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Abstract. To enable data analytics that provides valuable insights, data that are distributed across
several organisations increasingly need to be shared before they can be analysed. However, sharing
data from different sources can raise privacy and confidentiality concerns. Organisations are often
unwilling or not allowed to share their sensitive data, such as personal details or health or financial
data, with other parties because this potentially violates the privacy of individuals. Secure multi-party
computation (SMC) has been introduced as a solution to overcome the problem of performing com-
putations on sensitive data across organisations. SMC allows parties to jointly compute a function
over their inputs while preserving the privacy of these inputs. Secure summation protocols are an im-
portant building block in many SMC applications that can be used under two different SMC models
(i.e. with and without the involvement of a third party to conduct the computations). A secure sum-
mation protocol is used to compute the summation of private inputs held by different parties. In this
paper we study existing secure summation protocols that can be used under different SMC models
and then propose three advanced secure summation protocols that use homomorphic encryption. We
then consider different scenarios of how parties might collude with each other in secure summation
protocols, and the potential collusion risks that occur with these protocols. No such investigation of
possible collusion scenarios for secure summation protocols has so far been presented. We analyse
each secure summation protocol under different collusion scenarios and evaluate the efficiency of
each protocol with different numbers of parties and different input data sizes. Our evaluation shows
that our proposed protocols provide improved privacy against collusion risks and they can calculate
a sum more efficiently compared to existing secure summation protocols.

Keywords. Secure multi-party computation, homomorphic encryption, collusion, honest but curi-
ous, secret sharing, privacy evaluation.

1 Introduction

We are living in a Big Data era and many businesses, government agencies, and research
organisations are collecting increasingly vast amounts of data to be analysed for interest-
ing patterns and useful knowledge in support of efficient and quality decision making [25].
Due to the distributed availability of data, different parties or organisations often need to
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participate in cooperative computations, where all participants jointly conduct computa-
tions to calculate a global result for data analysis. The sharing or integration of data across
different parties or organisations within data analytics processes is often challenged due
to various reasons. Database heterogeneity, data quality, and scalability are some of the
major challenges that are common in any data integration project [15, 24, 37], while privacy
has become a crucial aspect that needs to be considered if the databases to be integrated
contain sensitive data such as personal identifying information (for example names and
addresses) [16, 42, 62, 65]. Since the participating parties in data integration protocols can
be semi-trusted or untrusted, privacy and confidentially of such sensitive data need to be
preserved because the analysis of integrated data can potentially be used by an adversary
to infer private information about individuals [14, 40, 45, 65, 73]. Below we highlight some
real-world example scenarios where organisations might want to share their data in order
to obtain a common result, and at the same time protecting the privacy and security of
individuals stored in such data is a challenge.

Health research. Assume a scenario where a group of hospitals wish to collaborate on
analysing their patient databases for the purpose of investigating the geographical and
temporal effects of diseases and drug usages in certain patient groups. Each hospital
database can contain many hundreds of thousands of patient records, where the records
across all the databases need to be integrated to identify how patient groups with different
illnesses react to different drugs and medical treatments. However, because of privacy and
confidentiality reasons, neither of the hospitals is willing or allowed to share its patient
database with any other hospital or any other organisation. Hence, it is necessary to find
a solution that enables these hospitals to conduct the required analytical operations upon
their databases without revealing any sensitive information.

Financial Crimes. Today, financial and transactional data are generated in many different
formats and with very large volumes. Analysing such data requires more sophisticated
information systems than traditional methods of data analysis [56]. To identify fraudulent
transactions from different individuals, for example, there is a need to analyse the flow
of money that has been transferred by an individual between financial institutions such
as banks. However, due to security and confidentiality reasons financial institutions are
commonly not willing or not allowed by legislation to provide information about individ-
uals in their customer databases to other organisations, which makes such an analysis on
transactional data challenging.

Internet of Things. Another real-world example would be an Internet of Things (IoT) ap-
plication where various devices (sensors) communicate with one another to execute daily
operations with a minimum of human interventions [58, 60]. In IoT applications devices
or components that belong to people, objects, or organisations are interconnected and they
communicate over public, untrusted networks. Sharing and integration of data generated
by each individual device often raises privacy and security concerns (i.e. the data stored in
each IoT device might contain information about individuals or households) because the
data collected at each individual device needs to be integrated to perform valuable data
analysis. In such applications any sensitive information generated by each individual de-
vice must not be communicated to other connected devices, but processed collaboratively
to employ the required analytical functionalities.

Secure multi-party computation (SMC) has been introduced as a solution to overcome the
problem of performing computations on sensitive data across organisations [29]. SMC en-
ables several parties, named data providers (DPs) [47], to be involved in a computation with
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Figure 1: Secure multi-party computation (SMC) models, (1) with a third party (TP) and (2) without
a TP. P (≥ 3) data providers (DPs), DP1, DP2, · · · , DPP , participate in a SMC protocol to compute the
value of a public function f on their private inputs, n1, n2, · · · , nP , respectively. At the end of a SMC
protocol, each DPi learns f(n1, n2, · · · , np), but it learns nothing about the private inputs nj of any
other DPj , with i 6= j, 1 ≤ i, j ≤ P . Arrows represent the communication between parties.

their private input data without the need to explicitly share or integrate these data, where at
the end of the computation no party learns anything about any other party’s private input
data except the final result of the computation. SMC has been used in different application
domains including privacy-preserving data mining [9, 10, 16, 67, 68], privacy-preserving
data publishing [27], and privacy-preserving record linkage [65, 73]. SMC enables multiple
DPs to compute a function, such as summation, comparison, scalar product, set intersec-
tion, and so on, upon their combined private inputs such that at the end of the computation
no DP learns anything about any other DP’s private input, and all DPs learn the final result.
As we will discuss in Section 2, the protocols that are proposed for SMC can be based on
garbled circuits [31, 76], secret sharing [17], homomorphic encryption [1, 19, 59], or com-
mutative encryption [2, 71].
The aim of SMC is to allow different parties to compute a common function upon their

private data, where any SMC protocol must satisfy two important properties [46]. (1) Pri-
vacy: this property states that once the protocol finishes neither of the parties should be able
to learn anything other than the final result of the computed function. (2) Correctness: this
property states that each party should always receive the correct output such that the com-
puted function should always produce an accurate result with the inputs provided by the
participating parties. Consider an example where two or more banks cooperatively want
to know the financial credibility of some customers, however, no bank is willing to disclose
the details of their customers to the other banks. Thus, all banks can participate in an SMC
protocol to perform the required analysis. This analysis generally involves computation
and communication among the banks according to some prescribed specification, where
the parties only learn the output as desired. As shown in Figure 1, in SMC, P parties wish
to compute a function f of their secret inputs, where f : {0, 1}1

∗ × · · · × {0, 1}P
∗ → {0, 1}∗.

The goal is to compute the output y = f(x) ensuring the correctness and privacy, where x

represents an input vector (n1, n2, · · · , nP ).
SMC protocols can be categorised into two different models [47]. (1) SMC with a third party

(TP): in this model the DPs communicate only with the TP to compute a function f . Once
the computation of f is completed the TP sends the final result to all DPs. (2) SMC without a
TP: in this model the DPs communicate among themselves to compute the function f . Once
the final result is computed one DP (the one that calculates the final result) distributes the
final result to all other DPs. The participants of these models can be categorised as either
trusted, semi-trusted, or untrusted [47]. Realistically since the parties involved in a SMC

TRANSACTIONS ON DATA PRIVACY 13 (2020)



28 Thilina Ranbaduge, Dinusha Vatsalan, Peter Christen

protocol cannot always be trusted, SMC protocols must be able to guarantee the privacy
of the input of each DP when performing computations and communications between the
protocol participants.

SMC protocols are generally designed to follow either the honest-but-curious (HBC) or the
malicious adversary models [47]. The HBC model assumes all parties follow the protocol
but aim to learn as much as possible from the data they receive from other parties, while in
the malicious model parties can behave arbitrarily. A malicious party may not follow the
protocol as specified and can refuse to participate or abort the protocol at any time, and can
provide arbitrary values as their inputs [29, 47]. However, in many real-world settings, the
assumption regarding the HBC behaviour does not suffice, while security in the presence
of malicious adversaries is excessive and expensive to achieve [32, 33, 50].

The more recently proposed covert and accountable computing models are advanced adver-
sary models that lie between the HBC and malicious models [3, 38, 39]. The covert model
matches with many real-world settings by assuming parties may deviate arbitrarily from
the protocol specification in an attempt to cheat, and where the honest parties can iden-
tify the misbehaviour of an adversary with high probability [3, 32, 47]. The main intention
behind the covert model is to capture situations where the penalty for cheating is high
relative to the potential gain. Once coupled with a high penalty for cheating, the covert se-
curity of the protocol serves to prevent participants from deviating from the protocol [36].
The accountable computing model provides accountability for privacy compromises by an
adversary without any of the additional complexity or costs that occurs with malicious
adversaries [38, 39].

All secure summation protocols discussed in this paper assume the HBC model. How-
ever, in any of these adversary model, collusion between the participating parties needs
to be considered [47]. Collusion is an inevitable and serious privacy risk in multi-party
computations where a sub-set of (two or more) parties aims to learn the sensitive private
input(s) of another party or sub-set of parties. This is generally accomplished by the collud-
ing parties sharing their own data and function parameter settings among themselves. For
the two SMC models described above, as shown in Figure 1 (and discussed in Section 3),
collusion can occur either between the DPs, or between one or more DPs and the TP. To the
best of our knowledge the applicability of secure summation protocols under such different
collusion scenarios has not been studied so far.

Contributions: In this paper we study secure summation, which is an essential building
block of SMC protocols and is widely used in privacy-preserving multi-party computation
over distributed data. As we describe next, in Sections 2.1 to 2.5 we first review five existing
secure summation protocols. We then propose three novel secure summation protocols that
use homomorphic encryption to compute the summation of the private inputs of a set of
data providers. We study different collusion scenarios that are possible with the two SMC
models, and the applicability of each secure summation protocol under these scenarios.
We analyse the privacy of the presented protocols and show our proposed secure summa-
tion protocols are more secure than the existing protocols for different collusion scenarios.
We empirically evaluate the complexity (computation and communication) of each proto-
col for different real-world scenarios. The goal of this paper is not only to analyse secure
summation protocols, but also to provide a guideline for researchers and practitioners to
identify possible collusion scenarios and appropriate secure summation protocols for their
own domains.

Organisation: The rest of this paper is structured as follows. In the following section, we
first discuss the generic SMC protocols that use garbled circuits schemes and their applica-
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bility on real-world scenarios. Next we provide an overview of five existing secure sum-
mation protocols and propose three novel secure summation protocols. For each of these
secure summation protocols we provide an algorithmic description to outline the steps of
the protocol. In Section 3 we then analyse the privacy of each protocol under different col-
lusion scenarios, and the computational and communication complexities of each protocol.
In Section 4 we empirically evaluate each protocol under different real-world scenarios,
and we conclude this paper in Section 5 with a summary of our findings.

