the other hand, for too high values of α also the chance for non-
common edges of the target and identification graph (but which coincide with respect to
the vertex labels of their endpoints) to be classified as common edges increases leading to a
slight decrease in precision. The latter phenomenon, together with the increase in recall for

5In the paper [26] by the author together with Rainer Schnell we study the effect of our attack on another
anonymization method on a dataset of 847 hospitals in England which might be a realistic dataset, say, for
example, in a national health survey.
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n p E
maximum time (in s)clique size

0.001 50318 3 0.160858
10000 0.01 499765 4 0.273826

0.1 5002813 8 22.0877
0.001 199909 3 0.631664

20000 0.01 1999927 4 1.45158
0.1 19996877 8 468.74

0.001 449574 3 1.4361
30000 0.01 4502415 5 3.89454

0.1 44994803 8 3077.83

Table 8: Scalability of the exact maximum clique algorithm: Random graphs with n vertices
and edge probability p yielding random graphs with E edges were generated and the maxi-
mum clique algorithm from [25] was applied. For significantly larger graphs the application
of the algorithm was not feasible any more.

increasing α mentioned above, would reflect a trade-off between precision and recall, which
is a well-known phenomenon in data linkage [10]. Thus, combining these two thoughts,
for increasing α the precision should rapidly increase initially and then slightly decrease
when α becomes too large. This expectation is confirmed by our experiments (see Table 4
and Figures 5 and 6), although the decrease in precision when α becomes too large is not
significant for the considered values of σ.
From the definition of ≈ (see the paragraph Fine-tuning of the attack above), it is supposed

that the recall does not change significantly in dependence on σ because the probability
of correctly detecting an edge should be nearly α (which is independent of σ). This non-
dependence is clearly confirmed by the performed simulations and illustrated in Figures 5 and
6. However, σ strongly influences the precision (for larger values of σ the precision evidently
decreases): The data snooper has to accept false positives (resulting in less precision) if
she/he wants to achieve a certain predetermined recall.
Note that in our specific example, the snooper would primarily attempt to achieve a high

precision: In the case of geographic distances, a point is uniquely determined by the exact
distances to three other points. If the snooper could deanonymize at least three entities
successfully, exploiting this fact would be a good starting point to identify even more in-
dividuals. For arbitrary metric spaces, such a relationship does not hold in general, albeit
the successful deanonymization of some entities would also alleviate a snooper’s work in this
more general case.
Regarding the effect of k-anonymization on our attack, for the considered values of k ∈
{1, . . . , 10} no significant loss in precision and a slight loss concerning the recall was ob-
served, see Figure 9. In particular, when only taking quasi-identifiers (without inter-record-
distances) into consideration one would expect a precision which is bounded from above by
1
k whereas in our case the precision is close to one for small values of σ even for a value of k
equal to 10. Following our strategy and not taking records with suppressed quasi-identifiers
into account for the generation of the product graph, a further increase of k would lead to
a product graph with only few vertices and thus lead to a further decrease of the recall.
An alternative would certainly be to match suppressed quasi-identifiers in the target file
with all quasi-identifier values in the identification file during the generation of the prod-
uct graph. This would, however, lead to a product graph with so many vertices that the
attack could not be performed due to its limited scalability. In the extreme case – when
all quasi-identifiers would have been suppressed – the problem would be equivalent to the
problem of finding the largest approximate common subgraph of target and identification
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file (with no information about the quasi identifiers at all). In this case the product graph
would have 250000 vertices in the case N1 = N2 = 500 and thus not be feasible with our
current implementation.

Obviously, for distance modification techniques other than perturbation of the input coor-
dinates, a snooper will have to modify the graph theoretical linkage attack, especially the
definition of ≈. However, due to Kerckhoffs’ principle, it has to be assumed that the snooper
at least knows the distance modification technique used by the holder of the target file and
exploits this knowledge in the precise construction of the attack. For instance, if noise is
not added to the input coordinates before computing the distance matrix but rather to the
distance matrix itself (a technique discussed in [24]), the attack has to be slightly adapted.
In this case, when defining the relation ≈ the quantiles of the noise distribution can be
used directly, thereby making the empirical study on distance deviations originating from
perturbation of the input coordinates unnecessary. Moreover, in this specific case it might
be reasonable to further modify the attack by relaxing the (relatively strong) notion of a
maximum clique to the less restrictive notion of a maximum quasi-clique, a relaxation which
has been successfully applied in [17] for the purpose of protein classification. In a similar
way, our attack can be adapted to many other anonymization techniques and thus provides
a useful and flexible tool for the analysis of methods for distance-preserving anonymization.