2 Secure Summation Protocols

The concept of SMC was first introduced by Yao [75, 76] for two parties with the idea of
performing computations securely such that at the end of a computation no party knows
anything except its own input and the final results of the computed function [11, 47, 57].
The function to be computed is represented as a combinatorial circuit where the participat-
ing parties run a short protocol for every gate in the circuit to compute the final result [53].
Yao’s approach to secure computation between two parties was extended by Goldreich et
al. [31] for multiple parties following the same methodology. Surveys of SMC are available
from Franklin and Young [26], Goldreich [30], and Lindell and Pinkas [47].
Secure summation is a commonly used building block in SMC to calculate a global sum

of the numerical private inputs held by several DPs that participate in a protocol. The
concept of secure summation was presented as an example of SMC protocols in many
earlier works [5, 17, 64]. Secure multi-party summation can be used to build more com-
plex protocols for other SMC functions. It has been widely used in privacy-preserving
multi-party computation over distributed data, including privacy-preserving data min-
ing [10, 16, 40, 46, 67, 71], privacy-preserving machine learning [51, 52, 63, 68], privacy-
preserving collaborative social networks [7, 69, 74], and privacy-preserving record link-
age [73].
In a generic SMC protocol, secure summation can be performed using an arithmetic (adder)

circuit implementation either based on Yao’s garbled circuit or Goldreich, Micali and Wigder-
son (GMW) protocol schemes [31, 47]. Both Yao’s and GMW protocol schemes are proven
to be secure assuming the underlying oblivious transfer (OT) protocol they use to construct
the circuit is secure [36].
In the Yao’s garbled circuit based protocol, an encrypted binary circuit is generated for

preserving the privacy of inputs. The circuit generation depends on symmetric cryptogra-
phy [30] and an oblivious transfer (OT) protocol [64], where one party generates the circuit
while the other evaluates it. However, Yao’s garbled circuit protocol often has high com-
munication complexity and requires input sizes to be known in advance. This allows a
SMC protocol based on Yao’s protocol to have all the OTs to be computed in parallel at the
beginning of the communication. The number of OTs required in the protocol generally
depends on input size, which makes these approaches not scalable to large input sizes.
Similar to Yao’s garbled circuit protocols, GMW protocols also use a binary circuit rep-

resentation but the security evaluation is built on secret sharing [17] rather on encrypted
gates [31]. Each party’s inputs are shared across parties using a secret sharing scheme al-
lowing each party to conduct computation on the input shares which ensures that at the end
of the computation each party is left with a share of the output. The inputs can be shared by
simply XORing the shares of their input wires. To evaluate an AND gate the participating
parties perform an OT where one party can pre-compute all possible output of the gate and
every other party can obtain the output that correspond to their input shares. The output
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of the circuit can be obtained by exchanging the shares of the output wires. GMW requires
one OT for computing each gate but requires less number of communication rounds which
is proportional to the depth of the circuit.

However, whether Yao’s protocol or the GMW protocol is more efficient will depend on
the type of function being evaluated [35, 49]. Most protocols based on garbled circuits
are better suited to two or three-party secure computation and do not directly extend to
hundreds of parties. The main reason for such scalability issue is the inherent inefficiency
which arises due to the number of computation and communication rounds required in a
protocol. Further, the number of rounds in the protocol is linear in the depth of the circuit
that the parties need to compute [4, 36].

In 2012, Damgård et al. [20] proposed a SMC technique, popularly known as SPDZ, which
describes a flavour of GMW scheme for arithmetic circuits. The protocol consists of two
phases, preprocessing and online. In the preprocessing phase it uses a somewhat homo-
morphic encryption scheme to secretly distribute the shares of inputs of parties and also
generates lots of random values which are used by the parties to provide input to the cir-
cuit. In the online phase the P parties construct and evaluate the circuit and open the
secret corresponding to the circuit output. However, the total overhead of this approach is
O(P · S + P 3) where S is the size of the computed arithmetic circuit.

Recently, Lindell et al. [48] proposed a SMC protocol that uses constant-round of compu-
tations and communications, and dishonest majority setting. The protocol combines SPDZ
with the constant-round protocol (BMR) developed by Beaver, Micali and Rogaway [4].
The protocol is comprised of two phases; a preprocessing phase for securely computing
random shares of the garbled circuit where each party locally computes the random values
as needed for every gate; an online phase where all the parties construct a single garbled
circuit, exchange garbled values on the input wires, and evaluate the garbled circuit. How-
ever, the total overhead of this approach is O(P 3) due to the amount of computations and
communication required in different phases. Another recent variation of this protocol was
proposed by Lindell et al. [49] which uses BMR and somewhat homomorphic encryption
to reduce the number of rounds of computations and communications between parties.
This protocol has an overhead of O(S · P 2) due to the communications required in the
preprocessing phase. However, both these protocols [48, 49] provided no implementation
and remained largely theoretical, so it is not clear how concretely efficient they are in real
scenarios.

To this end, in this paper we will focus on secure summation protocols that use privacy
techniques which have smaller computational and communication cost, while providing
privacy against collusion. In Sections 2.1 to 2.5 we describe five existing secure summation
protocols where we provide an algorithmic description of each protocol [16, 51, 69, 72, 74].
In Sections 2.6 to 2.8 we then propose three new protocols that exhibit improved privacy
with regard to different types of collusion scenarios compared to existing protocols. We
assume the two inputs to each protocol are P ≥ 3, the number of participating DPs, and
the private (sensitive) numerical input value of each DPi, ni, with 1 ≤ i ≤ P . Each protocol

securely calculates and returns the final sum E =
∑P

i=1
ni without revealing any of the ni

to any other DPs, or any party external to the protocol. We use E() and D() to represent the
functions for encryption and decryption, respectively. We analyse the presented summa-
tion protocols in terms of privacy and their computation and communication complexities
in Section 3.
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Figure 2: An example of the basic secure summation protocol (BSS) between data providers
DP1, DP2, and DP3 to compute their private input values n1, n2, and n3, respectively. In this
example, DP1 initialises the protocol by generating a random number r (step 1) and adding
r to its private input n1 (step 2). In steps 3 and 4, DP2 and DP3, respectively, updates the
partial sum it received from the previous DP by adding its own private input value and
sending the updated partial sum value to the next DP. Finally, in step 5, DP1 sends the final
sum E = 24 to other DPs by subtracting r from the partial sum value it received from DP3.

2.1 Basic Secure Summation (BSS)

A basic secure summation protocol to securely mine association rules over horizontally
distributed data under the honest-but-curious adversary model was initially proposed by
Clifton et al. [16]. In horizontally partitioned databases the global support count is equal to
the sum of all the local support counts. The authors used a secure summation protocol to
compute the global support count of a rule such that the participants collaboratively form
the global rule while none of the local support counts is being revealed.
The suggested protocol is based on randomisation which requires the participating parties

to communicate in a round robin fashion. Algorithm 1 describes the steps involved in this
basic protocol [16, 42, 43]. Initially DP1 chooses a large random number r (line 1) which it
keeps secret from all other DPs. It then adds r to its input n1 (line 2) to generate the partial
sum s1 = (n1 + r). Then DP1 sends s1 to DP2 (line 3). Since r is random, DP2 cannot learn
anything about n1. DP2 receives the partial sum s1 (line 5) and then adds its value n2 to s1
(line 6), s2 = s1 + n2, and sends the result to DP3 (line 8). This process is repeated (lines 4
to 13) until all the DPs have added their values, and the partial sum sP = r+ n1 + · · ·+ nP

is sent back to DP1 (line 11). DP1 subtracts r from sP (line 15) and the final sum E is
distributed to all other DPs (line 16).
BSS is susceptible to privacy risks where a collusion between two or more adjacent DPs

can allow them to learn the private input of a non-colluding DP. We discuss the collusion
risk of BSS in detail in Section 3. Figure 2 shows an example of BSS for three DPs.

2.2 Encrypted Secure Summation (ESS)

Encryption is a well-known security technique which is the process of encoding a message
or information in such a way that only authorised parties who know the decryption key
can access the original message while those who are not authorised cannot [16]. The main
limitation of this technique, however, is the requirement of the data to be decrypted before
any computation operations can be performed on the data. Thus, it is desirable to have an
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Algorithm 1: Basic secure summation protocol (BSS) [16]

Input : P - Number of DPs
ni - The secret numerical input value of DPi, 1 ≤ i ≤ P

Output: E - Final sum where E ←
∑P

1 ni

1 DP1 generates a random number r
2 DP1 computes partial sum s1 ← n1 + r

3 DP1 sends s1 to DP2

4 for i ∈ [2, 3, · · · , P ] do
5 DPi receives si−1

6 DPi computes partial sum si ← si−1 + ni // Compute the partial sum
7 if i < P then // Check if the current DP is not DPP

8 DPi sends si to DPi+1 // Send the partial sum to the next DP
9 end

10 else
11 DPi sends si to DP1 // Send the final sum to DP1

12 end

13 end
14 DP1 receives si
15 DP1 computes final sum E ← sP − r // Substract r from final partial sum
16 DP1 sends final sum E to other DPs
17 Other DPs receive final sum E

encryption scheme that allows non-trivial operations on encrypted data without decryp-
tion. Such a special encryption scheme is called a homomorphic cryptosystem [1, 19, 59].
Homomorphic encryption schemes allow certain computations to be performed on data

that are in an encrypted form (ciphertext) and output an encrypted result [20, 28]. Homo-
morphic encryption ensures that the decrypted result is identical to the result of the same
function performed on the unencrypted input data. In homomorphic encryption schemes a
key pair, known as public and private (secret) keys, is used to encrypt and decrypt the pri-
vate input data accordingly [59]. The public key is kept publicly available to any party that
participates in a protocol while a private key is not shared and kept secret by the party that
generates the key pair. Successive encryption of the same value using the same public key
generates different encrypted values with high probability, while decrypting an encrypted
value using a private key always returns the correct original value [1, 20].
For example, assume two given numbers n1 and n2 belonging to data providers DP1 and

DP2, respectively. First, DP1 and DP2 encrypt their numbers n1 and n2 into an encrypted
form ε1 and ε2, respectively, using an encryption function E(), where ε1 ← E(n1) and
ε2 ← E(n2). Based on a homomorphic addition scheme [55], DP1 and DP2 can compute
the summation of ε1 and ε2, denoted as (ε1 + ε2). The decryption of (ε1 + ε2) is equal to the
addition of the plain counterparts n1 and n2, denoted as (n1 + n2) = D(ε1 + ε2), where D()
is a decryption function.
Homomorphic encryption can be categorised into fully and partially (somewhat) homo-

morphic schemes [55]. Fully homomorphic schemes can perform addition and multiplica-
tion [59] or any arbitrary calculation [28]. However, existing fully homomorphic schemes
are computationally not efficient due to their complex encryption and decryption opera-
tions. Partially homomorphic encryption schemes only support a limited number of oper-
ations on encrypted data, however, they are much faster and thus more practical [55].
The idea of the encryption based secure summation protocol (ESS) is to use a public and
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Algorithm 2: Encrypted secure summation protocol (ESS) [72, 74]

Input : P - Number of DPs
ni - The secret numerical input value of DPi, 1 ≤ i ≤ P

Output: E - Final sum where E ←
∑P

1 ni

1 TP generates pk and sk of public and private key pair, respectively
2 TP sends pk to all DPs
3 DPs receive pk

4 for i ∈ [1, 2, · · · , P ] do // All DPs follow the same steps
5 εi ← E(ni,pk) // Encrypt the secret input
6 if i == 1 then // Check if the current DP is DP1

7 DP1 sends the partial sum s1 ← ε1 to DP2

8 end
9 else

10 DPi receives si−1 // DP receives the partial sum from the previous DP
11 DPi computes partial sum si ← si−1 + εi // Compute the partial sum
12 if i < P then // Check if the current DP is not DPP

13 DPi sends si to DPi+1 // Send the partial sum to the next DP
14 end
15 else
16 DPP sends sP to TP // Send the final partial sum to the TP
17 end

18 end

19 end
20 TP receives sP
21 TP gets the E ← D(sP , sk) // Decrypt the received final sum value
22 TP sends final sum E to DPs
23 DPs receive final sum E

private key pair for encrypting and decrypting the private inputs, respectively, as detailed
in Algorithm 2 [72, 74]. ESS uses the partially homomorphic Paillier cryptosystem [59].
In this protocol a third party (TP) is employed to facilitate the secure summation across P
DPs. The TP first generates the public (pk) and private (sk) key pair. The TP then sends
the public key pk to all DPs to encrypt their private inputs, while the private key sk is kept
secret with the TP (lines 1 and 2).

Similar to BSS, the DPs communicate in a round robin fashion which initiates by DP1. As
shown in Algorithm 2, each DPi encrypts its input ni using the function E() and the public
key pk (line 5). The encrypted partial sum si of each DP is then sent to the next DPi+1 (line
7), which adds si to its own encrypted input εi+1 (line 11). The final encrypted sum sP is
then sent back to the TP by DPP (line 16). Using the function D() and its own secret key sk,
the TP decrypts sP to get the final sum E (line 21), which it then sends to all DPs (line 22).

2.3 Salted Secure Summation (SSS)

Salting is a cryptography technique that has been used to improve privacy against dictio-
nary attacks on one-way hash functions where an additional secret value is concatenated
with the value that is to be encrypted or encoded [54, 65, 72]. Salts are closely related to
the concept of nonce, which is an arbitrary (random) number used only once in a crypto-
graphic communication [61]. As detailed in Algorithm 3, in the SSS protocol each DPi adds
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Algorithm 3: Salted secure summation protocol (SSS) [72]

Input : P - Number of DPs
ni - The secret numerical input value of DPi, 1 ≤ i ≤ P

Output: E - Final sum where E ←
∑P

1 ni

1 for i ∈ [1, 2, · · · , P ] do // All DPs follow the same steps
2 DPi computes a random salting value ri
3 DPi sends ri to the TP
4 TP receives ri
5 if i == 1 then // Check if the current DP is DP1

6 DP1 computes partial sum s1 ← n1 + r1
7 DP1 sends s1 to DP2

8 end
9 else

10 DPi receives si−1 // DP receives the partial sum from previous DP
11 DPi computes si ← si−1 + ni + ri // Compute the partial sum
12 if i < P then // Check if the current DP is not DPP

13 DPi sends si to DPi+1 // Send the partial sum to the next DP
14 end
15 else
16 DPP sends sP to TP // Send the final partial sum to the TP
17 end

18 end

19 end
20 TP receives sP

21 TP computes r ←
∑P

i=1 ri // Add all random salt values
22 TP computes final sum E ← sP − r // Substract salt values from final sum
23 TP sends final sum E to DPs
24 DPs receive final sum E

an additional random (salt) value ri to its own private input ni. Similar to ESS, the SSS
protocol requires a TP because individual salt values cannot be shared between the DPs in
order to prevent collusion risks.

In lines 2 and 3, each DPi starts by generating a random salt value ri and sends it to the
TP. Then DP1 adds n1 to r1 and the resulting partial sum s1 is sent to DP2 (lines 6 and 7).
Following the same steps, each following DPi (with i > 1) receives the previous partial
sum si−1 from DPi−1 and adds its own private input ni and random salting value ri to
the partial sum si−1 and then sends the resulting sum si to the next DP (lines 9 to 18). For
example, DP2 adds its private input n2 and r2 with s1 and the resulting sum s2 is sent to
DP3. Finally, DPP sends the final partial sum sP to the TP (line 16). The TP computes the
final sum E by subtracting the random salts of all DPs from sP (lines 21 and 22) and the
resulting E is sent to all DPs (line 23).

The main weakness in this secure summation protocol is that each DP requires to send its
random salt value to the TP. Any collusion between the TP and the participating DPs can
compromise the privacy of a private input of a non-colluding DP. We discuss the weak-
nesses of the SSS protocol in more detail in Section 3.
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Algorithm 4: Randomly-shared secure summation protocol (RSS) [69]

Input : P - Number of DPs
ni - The secret numerical input value of DPi, 1 ≤ i ≤ P

Output: E - Final sum where E ←
∑P

1 ni

1 for i ∈ [1, 2, · · · , P ] do // All DPs follow the same steps
2 DPi computes a list of random shares Ri ← computeShares(ni, P ), such that

∑P

j=1 r
j
i ∈ Ri = ni

3 for j ∈ [1, 2, · · · , P ] do // All DPs follow the same steps
4 if i 6= j then // Send each share to its corresponding DP

5 DPi sends a random share r
j
i to DPj

6 DPj receives rji
7 end

8 end

9 DPi computes si =
∑P

j=1 r
i
j // Add the received shares with its share rii

10 if i 6= 1 then // Check if the current DP is not DP1

11 DPi sends si to DP1 // Send the partial sum value to DP1

12 end

13 end

14 DP1 receives ∀Pi=2 si // DP1 receives the partial sum values from other DPs

15 DP1 computes final sum E ←
∑P

i=1 si // Add all the partial sum values
16 DP1 sends final sum E to all other DPs
17 Other DPs receive final sum E

2.4 Randomly-shared Secure Summation (RSS)

Secret sharing [17] (also known as secret splitting [64]) refers to methods for distributing a
secret amongst a group of participants, each of whom is allocated with a share of the secret.
The general idea of the secret sharing scheme is that the secret value of a participating party
can be reconstructed only when a sufficient number of shares are combined together. In
such settings each individual share is of no use as it cannot be used to construct the private
input of a party. Threshold secret sharing schemes were first introduced by Shamir [66]
and Blakley [6] in 1979. Different other secret sharing schemes were proposed over the
years [41, 44], while their properties were studied in [5, 13, 17, 41].

A summation protocol that uses secret sharing was first proposed by Benaloh [17]. A
similar protocol was also proposed in 1993 by Chor and Kushilevitz [12] for computing
the summation of private input from P DPs, where this protocol is more efficient (it re-
quires a smaller number of messages) than the one by Benaloh for scenarios where less
than P −2 parties are colluding. Another similar protocol by Tassa and Cohen [69] recently
extended the BSS protocol (as described in Section 2.1) to multiple parties by adapting a se-
cret sharing technique proposed in [17]. As detailed in Algorithm 4, the protocol by Tassa
and Cohen, named RSS, uses a set of P random shares of each private input value ni to
compute the final summation [69]. Similar to BSS, the RSS protocol can be used in SMC
scenarios where no third party is available.

Each DPi first computes P random shares (rji , with 1 ≤ j ≤ P ) of its ni by using the
function computeShares() (line 2), where the sum of all its shares equals to ni, such that

ni =
∑P

j=1
rji . Each share rji is sent to the corresponding DPj (lines 3 to 8). Each DPi then

adds all the random shares it receives from the other DPs with the random share of its own
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ni to calculate its partial sum si (line 9). Each DPi sends its partial sum si to DP1 (lines 10
to 12). DP1 adds all sis to compute the final summation E (line 15). Finally, the computed
E is distributed to all other DPs (line 16).

2.5 Distributed Secure Summation (DSS)

Recently, Mehnaz et al. [51] proposed a secure summation protocol that uses collusion re-
sistant anonymisation to provide privacy to the individual values held by each party. The
DSS protocol employs a third party TP to conduct the summation where parties are com-
municating in a round robin fashion similar to the BSS protocol described in Section 2.1. In
the proposed DSS protocol the collusion resistant anonymisation is achieved by each party
randomly permuting the input values it received from the previous party before sending
these received values to the next party in the protocol. The DSS protocol, as outlined in
Algorithm 5, uses the ElGamal cryptosystem [23] where each message communicated be-
tween the parties is encrypted and decrypted using a public and private key pair.

The ElGamal cryptosystem, as first described by Taher ElGamal in 1985 [23], is a public
key cryptosystem based on the discrete logarithm problem for a group of parties, where
every party has a private and public key pair (sk, pk). For example, assume a party named
Alice has a prime p and an integer g, whose powers modulo p generate a large number
of elements. Hence, Alice generates its private and public key pair (sk, pk), where pk =
gsk mod p, where mod is the modulo operation. Suppose there is another party Bob who
wishes to send a message m to Alice. Bob first generates a random number k which must
be less than p, i.e. 1 ≤ k < p. He then computes c1 = gk mod p and c2 = m ⊕ ck1 , where ⊕
denotes the bit-wise exclusive-OR (XOR). Bob sends the ciphertext (c1, c2) to Alice. Upon
receiving the ciphertext, Alice computes m = (csk1 mod p)⊕ c2.

As detailed in Algorithm 5, the DSS protocol requires each participating party to have its
own public and private key pair. First the TP generates its public (pkTP ) and private (skTP )
key pair (line 1) and sends pkTP to all DPs (lines 2 and 3). DSS contains three phases: input
preparation (lines 4 to 20), anonymisation (lines 21 to 36), and sum computation (lines 37 to 40).

In the input preparation phase, each DPi first generates a public (pki) and private (ski)
key pair and sends its public key pki to the TP and every other DPs (lines 5 to 8). Then each
DPi divides its private input ni into δ (≥ 1) segments (lines 9 and 10). In line 9, each DPi

uses the function computeSecretShares() to generate a list of secret shares Ai = [α1
i , α

2
i , · · · , α

δ
i ]

uniformly and randomly such that
∑δ

j=1
αj
i = 1.