6 Conclusion

In this article, we have introduced a novel graph theoretic linkage attack on microdata
with additionally published (approximate) inter-record distances. The main message of the
article is that when microdata are enriched by (noisy) spatial inter-record-distances the
risk of de-identification increases but the risk seems to be controllable. Only for target and
identification files of moderate size we were able to perform the suggested attack completely.
Thus, the fact that the graph matching and the maximum clique problem are NP-hard
problems seems to provide a barrier against the attacker’s wish to link as much information
between target and identification file as possible (this might be seen in coincidence with
a well-known phenomenon from classical cryptography where the hardness of the problem
of factorizing product of two large primes into its factors provides a barrier on which the
applicability of many cryptographic methods is based). However, for the case that the size
of the data sets is limited (e.g., when already the underlying populations are not very large),
the release of distances might increase the risk of identity disclosure unreasonably even if
geographical coordinates have been perturbed by random Gaussian noise before the distances
are calculated. Furthermore, we showed that an increase of the standard deviation of the
added random noise will gradually lead to a sufficient level of anonymity also in this case, but
also make the perturbed distances useless for further analysis (see Figure 8). However, the
practicability of the proposed attack to real world scenarios seems to be limited especially
when only small samples from a large population are published and sufficient anonymity
with respect to the quasi-identifiers is given. In spite of this, the development and analysis
of anonymization techniques for microdata in a metric space that allows for a certain degree
of anonymity but distort the distances as little as possible (particularly with regard to the
applicability of data mining techniques) will be an important aspect of future research.
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A Example dataset: European poets

name yob language loc
1 Giovanni Boccaccio 1313 Italian Firenze
2 Miguel de Cervantes 1547 Spanish Alcala de Henares
3 Johann Wolfgang Goethe 1749 German Frankfurt am Main
4 Moliere 1622 French Paris
5 Dante Alighieri 1265 Italian Firenze
6 Friedrich Schiller 1759 German Marbach am Neckar
7 Jean-Baptiste Racine 1637 French La Ferte-Milon
8 William Shakespeare 1564 English Stratford-upon-Avon
9 Simone de Beauvoir 1908 French Paris

10 Jean-Paul Sartre 1905 French Paris

Table 9: Microdata containing information about famous European poets. The attribute
yob contains the year of birth, and loc the birth location of the poets.

cob language
1 14 Italian
2 16 Spanish
3 18 German
4 17 French
5 13 Italian
6 18 German
7 17 French
8 16 English
9 20 French

10 20 French

Table 10: The anonymized version of Table 9 is obtained by removing the direct identifier
name, generalising the year of birth (yob) to century of birth (cob) and removing the birth
location (loc).

The distances between birth locations loc are stored in the distance matrix D1:

D1 =



0 1261 729 886 0 593 864 1341 886 886
1261 0 1424 1034 1261 1369 1093 1307 1034 1034
729 1424 0 479 729 137 414 762 479 479
886 1034 479 0 886 507 67 469 0 0
0 1261 729 886 0 593 864 1341 886 886

593 1369 137 507 593 0 449 856 507 507
864 1093 414 67 864 449 0 478 67 67
1341 1307 762 469 1341 856 478 0 469 469
886 1034 479 0 886 507 67 469 0 0
886 1034 479 0 886 507 67 469 0 0


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name cob language loc
1 Giovanni Boccaccio 14 Italian Firenze
2 Miguel de Cervantes 16 Spanish Alcala de Henares
3 Johann Wolfgang Goethe 18 German Frankfurt am Main
4 Moliere 17 French Paris
5 James Joyce 19 English Dublin
6 Heinrich Heine 18 German Duesseldorf
7 Pierre Corneille 17 French Rouen
8 Publius Ovidius Naso -1 Latin Sulmona
9 Lope de Vega 16 Spanish Madrid

10 August Strindberg 19 Swedish Stockholm

Table 11: Identification microdata table used by the data snooper in Example 9.

Geocoding of the locations from Table 11 using the R package ggmap and calculation of
the mutual distances via the command spDists from the package sp [4] yields the distance
matrix D2:

D2 =



0 1260 731 887 1666 894 999 291 1290 1791
1260 0 1423 1033 1446 1427 1055 1457 30 2574
731 1423 0 479 1091 183 551 983 1447 1188
887 1033 479 0 782 412 112 1177 1052 1546
1666 1446 1091 782 0 919 671 1956 1450 1633
894 1427 183 412 919 0 450 1156 1448 1149
999 1055 551 112 671 450 0 1290 1071 1548
291 1457 983 1177 1956 1156 1290 0 1487 1942
1290 30 1447 1052 1450 1448 1071 1487 0 2595
1791 2574 1188 1546 1633 1149 1548 1942 2595 0


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