These shares are used in the function computeSegments() to divide ni into δ segments Ni

where Ni = [s1, s2, · · · , sδ] such that
∑δ

j=1
sj = ni and sj = αj

i · ni (line 10). In lines 12 to
18, each DPi encrypts segments in Ni. At first each DPi encrypts each segment in Ni using
TP’s public key pkTP (line 13). Next, each encrypted segment ǫ is encrypted using the
public keys of all DPs in an order of DP1 to DPP (lines 14 to 16). Each encrypted segment
is added into a list N ′

i and is sent to the TP (line 19). Once the TP received the lists of
encrypted segments from all DPs, it adds all the segments in each list into a list N ′ (line 21).
Next each segment in N ′ needs to be decrypted before they can be summed together.

Since each segment has the encryption order from the public keys of DP1 to DPP , the ap-
propriate decryption order is using the corresponding private keys of DPP to DP1. Hence
the TP sends the list N ′ first to DPP (line 22). In lines 23 to 35, from DPP to DP1 decrypts
each segment in N ′ using its private key ski. Once the segments are decrypted using their
private keys (line 26), each DPi sends the list N ′ to DPi−1 (lines 28 to 34). Before sending
the list N ′ to DPi−1, DPi randomly re-orders the elements in N ′ using the function ran-
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Algorithm 5: Distributed secure summation protocol (DSS) [51]

Input : P - Number of DPs
ni - The secret numerical input value of DPi, 1 ≤ i ≤ P

Output: E - Final sum where E ←
∑P

1 ni

1 TP generates pkTP and skTP of public and private key pair, respectively
2 TP sends pkTP to all DPs
3 DPs receive pkTP

4 for i ∈ [1, 2, · · · , P ] do // All DPs follow the same steps
5 DPi generates pki and ski of public and private key pair, respectively
6 DPi sends pki to TP // Send public key to TP
7 DPi sends pki to other DPs // Send public key to other DPs
8 TP and other DPs receive pki
9 DPi computes a list of secret shares Ai ← computeSecretShares(δ)

10 DPi computes a list of segments Ni ← computeSegments(ni, Ai)
11 N ′

i = [] // Initialise a list to keep the encrypted segments
12 for j ∈ [1, 2, · · · , δ] do // Encrypt each segment
13 εj ← E(Ni[j], pkTP ) // Encrypt the segment with TP’s public key
14 for k ∈ [1, 2, · · · , P ] do
15 εj ← E(εj , pkk) // Encrypt each segment with DPk’s public key
16 end
17 N ′

i [j] = εj // Add each encrypted segment to N ′
i

18 end
19 DPi sends N ′

i to TP // Send the encrypted segments to TP

20 end
21 TP receives N ′

i and adds each N ′
i to list N ′, such that ∀i∈[1···P ]∀j∈[1···δ] N ′[i · j] = N ′

i [j]
22 TP sends N ′ to DPP

23 for i ∈ [P, P − 1, · · · , 1] do // All DPs (from last to first) follow the same steps
24 DPi receives N ′

25 for j ∈ [1, 2, · · · , |N ′|] do
26 N ′[j] = D(N ′[j], ski) // Decrypt each segment with the private key
27 end
28 N ′ = randomShuffle(N ′) // Re-order elements of N ′ by random shuffling
29 if i > 1 then
30 DPi sends N ′ to DPi−1 // Send N ′ to the previous DP
31 end
32 else
33 DP1 sends N ′ to TP // DP1 sends N ′ to the TP
34 end

35 end
36 TP receives N ′

37 TP computes N , i.e. N [i] = D(N ′[i], skTP ), 1 ≤ i ≤ |N ′|

38 TP computes final sum E ←
∑|N|

i=1 N [i] // Add all the segment values
39 TP sends final sum E to all DPs
40 DPs receive final sum E

domShuffle() (line 28). This random shuffling of elements in N ′ helps to hide the source of
each value, i.e. to hide information about the DP that each encrypted value belongs to.
Finally DP1 sends the list N ′ to the TP (line 30).
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In the final phase (sum computation), the TP decrypts each segment in N ′ with its private
key skTP and adds each segment into the list N (line 37). Finally, the TP computes the final
sum E by adding each segment in N (line 38) and E is sent to all DPs (line 39).

2.6 Two Segmented Secure Summation (TSS)

As outlined in Algorithm 6, we now propose a novel secure summation protocol, named
as two segmented secure summation (TSS), which combines the homomorphic encryption
scheme with a secret sharing scheme. We adapt the secret splitting technique [17, 64], de-
scribed in Section 2.4, to share a random value anonymously among the DPs which makes
our protocol less vulnerable to collusion, as we discuss in Section 3. Similar to both ESS and
SSS, the TSS protocol employs a TP to compute the final summation value, where the aim
is to compute the final summation with less communication steps between the DPs and at
the same time to prevent collusion between upto P − 2 parties.
The TSS protocol contains three main steps. In step 1 (lines 1 to 3 in Algorithm 6), the TP

generates the required public (pk) and private (sk) key pair for encryption and decryption
of messages (line 1), respectively, and distributes pk to all DPs (line 2). In step 2 (lines 4
to 24), similar to SSS, each DPi first generates a random salting value ri (line 5). Each DPi

then encrypts the summation of its private input ni and ri using pk into εi (line 6).
Each DPi then divides its random salting value ri into two random segments r′i and r′′i

using the function divideSalt() (line 7). The segment r′′i is sent to another DP that is selected
randomly (line 8) while the random segment r′i is not shared with any other party in the
protocol. The aim of this splitting of ri is to keep the random salt value secret from being
identified by any DP or the TP in a collusion scenario. To improve the privacy each salting
value can be divided into more than two segments, however, this would require more
messages to be communicated among the parties. We will provide more details on the
security of the TSS protocol in Section 3. Further, to improve the privacy when sending
its salt segment each DP can hide its identification information from the sent segment by
making the sent message anonymous, such as sending segments using a proxy server[21,
22]. Such anonymisation would prevent the receiving DP from learning about the sender
from whom it receives the segment. We refer the reader to [22] for details about such
information hiding communication protocols.
Except for DP1, in lines 10 to 12, each DPi adds its encrypted value εi to the partial sum

value si−1 it received from the previous DPi−1 into the partial sum value si (line 15). Each
DPi then sends its new partial sum result si to the next DPi+1 (line 17). For example, DP1

sends its encrypted partial sum value s1 to DP2. DP2 computes the encrypted partial sum
s2 by adding its encrypted value ε2 to s1 received from DP1. DP2 then sends s2 to DP3, and
so on. Finally DPP sends sP to the TP (line 20).
In step 3 (lines 24 to 27), each DPi adds its remaining random segment r′i with any random

segments r′′j it received from other DPjs into the partially summed random segment rsi ,
where i 6= j (line 25). Each DPi then sends rsi to the TP (line 26). Finally, once the TP
receives all rss from DPs and the partial sum sP (line 28) it computes the final sum E by
subtracting the sum of rss from the decrypted final partial sum (line 29) and then sends E
to all DPs (line 30). Figure 3 shows an example of TSS for three DPs.

2.7 (P-1) Segmented Secure Summation (PSS)

As we discussed in Section 2.6, one limitation of the TSS protocol is the requirement of an
anonymised communication network where DPs can send their segments anonymously
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Algorithm 6: Two segmented secure summation protocol (TSS)

Input : P - Number of DPs
ni - The secret numerical input value of DPi, 1 ≤ i ≤ P

Output: E - Final sum where E ←
∑P

1 ni

1 TP generates pk and sk of public and private key pair, respectively
2 TP sends pk to all DPs
3 DPs receive pk

4 for i ∈ [1, 2, · · · , P ] do // All DPs follow the same steps
5 DPi computes a random salting value ri
6 εi ← E(ni + ri, pk) // Encrypt the sum of secret input and the salting value
7 r′i, r

′′
i ← divideSalt(ri) // Divide the salt into two random segments

8 DPi sends r′′i anonymously to DPj selected randomly, where 1 ≤ j ≤ P ∧ i 6= j

9 DPj receives r′′i
10 if i == 1 then // Check if the current DP is DP1

11 DP1 sends s1 ← ε1 to DP2 // Send the partial sum s1 to DP2

12 end
13 else
14 DPi receives si−1 // Receive the partial sum from the previous DP
15 DPi computes partial sum si ← si−1 + εi
16 if i < P then // Check if the current DP is not DPP

17 DPi sends si to DPi+1 // Send the partial sum to the next DP
18 end
19 else
20 DPP sends sP to TP // Send the final partial sum to the TP
21 end

22 end

23 end
24 for i ∈ [1, 2, · · · , P ] do // All DPs follow the same steps

25 DPi computes rsi , such that rsi = r′i +
∑P

j=1 r
′′
j , if ∃ r′′j ∧ i 6= j

26 DPi sends rsi to TP // Send the random salts to the TP

27 end
28 TP receives rsi , i ∈ [1, · · · , P ], and εP // TP receives the random salts and final partial sum

29 TP computes final sum E ← D(sP , sk)−
∑P

i=1 r
s
i

30 TP sends final sum E to DPs
31 DPs receive final sum E

to other participating parties. As an alternative, if such an anonymous network setting
is not available, in line 8 in Algorithm 6, each DP can divide its random salt value into
P − 1 segments. We named this protocol variation as (P-1) segmented secure summation
(PSS). While keeping one segment to itself each DP sends all the other segments to other
DPs except to the DP which it sends its encrypted partial sum to. In the PSS approach no DP
would receive both an encrypted partial sum and a segment of a salt value from the same
DP. However, this variation of the protocol requires more messages to be communicated
between the participating DPs.

Similar to TSS, each DP follows the same steps in Algorithm 6 except in lines 8 and 9.
In line 8, each DPi divides its random salt ri into a list of P − 1 segments, such that ri =
[r1i , r

2
i , · · · , r

P−1

i ], while in TSS the salt is divided into two segments r′i and r′′i only. Then
in line 9, each DPi (while keeping the random segment rii secret) sends all the remaining
random segments to all other DPs except to the DP which it sends its encrypted partial
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Figure 3: An example of the TSS protocol with its three main steps. Data providers DP1,
DP2, and DP3 want to compute the sum of their private input values n1, n2, and n3. Three
random salt values r1, r2, and r3, are selected by the three DPs. In step 1, the TP initialises
TSS by sending its public key, pk, to the three DPs. In step 2, DP1 encrypts its partial sum
(n1 + r1) using pk into ε1 and sends ε1 to DP2. DP2 updates the encrypted sum it received
from DP1 by adding its own ε2, and sends the updated encrypted sum value to DP3. DP3

updates the result it received from DP2 by adding ε3 and sends the updated partial sum to
the TP. DP1 then sends r′′1 to DP3, DP2 sends its r′′2 to DP1, and DP3 sends r′′3 to DP2. In step
3, DP1, DP2, and DP3 send their partially summed random salt values rs1, rs2, and rs3 to the
TP, where rs1 = r′1 + r′′2 , rs2 = r′2 + r′′3 , and rs3 = r′3 + r′′1 , respectively. The TP computes the
final sum E by subtracting rs1, rs2, and rs3 from the decrypted partial sum value it received
from DP3 and sends E to all DPs. Arrows represent the communication between parties.

sum to. For example, DP1 can send its segments to other DPs except to DP2 since DP2

receives ǫ1 from DP1, while DPP can send its segments to any DP. Similar to TSS, once the
random segments are distributed among the DPs, each DPi can add the random segments
it receives from other DPs with its unshared random segment rii into the partially summed
random salt rsi and sends rsi to the TP (same as in line 26 in Algorithm 6). Finally, once the
TP receives all rss from DPs and εP (same as in line 29 in Algorithm 6) it computes the final
sum E by subtracting the sum of rss from the decrypted final partial sum and then sends E
to all DPs. We analyse and empirically evaluate PSS in Sections 3 and 4, respectively.

2.8 Homomorphically Shared Secure Summation (HSS)

As detailed in Algorithm 7, we propose another novel secure summation protocol, named
as homomorphically shared secure summation protocol (HSS), which uses a partially homomor-
phic encryption scheme to perform secure communication between the DPs. The HSS pro-
tocol employs a TP to compute the summation of the private inputs of the participating
DPs. The protocol uses a secret sharing scheme to securely compute the summation as we
explain below. The HSS protocol contains three main steps.

As outlined in Algorithm 7, in the first step (lines 1 to 15) each DPi initiates the protocol by
generating its own public and private key pair (pki, ski), and sends pki to other DPs (lines
2 to 4). In line 5 each DPi divides its private input ni into P segments using the function
computeSegments(). Each DPi then encrypts each of its P − 1 value segments separately
using the public keys of the other DPs, while keeping a segment to itself without sharing
it with any other party in the protocol (lines 7 to 15). Each DPi also encrypts a value 0
using its own public key pki (line 12) and then adds each encrypted segment εj to the list
of encrypted segments Ei (line 14). The encrypted value 0 is inserted in the corresponding
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Algorithm 7: Homomorphically shared secure summation protocol (HSS)

Input : P - Number of DPs
ni - The secret numerical input value of DPi, 1 ≤ i ≤ P

Output: E - Final sum where E ←
∑P

1 ni

1 for i ∈ [1, 2, · · · , P ] do // All DPs follow the same steps
2 DPi generates (pki, ski) of public and private key pair, respectively
3 DPi sends pki to other DPs
4 Other DPs receive pki

5 DPi computes a list of segments Ni ← computeSegments(ni, P ), such that
∑P

j=1 sj ∈ Ni = ni

6 Ei = [] // Initialise a list to store the encrypted segments
7 for j ∈ [1, 2, · · · , P ] do // Encrypt each segment
8 if j 6= i then // Keep a segment to itself without sharing
9 εj ← E(Ni[j], pkj) // Encrypt segment j with DPj ’s public key

10 end
11 else
12 εj ← E(0, pki) // Encrypt a value 0 with DPi’s public key
13 end
14 Ei.add(εj ) // Add each encrypted segment to Ei

15 end
16 DPi sends Ei to TP // Send the encrypted segments to TP
17 TP receives Ei from DPi

18 end
19 for i ∈ [1, 2, · · · , P ] do // All DPs follow the same steps

20 ε′i ←
∑P

j=1 Ej [i] // Sum all the encrypted segments assigned to DPi

21 TP sends encrypted sum ε′i to DPi

22 end
23 for i ∈ [1, 2, · · · , P ] do // All DPs follow the same steps
24 DPi receives ε′i from TP // DP receives the encrypted partial sum
25 si ← D(ε′i, ski) +Ni[i] // Add its own segment to the decrypted sum value
26 DPi sends partial sum si to TP // Send the partial sum to TP
27 TP receives si from DPi // TP receives the partial sum

28 end

29 TP computes final sum E ←
∑P

i=1 si // Add the received partial sum values
30 TP sends final sum E to DPs
31 DPs receive final sum E

position of the unshared segment in the list of encrypted segments Ei.

Figure 4 shows an example of the HSS protocol for three DPs. As shown in Figure 4, DP1

divides its private input n1 into three segments n1
1, n2

1, and n3
1, and encrypts n2

1 and n3
1 into

ε21 and ε31 using the public keys pk2 and pk3 of DP2 and DP3, respectively. DP1 does not
share the segment n1

1 with any other party. DP1 generates ε11 by encrypting the value 0
with its public key pk1 and then adds ε11, ε21 and ε31 to the list E1 such that E1 = [ε11, ε21, ε31].

In the second step (lines 16 to 22) each DPi first sends its list of encrypted segments Ei to
the TP (line 16). Next the TP iterates through each list Ei sent to it by DPi. The TP adds each
encrypted segment in the index position i into the encrypted partial sum ε′i (line 20), and
then sends the encrypted partial sum ε′i to the corresponding DPi in line 21. For example,
as shown in Figure 4, the TP adds ε11, ε12, and ε13 into ε′1 and sends ε′1 to DP1. In the third
step (lines 23 to 31) each DPi decrypts the received ε′i using its private key ski and adds its
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Figure 4: An example of the HSS protocol, as described in Section 2.8. Data providers DP1,
DP2, and DP3 want to compute the sum of their private input values n1, n2, and n3. In
this protocol each DPi, i ∈ [1, 2, 3], has it own public (pki) and private (ski) keys. In step
1, each DPi initialises the protocol by segmenting their private input value ni into three
segments, where ni = n1

i , n2
i , and n3

i . Next each DP encrypts its value segments using the
public keys of other DPs separately while it encrypts a value 0 using its own public key.
In step 2, each DP sends its list of encrypted value segments to the TP. The TP then adds
all corresponding encrypted segments in each index position i in these lists together and
sends each encrypted partial sum ε′i to the corresponding DPi. Hence, DP1 receives the
encrypted partial sum ε′1 which is the sum of segments ε11, ε

1
2, and ε13. In step 3, each DP

decrypts the received encrypted partial sum from the TP using its private key and adds its
remaining segments to compute its partial sum si. DP1 decrypts its encrypted partial sum
value ε′1 using its private key sk1 and adds its segment n1

1 to compute the partial sum s1.
DP2 and DP3 follow the same steps and finally each DPi sends its partial sum si to the TP.
The TP computes the final sum E by adding s1, s2, and s3, together, and sends E to all DPs.

remaining segment Ni[i] to compute the partial sum si (line 25). Each DPi then sends si to
the TP (line 26). Finally the TP computes the final sum E by adding all partial sum results
it receives from the DPs (line 29) and then sends E to all DPs (line 30).
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1 DP colludes

with the TP

2 or more (up to P−2) DPs

collude with the TP

2 or more (up to P−2)

DPs collude

2 or more (up to P−2)

DPs collude

Secure Multi−party Computation

No collusionOnly DPs collude No collusion DPs collude with the TP

Without a third party (TP)With a third party (TP)

Figure 5: Collusion scenarios that are possible in secure multi-party computation (SMC)
applications with and without a third party (TP).

Because of the private value segmentation and encryption of segments, in this protocol
neither the TP nor a set of (P−2) DPs is able to identify the private input or a segment value
of a non-colluding DP. We analyse the security of HSS under different collusion scenarios
in more detail in the following section.

3 Analysis of Protocols

We now analyse the eight presented secure summation protocols with regard to their pri-
vacy (Section 3.1), and their computation and communication complexities (Section 3.2).
We assume the participating parties (data providers, DPs, and the third party, TP) follow
the honest-but-curious (HBC) adversary model [47], as described in Section 1. All parties
follow the steps according to the protocol specifications such that at the end of each sum-
mation protocol all DPs always receive the correct summed result. Hence the correctness
holds for each protocol. Next, as illustrated in Figure 1, we analyse the applicability of each
protocol in terms of privacy according to if (1) only DPs are participating or (2) a TP is also
involved in the protocol. We assume P ≥ 3 DPs.

3.1 Privacy Analysis

Collusion between the participating parties is a privacy risk in many real-world multi-party
applications [3]. Figure 5 shows the different possible collusion risk scenarios under SMC.

As can be seen from this figure, for the SMC model without the TP, a group of DPs can
collude with each other to identify the private input of one or more other DP(s). We con-
sider two possible collusion scenarios under this model: (1) no collusion and (2) collusion
between 2 or more DPs (at most P − 2), where they aim to identify the private input(s) of
one or more other non-colluding DP(s) they communicate with. For the SMC model with-
out the TP the risk of collusion between P − 1 DPs is not solvable if all DPs obtain the final
result. For example, in a four-party protocol if three of the DPs collude with each other
then they can learn the private input of the remaining DP by subtracting their own input
values from the final summation result.

With respect to a subset of participants in the protocol, a SMC protocol can be considered
as secure if it does not enable those participants to learn information about the inputs of
other participants beyond what is implied by the final output and their own inputs, even
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if the subset of participants are computationally unbounded. Such a computation is com-
putationally private if it achieves the same goal when the participants are polynomially
bounded. We call such a subset of participants that collude in the protocol a Coalition [2, 36].
Following the current standard approach for defining security of SMC protocols [30], the

property of ensuring the security of a protocol against what a coalition can learn during
the computation can be computed based on its input and the output. This property can be
proven by building a simulator [30, 47]. This simulator is given the input and output of

the colluding parties and it computes a view that is indistinguishable (denoted by
c
≡) from

the coalition’s view in the real execution of the protocol. Hence, we formally define the
security of a SMC protocol under a semi-honest coalition as follows [34].

Definition 1. Privacy of a SMC protocol against a semi-honest coalition [30, 34]. Let π be a pro-
tocol for computing a SMC function f . The protocol π with P parties securely computes f
in the presence of a semi-honest coalition C, if there exists a polynomial-time simulator SC

such that {SC(x, f(x))}x
c
≡ {viewπ

C(x)}x, where viewπ
C(x) denotes the view of the coalition

C including any input or messages with partial results that the colluding parties may share
during the protocol execution and x ∈ {0, 1}1

∗ × · · · × {0, 1}P
∗
.

Next we explain each collusion scenario shown in Figure 5 in more details. In the no
collusion scenario all the participating parties can be trusted and no actions are carried out
by a DP to learn private input of another DP. However, such a scenario might be impractical
in some real situations. The second scenario (2 or more DPs collude) is more realistic in real-
world situations where multiple DPs (at most P − 2) might be colluding with each other to
learn a private input of another DP [47].
For the SMC model with a TP, collusion can occur either between the DPs, or between the

TP and one or more DPs. Apart from the two collusion scenarios described above, DPs can
also collude with the TP in two different ways: (1) one DP colludes with the TP to identify
the private input of another DP that it communicates with, and (2) two or more (at most
P − 2) DPs collude with the TP to learn the private input(s) of one or more other non-
colluding DP(s). Since the TP is assumed to follow the honest-but-curious (HBC) model
both of these collusion scenarios are possible in realistic situations. Similar to the SMC
model without the TP, the risk of collusion between P − 1 DPs and the TP is not solvable
if all DPs obtain the final result. We next analyse the privacy of each secure summation
protocol in terms of these collusion scenarios.

• The BSS protocol [16] in Section 2.1 is susceptible to collusion since the private input
of any DP can be identified if its two adjacent DPs collude with each other. For exam-
ple, the BSS protocol with three DPs has a collusion risk if DP1 and DP3 collude with
each other, which enables them to learn the private input of DP2. Hence, the adding
of a random value in the BSS initialisation does not provide privacy against collusion
for partially summed values computed in the intermediate protocol steps.

Zhu et al. [77] recently proposed an adapted BSS protocol for four or more parties that
masks the private input of a DP by adding or subtracting random numbers based on
a random boolean decision (true or false) sent by another set of DPs who are selected
randomly. These masked values are then summed by using a modulo operation. This
approach is secure when the adjacent DPs collude with each other to learn the private
input of any other DP. However, the private input of a DP can be identified if all DPs
which have secretly communicated with the given DP in the masking phase collude.
We refer the reader to [77] for details.
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• The ESS protocol [74, 72] in Section 2.2 uses a homomorphic encryption scheme to
sum the private inputs of the participating DPs. ESS requires a TP to generate the
keys (public and private) for encryption and decryption of messages. Any collusion
only between DPs does not allow to learn the private input of a non-colluding DP
because the private key is only known to the TP. However, a collusion between two
adjacent DPs (in the ring communication) and the TP can compromise the privacy of
the private input of another DP.

For example let us assume three DPs, DP1, DP2, and DP3, want to compute the sum
of their respective private inputs n1, n2, and n3. Assume the TP and DP2 are collud-
ing and they want to know the private input of DP3. If DP2 reveals to the TP the en-
crypted partial sum that it has sent to DP3 then the TP can deduct the decrypted value
of the partial sum from the final sum to identify the private input of DP3. Hence, the
ESS protocol does not provide privacy against collusion between the TP and several
participating DPs since each encrypted message with a partially summed result can
be decrypted by the TP which can reveal the private input of another DP.

• The SSS protocol [72], described in Section 2.3, allows each DP to generate their own
random value (salt) to add to their private input value. Since the DPs do not share
their own random value with any other DP, collusion between DPs does not compro-
mise the privacy of a private input value. However, the SSS protocol requires each
individual salt value to be sent to the TP to compute the final summed value. Any
collusion between DPs and the TP compromises the privacy of SSS because DPs can
obtain the private value of another DP.

For example, assume an SSS protocol with four DPs, DP1 to DP4, where the commu-
nication of partial summation results occurs from DP1 to DP2, DP2 to DP3, and DP3

to DP4. In such a setting, a collusion between DP1, DP3, and the TP can identify the
private input of DP2. Now let us assume the TP and DP1, respectively, reveal the ran-
dom salt value of DP2 and the partial sum value to DP3. With this information DP3

can subtract the random salt value of DP2 and the partial sum value of DP1 from the
partial sum value it received from DP2 to identify the private input of DP2. Hence,
SSS is not secure against collusion between the TP and two or more DPs.

• Compared to BSS, the RSS protocol [69] described in Section 2.4 is secure against
collusion between DPs that aim to learn another DP’s private input because each
DP keeps a random share of its own private value hidden from all the other DPs.
Even if DP1 colludes with P − 3 other DPs, for example, DP1 still cannot identify
the individual private value of each remaining non-colluding DP because each non-
colluding DP adds its own random share to the partial sum. Hence, the RSS protocol
guarantees privacy against collusion between at most P − 2 DPs.

In 1993, Chor and Kushilevitz [12] also proposed a similar protocol for computing the
summation of the private inputs of P DPs. Similar to RSS, in this protocol each party
DPi first randomly chooses P elements zi,1, zi,2, · · · , zi,P for its input ni, such that ni

=
∑P

j=1
zi,j , and then sends zi,j to DPj . Then each DPi computes the partial sum wi =

∑P
j=1

zj,i and sends wi to DPP . Finally, DPP computes the final sum
∑P

i=1
wi. Since

each DPi keeps a random element zi,i of its input ni without sharing it with any other
DPs, this protocol also guarantees privacy against collusion between at most P − 2
DPs similar to RSS.

In terms of communication, RSS and the protocol proposed in [12] require the same
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number of messages to be sent between DPs to achieve privacy against collusion be-
tween at most P − 2 DPs. However, the protocol by Chor and Kushilevitz requires
more communication rounds compared to RSS, because [12] uses a sequential com-
munication (messaging) scheme while sending of messages in RSS is more synchro-
nised and all parties can send their messages at the same time. Hence, communication-
wise the protocol by Chor and Kushilevitz [12] is slower than RSS. Furthermore, as we
discussed in Section 2.4, another similar protocol was also proposed by Benaloh [17].
However, this protocol is less efficient compared to [12] because of the use of discrete
logarithms for computing shares.

Urabe et al. [70] proposed a similar variation of such a protocol for secure summation.
In this protocol each DPi first divides its private input into (P + 1− i) segments. For
example, in a protocol with five DPs, the first DP divides its private input into five
segments, the second DP divides its private input into four segments, and so on. Each
DP then sends each of its segments to the corresponding other DPs while keeping
one segment to itself. Once all the segments are distributed among the DPs, each
DP sums all the segments it has received and its remaining local segment, and sends
this partial result to the TP. The TP then adds all these partial results together to get
the final summed result. In contrast to the RSS protocol [69], this protocol does not
provide privacy against collusion by P−2 DPs because of the asymmetric (imbalance)
secret sharing scheme. We refer the reader to [70] for more details.

• The DSS protocol proposed by Mehnaz et al. [51] uses the ElGamal cryptosystem [23].
Similar to ESS and SSS, this protocol also employs a TP to conduct the summation of
private inputs of the participating DPs. Similar to RSS, DSS also uses a segmentation
technique to ensure each private input value is divided into δ > 1 segments. Each
segment is encrypted using the public keys of all participants in the input prepara-
tion phase which requires each segment to be decrypted by each party sequentially
in the sum computation phase. Since each DP encrypts all its segments using the TP’s
public key a collusion between a set of DPs cannot identify the private input of an-
other DP. In the anonymisation phase, after the segments are decrypted by each DP
using its own secret key, each DP randomly re-orders the segments before it sends the
list of segments to the next DP. Such re-ordering of segments ensures even a collusion
between the TP and P − 2 DPs cannot learn the private input of a non-colluding DP.
This is because the TP cannot identify the individual encrypted value segments of
each DP separately in each iteration of the summation phase. Hence the TP cannot
learn the correct segments of a non-colluding DP out from all the unencrypted seg-
ments of all DPs in the sum computation phase. Therefore the DSS protocol provides
privacy against collusion between the TP and P − 2 DPs.

Similar to DSS, another recent work by Bonawitz et al. [9] also uses the ElGamal cryp-
tosystem with a secret sharing scheme to perform the secure summation of numer-
ical data across different numbers of parties. However, this protocol has quadratic
computation and communication complexities with regard to the number of parties
which makes it not practical in a real-world context with a large number of parties.

• Our proposed TSS protocol improves overall privacy of the secure summation in two
ways. First, each DP generates its own random salt value to be added to its private
input. The salt value of a given DP is first divided into two segments. To improve
the privacy of the random salt value each DP shares only one segment with another
DP to which it does not send its encrypted partial summation value, while keeping
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the other segment with itself. As shown in Figure 4, DP1 sends its segment value r′1
to DP3 since DP2 receives ε1 from DP1. Such a division and sharing of a random salt
value ensures a collusion between the TP and adjacent DPs of a non-colluding DP
does not allow these parties to learn the private input of the non-colluding DP. This
also ensures that even a collusion between P − 2 DPs does not allow them to learn
the private input value of another DP, because each DP keeps a segment of its own
random salt value hidden from all the other DPs. Without knowing the unshared
salt segment value it is not possible for the colluding parties to learn the original salt
value of a non-colluding DP.

Second, each DP adds the encrypted sum value of its private and salt values to the
encrypted partial sums received from the previous DP. This ensures no DP is able
to deduct the private input of a non-colluding party by using the partial summation
result. Even a set of DPs that colludes with the TP by receiving its secret key, sk,
cannot learn the private input value of a non-colluding DP because each colluding
DP does not know from which other DPs it received the segments from because of
the anonymisation of messages. Hence our TSS protocol provides privacy against
collusion between the TP and P − 2 DPs, following the formal definition as given in
Proposition 1.

Proposition 1. The TSS protocol is secure against collusion between a subset of semi-
honest parties as long as there are k non-colluding parties such that k ≥ 2.

Proof: Let us assume a scenario where P DPs are participating in the TSS protocol
and C be a coalition of DPs that collude with the TP, where C ⊂ {DP1, DP2, · · · ,
DPP }, such that P − |C| = k.

The view of each DPi consists of an encrypted partial sum result (εi) and a par-
tial summation of salt values (rsi ) in addition to its private input value ni, which
can be represented as viewi(ni, εi, r

s
i ). Further, as outlined in Algorithm 6, each DP

anonymises its message m that contains random salt segment r′ before sending it to
another DP where each message m is uniformly distributed over a message space M .

To distinguish the private value ni of a non-colluding DPi, each DPj in the coali-
tion C can assist the TP by sending their encrypted partial sum results (εj) and their
partial salt values (r′j) to the TP, thus creating the coalition C’s collaborative view
viewC(

⋃
DPj∈C viewj(nj , εj , r

s
j ), E), where E denotes the final summation result. This

makes viewC to consist of the incomplete set of partial sum results and random salt
values since it does not contain any information from the non-colluding DPs. To
learn a private input value ni of a non-colluding party DPi, the coalition C can sim-
ulate its view during the protocol, by generating random salt values (rc) for each
non-colluding DPi. The simulator Sc’s view can be constructed by adding views
of all non-colluding DPs which can be generated as viewS(

⋃
DPj∈C viewj(nj , εj , r

s
j ),⋃

DPi /∈C viewi(∅, ∅, rci ), E), where each viewi of a non-colluding DPi is equal to (∅, ∅, rci )
and rci ∈ R denotes a randomly generated salt value for DPi.

Since each message that consists a partial salt value sent by a party is anonymised,
the probability p that a colluding DP receives a r′′i from a non-colluding DPi is p = 1

k ,
which is at most p = 1

2
when k = 2. However, even if a partial salt value segment

r′′i of a non-colluding DPi has been correctly identified the simulator cannot correctly
identify the input value ni of DPi since it cannot correctly guess rci that equals rsi .
This is because salt segment r′i of DPi is unknown to the simulator Sc and (ni + r′i) ∈
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R. Following Definition 1, viewS
c
≡ viewC given that r′i of DPi is computationally

indistinguishable. This implies that the TP, which receives the values rs from all
the DPs, cannot learn the ni of DPi by subtracting the decrypted εi with rs without
knowing r′i of DPi, thus making ni indistinguishable.

• Similar to TSS, in our (P − 1) segmented protocol (PSS) without knowing the public
key pk of the TP no DP can decrypt the partial summation value it receives. Therefore,
PSS is secure against any collusion where only DPs are colluding. Furthermore, each
DP segments its random salting value into P − 1 segments and sends each segment
to all other DPs except for the DP that it has sent the encrypted partial sum value to,
while keeping a segment value to itself without sharing it with other DPs. Because
each DP always keeps a salt segment hidden while receiving segments from at least
1 and at most P − 1 DPs, no DP can learn the random salt value of a non-colluding
DP. Moreover, since each DPi adds the encrypted sum value (εi) of its private (ni)
and salt (ri) values to the encrypted partial sum (εi−1) received from the previous
DPi−1, even if several DPs collude with the TP neither the TP nor a DP can calculate
the private value of any other DP. Hence our PSS protocol provides privacy against
collusion between the TP and P − 2 DPs as we state in Proposition 2.

Proposition 2. The PSS protocol provides security for the private input ni of a non-
colluding DPi against a subset of colluding parties as long as there are k non-colluding
parties such that k ≥ 2.

Proof: Similar to Proposition 1, let us assume a scenario where P DPs are partici-
pating in the PSS protocol and C be a coalition of DPs colluding with the TP, where
C ⊂ {DP1, DP2, · · · , DPP }, such that P − |C| = k.

After line 26 in Algorithm 6, the view of each DPi consists of an encrypted partial
summation result, εi, the partial salt result, rsi , its own salt value, ri, and its own
input value ni, which can be represented as viewi(ni, r

s
i , εi, ri). To distinguish a

private value ni of a non-colluding DPi, each DPj in the coalition C can assist the
TP by sending its encrypted partial sum result (εj) and its partial salt value (rsj ) to
the TP, in addition to its own salt and input values, thus creating C’s collaborative
view viewC({viewj(nj , r

s
j , εj , rj)|DPj ∈ C}, E). To learn a private input value ni of

a non-colluding party DPi, the coalition C can simulate its view during the proto-
col, by adding a random value rri for each non-colluding DPi as its own random
salt value ri. The simulator Sc’s view can be constructed by adding views for all
non-colluding DPs which can be generated as viewS({viewi(∅, rsi , ∅, r

r
i )|DPi /∈ C}

∪ {viewj(nj , r
s
j , εj , rj)DPj

|DPj ∈ C}, E), where rri ∈ R.

Since the encrypted partial sum values, εj , sent by all DPjs in the coalition C to the TP
is a summation of private inputs and salt values of all DPs, the simulator Sc cannot
distinguish the ni of a non-colluding DPi due to two reasons. First, the simulator Sc

cannot identify the correct rri of a DPi by subtracting
∑|C|

j=1
rsj from

∑P
i=1

rsi because
it cannot distinguish the value of rri that is equal to ri of each DPi, where ri ∈ R.

Second, the computation of E - (D(εP ) +
∑P

i=1
rsi ), where the subtraction of all par-

tial salt values rs received from the DPs plus the decrypted value of the final partial
encrypted sum εP from DPP , where D() is the decryption function, provides a sum-
mation of private inputs of k non-colluding parties. Since each ni ∈ R, the TP cannot

correctly guess private input ni of each non-colluding DPi from E - (D(εP ) +
∑P

i=1
rsi ).

This makes the simulator Sc’s view viewS
c
≡ viewC according to Definition 1. This
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implies that the private input ni of a non-colluding DPi is indistinguishable from E
and the PSS protocol provides security for the private input ni of a non-colluding DPi

against the collusion of the coalition C.

• Similar to TSS and PSS, our proposed HSS protocol, described in Section 2.8, em-
ploys a TP to conduct the summation of the private inputs of a set of DPs. Each DP
first divides its private input into a list of segments and encrypts the segments using
the public keys of other participating DPs, while keeping a value segment to itself
without sharing this value with any other party. As detailed in Algorithm 7, HSS re-
quires the TP to compute the summation of the corresponding encrypted segments of
a given DP. The computed encrypted partial sums are then sent to the corresponding
DPs to decrypt and add their own non-shared value segments. Since each message of
a DP is communicated only with the TP, any form of collusion between DPs (i.e. not
including the TP) cannot compromise the private value of a non-colluding DP.

In the HSS protocol, none of the DPs sends their secret share to any other DP nor to
the TP. This ensures that even when a colluding DPi sends the decrypted values of
the encrypted segments it receives from a non-colluding DPi−1 (in step 2 of HSS) to
the TP, the TP still cannot learn the private input value ni−1 of DPi−1 by summing
these decrypted segments. Also, the homomorphic encryption scheme ensures that
the encrypted partial sums can only be decrypted by each corresponding DP using
its own private key. Further, as we state in Proposition 3 below, even when P − 2 DPs
collude with the TP, the private value ni−1 of a non-colluding DPi−1 will still remain
secret because a segment of DPi−1 is kept secret from all the other participating par-
ties. Hence our HSS protocol provides privacy against collusion between the TP and
up to P − 2 DPs.

Proposition 3. The HSS protocol is secure against collusion between a subset of semi-
honest parties making the private input ni of a non-colluding DPi computationally
indistinguishable by the TP even if it receives the encrypted segments in step 2 from
P − k colluding DPs and the unencrypted partial sums in step 3 of the HSS protocol,
as long as there are k non-colluding parties such that k ≥ 2.

Proof: As with Propositions 1 and 2, let us assume a scenario where P DPs are partic-
ipating in the HSS protocol and C be a coalition of DPs colluding with the TP, where
C ⊂ {DP1, DP2, · · · , DPP }, such that P − |C| = k.

In step 2 of Algorithm 7, each input n is divided into P segments and encrypted
using the corresponding DP’s public key. To distinguish the private value ni of a
non-colluding DPi, each DPj in the coalition C can assist the TP by sending its secret
key skj to the TP in addition to its list of P segments [n1

j , · · · , n
P
j ]. Using these secret

keys the TP can decrypt the encrypted segments it receives from each non-colluding
DPi that were encrypted using the public keys of DPjs. This allows the coalition C
to generate its collaborative view viewC({(0, [

⋃
DPi /∈C εk−1

i ], [
⋃

DPj∈C ni
j ])DPi

|DPi /∈

C} ∪ {[n1
j , · · · , n

P
j ]DPj

|DPj ∈ C}), where (0, [
⋃

DPi /∈C εk−1

i ], [
⋃

DPj∈C ni
j ]) represents

the list of segments the TP receives from a non-colluding DPi, and [
⋃

DPi /∈C εk−1

i ]
represents the list of encrypted segments of other non-colluding DPs.

As in Propositions 1 and 2, the coalition C can simulate its view during step 3 of the
protocol by adding a random value rii ∈ R for each non-colluding DPi as its own seg-
ment value. To simulate the list of encrypted segments of other non-colluding DPs
the simulator Sc can first compute a partial value v′i = si − (rii +

∑
[
⋃

DPj∈C ni
j ]) for
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Table 1: Categorisation of secure summation protocols in terms of privacy against collusion
between different parties (data providers, DPs, and a third party, TP) participating in a
secure multi-party computation (SMC) protocol.

SMC models
Collusion scenarios

No collusion
2 or more (≤ P − 2)

DPs collude
1 DP colludes
with the TP

2 or more (≤ P − 2) DPs
collude

with the TP

Without a TP
BSS
RSS

RSS – –

With a TP

ESS
SSS
DSS
TSS
PSS
HSS

ESS
SSS
DSS
TSS
PSS
HSS

ESS
SSS
DSS
TSS
PSS
HSS

DSS
TSS
PSS
HSS

each non-colluding DPi, where si is the partial summation result of DPi. Then, to
simulate the encrypted segments of other non-colluding DPs, the simulator Sc gener-
ates a list of k−1 random values [zmi , DPm /∈ C] of v′i for each non-colluding DPi, such
that

∑
DPm /∈C zmi = v′i. Next, to replace each encrypted segment εmi of non-colluding

DPm, the simulator Sc encrypts each corresponding zmi with the respective public key
pkm of non-colluding DPm into ǫmi , such that ǫmi = E(zmi , pkm). This makes the simu-
lator Sc to construct its view as viewS({(rii , [

⋃
DPm /∈C ǫmi ], [

⋃
DPj∈C ni

j ])DPi
|DPi /∈ C}

∪ {[n1
j , · · · , n

P
j ]DPj

|DPj ∈ C}).

Since the partial sum values, s, sent by all DPs to the TP are a summation of input
segments of all DPs, the simulator Sc cannot distinguish ni of a non-colluding DPi

due to two reasons. First, as in Proposition 2, the simulator Sc cannot identify the
correct segment values of k (≥ 2) non-colluding DPs by subtracting ni

j from the par-

tial sum values s because it cannot correctly guess rii of each DPi. Second, each partial
sum s contains the summation of value segments of k non-colluding DPs that are not
known to any other party. Therefore, even if the simulator Sc subtracts the sum of all
private values and the unencrypted values of ε′j of the P − k colluding DPs from the
partial sums si, the simulator Sc cannot learn the private input ni of DPi because each

ni ∈ R. This makes the simulator Sc’s view viewS
c
≡ viewC . This implies that the pri-

vate input ni of a non-colluding DPi is indistinguishable even if the TP receives the
private input values and partial summation results from all colluding DPs, making
the HSS protocol secure against collusion between a subset of semi-honest parties of
size at most (P − 2).

Table 1 summarises the applicability of each of the presented secure summation protocols
under different collusion scenarios. Overall, RSS is the only protocol that can be applied for
the secure multi-party computation (SMC) model without a TP when two or more DPs are
colluding. For the SMC model with a TP, where collusion is possible between the partici-
pating DPs and the TP, the DSS, TSS, PSS, and HSS protocols are more suitable compared
to the SSS and ESS protocols as they provide the highest security.
However, as we mentioned before, in any P -party secure summation protocol if P − 1

participating parties collude with each other they can identify the private input value of the
remaining non-colluding DP which will compromise the privacy of any protocol discussed
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in this paper. For example if P − 1 DPs collude with the TP in a summation protocol that
requires a TP, then the TP can calculate the private input of the single non-colluding DP.
Hence, under the HBC model a secure summation protocol that can guarantee privacy
when P − 1 parties collude is not logically possible.

3.2 Complexity Analysis

We next analyse the computational complexity of each summation protocol and then dis-
cuss the communication complexity in terms of the number of messages communicated
and required communication rounds by each participating party in a protocol. In this anal-
ysis we assume the encryption and decryption functions performed by the data providers
(DPs) or the third party (TP) take constant time to compute.

Computation: In BSS, ESS, and SSS each DP adds its private input to the partial sum-
mation result it receives from another DP. Hence BSS, ESS, and SSS have a computational
complexity of O(1). For ESS and SSS the TP computes the final summation result and sends
it to all DPs which are of O(1) and O(P ), respectively. In the RSS protocol each DP com-
putes a list of random shares which is of O(P ) complexity. In the DSS protocol each DP
encodes δ segments with the public keys of all DPs which is of O(δ · P ). In DSS the TP
concatenates the list of segments of each DP into a single list and decrypts each encrypted
segment with its own private key. This requires a computational complexity of O(δ · P ).

In TSS and PSS each DP adds all the segments it receives from other DPs which is of
constant complexity and O(P − 1), respectively. For both these protocols the TP is required
to subtract the random salt of each DP from the final partial sum which requires a O(P )
complexity. In the first step of the HSS protocol each participating DP computes the list
of segments of its private input value and encrypts these segments with the public keys of
the other DPs which is of O(P ) complexity. In the second step of the HSS protocol the TP
iterates through each list of encrypted segments Ei of DPi to compute the encrypted partial
sum by adding corresponding encrypted segments assigned to each DPi. This requires the
TP to have a O(P 2) complexity.

Communication: A participating DP needs to participate in multiple communication
rounds to send and receive different numbers of messages in each protocol. In the BSS
protocol each DP has to send its computed partial summation result to the next DP in the
round robin communication pattern which is of O(P ) complexity, i.e. P messages. In the
BSS protocol each DP participates in two rounds of communication for sending partial
summation result to the subsequent DP and receiving the final summation result from the
DP who initiates the protocol.

Similar to BSS, the TP in the ESS and SSS protocols requires a communication complex-
ity of O(P ) to send the final computed sum to the participating DPs. Both these protocols
require each DP to participate in three communication rounds for sending and receiving
messages from other DPs and the TP, while the TP requires to participate in two rounds
of communication for receiving partial results from DPs and sending the final summation
result to all DPs. In the RSS protocol each DP sends its random shares to other participating
DPs which is of O(P − 1) complexity, and each DP requires to participate in two commu-
nication rounds to send its random shares to other parties and receive the final result from
the DP who adds all random shares. In the DSS protocol each DP sends its public key to all
the other participating DPs which is of O(P − 1) complexity, while the TP has a commu-
nication complexity of O(P ) for sending the final sum to each DP. Further, in each phase
of this protocol, as outlined in Algorithm 5, both the TP and a DP require to participate in
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Table 2: The computation (Comp) complexity and communication complexity in terms of
the number of messages communicated (CommM ) and number of communication rounds
required (CommR) by a single DP and the TP in each secure summation protocol for sum-
ming a single numerical value. In here P and δ represent the number of DPs and the
number of segments of a value communicated by each DP, respectively.

Complexity
Secure Summation Protocol

BSS ESS SSS RSS DSS TSS PSS HSS

Comp (DP)
(TP)

O(1)
–

O(1)
O(1)

O(1)
O(P )

O(P )
–

O(δ · P )
O(δ · P )

O(1)
O(P )

O(P − 1)
O(P )

O(1)
O(P 2)

CommM (DP)
(TP)

O(P )
–

O(1)
O(P )

O(1)
O(P )

O(P − 1)
–

O(P − 1)
O(P )

O(1)
O(P )

O(P − 2)
O(P )

O(1)
O(P )

CommR (DP)
(TP)

O(2)
–

O(3)
O(2)

O(3)
O(2)

O(2)
–

O(6)
O(6)

O(3)
O(2)

O(3)
O(2)

O(5)
O(4)

two rounds of communication for sending and receiving partial results from DPs and the
TP, respectively.
In the TSS and PSS protocols the TP sends the final result to each DP which has a com-

munication complexity of O(P ), while in PSS each DP requires P − 2 messages to send its
segments to other DPs. Similar to the ESS and SSS protocols, in these protocols each DP is
required to participate in three communication rounds for sending and receiving messages
from other DPs and the TP, while the TP is required to participate in two rounds of com-
munication for receiving partial results from DPs and sending the final summation result
to all DPs. In the HSS protocol each DP sends a single message to the TP in the second and
third steps of the protocol, while the TP sends the partial result of the encrypted segments
and the final result, in the second and third steps, respectively, to each DP. Hence, overall a
DP has a communication complexity of O(1) while the TP has a communication complexity
of O(P ) in the HSS protocol. As outlined in Algorithm 7, the TP participates in a total of
four communication rounds in steps 2 and 3 of the HSS protocol to send and receive partial
results and the final summed result to DPs, while each DP participates in an additional
communication round in step 1 to send its public key to other DPs apart from the same set
of communication rounds as required by the TP.
Table 2 summarises the computation and communication complexities of each secure

summation protocol required by a single DP and the TP for calculating the summation
of a single numerical value. It is important to note that some steps in these algorithms can
be parallelised, but we do not describe because it is outside the main scope of this paper.

4 Experimental Evaluation

We theoretically analysed the complexities in Section 3.2, by assuming each DP has a single
private value that needs to be summed with values from other DPs. However, realistically
secure summation protocols are usually used to compute the sum of a list of values [51, 69].
In such a context, to compute the summation of a list of values, each protocol can be run
once to compute the summation of an entire list (which would require large messages to
be communicated) or multiple times to compute the sum of each value in the list (using
small messages) separately. For example, assume a set of DPs each with a list containing
1,000 input values, where each value needs to be summed separately. Hence, a summation
protocol can be called once to compute the sum of all values in the entire list in a single run
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Figure 6: (a) Average runtime (in seconds) with different number of DPs, (b) total number of
messages communicated between data providers (DPs) and the TP, and (c) average number
of Megabytes (MB) communicated to sum a single input value.

(i.e. the messages communicated between DPs contain the whole list), the protocol can be
run 1,000 times to compute the sum of each value in the list independently (i.e. a message
only contains a single value), or (as another example) the protocol can be called 10 times
with 100 values in each list. We next empirically evaluate each secure summation protocol
with different number of data providers, input sizes, and splits of the inputs into sub-lists.

4.1 Experimental Setup

We evaluate the complexities of each presented protocol in terms of computation and com-
munication. We evaluate the computation complexities in terms of total and average run-
time to compute the final sum results, and the average number of computations required
by each participating party. We use the number of messages communicated and the total
message size communicated by each party to evaluate the communication complexities of
each protocol.

With regard to the example scenarios discussed in Section 1, we conduct the experiments
under three different scenarios with numerical values. In the first scenario we assume all
the participating DPs have vectors with integer values. Such numerical data are usually
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Figure 7: Average runtime (in seconds) for a DP for computing summation of different
vector sizes with (a) integer and (b) decimal values.

used in medical data analysis with patients’ attributes such as age, weight, height, blood
pressure level, etc. In the second scenario we assume the DPs need to compute the sum-
mation over numerical vectors with decimal values. Such numerical data is usually used
in transactional financial data analysis in banks over customer databases. In the third sce-
nario we assume domestic houses in an area are connected together in an IoT application
and each household (considered as a DP) wants to know whether they consume more or
less electricity compared to the average electricity consumption of the whole area. Such a
scenario might contain numerical vectors with mixed integer and decimal numbers.
We evaluated each summation protocol with 10, 20, 30, 40, and 50 DPs. We ran experi-

ments for vectors with 1 to 10,000 numerical values. For ESS, TSS, PSS, and HSS we set
the public and private key length to 128 bits and use partial homomorphic encryption [55].
We implemented all eight protocols in the Python programming language (version 2.7).
We ran all experiments on a server with 64-bit Intel Xeon (2.4 GHz) CPUs, 128 GBytes of
memory and running Ubuntu 16.04. The programs are available from the authors.

4.2 Results and Discussion

As shown in Figure 6, we measured the average runtime and the number and size of mes-
sages communicated for each protocol with different number of DPs. As Figure 6 (a) shows,
DSS required a much longer average runtime per input value communicated compared to
the other protocols because of the encryption and decryption steps performed by each par-
ticipating party. Due to the large amount of memory required by the encryption steps we
were unable to run experiments for input vectors with more than 3,000 values for DSS.
BSS required the least amount of runtime to compute the summation of private inputs of

a set of DPs, however, this protocol does not provide enough privacy against collusion, as
we discussed in Section 3.1. SSS is more efficient than the protocols that use homomorphic
encryption and decryption functions on messages, while RSS required similar runtime as
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Table 3: Average runtime in seconds for summing vectors of 10 data providers (DPs) each
with 10,000 integer values for different secure summation protocols.

Vector size x number of runs BSS ESS SSS RSS DSS TSS PSS HSS

1 x 10,000 15 3,115 19 73 40,498 3,535 3,602 3,856

10 x 1,000 1.9 382 2.5 10 8,314 2,209 2,403 3,572
100 x 100 0.68 37 0.86 4.5 5,139 1,809 2,009 3,326

1,000 x 10 0.52 3.9 0.66 4.2 4,829 1,278 1,778 3,213

10,000 x 1 0.43 0.43 0.72 4.5 4,630 973 1,473 2,967

Table 4: Average runtime for summing vectors of 10 data providers (DPs) each with 10,000
decimal values for different secure summation protocols.

Vector size x number of runs BSS ESS SSS RSS DSS TSS PSS HSS

1 x 10,000 16 3,445 22 75 41,723 3,615 3,672 3,927

10 x 1,000 3.1 388 2.7 12 8,545 2,325 2,493 3,614
100 x 100 1.7 39 0.97 7.1 5,217 1,879 2,039 3,475

1,000 x 10 0.98 4.3 0.72 6.9 4,877 1,345 1,878 3,341

10,000 x 1 0.75 0.48 0.80 6.5 4,828 995 1,595 3,028

ESS because of the communicationally expensive secret sharing scheme. Comparatively,
our proposed TSS, PSS, and HSS protocols run slower than the ESS and SSS protocols, but
they have a runtime of 2 to 4 magnitudes faster than DSS with an increasing number of
DPs and larger input data sizes.

As shown in Figure 6 (b) and (c) we measured the total number of messages communi-
cated between the participants in each protocol and the average message size communi-
cated by each participating party, respectively. As Figure 6 (b) shows, RSS, DSS, and PSS
require a much larger number of messages to be communicated (as the number of DPs in-
creases) because random shares (or segments) have to be exchanged between each pair of
DPs. Hence in real-world scenarios these protocols would possibly require much longer
runtime due to communication delays between many parties.

As shown in Figure 6 (c), the DSS protocol requires much larger message sizes compared
to all other secure summation protocols because each individual random segment of each
DP is encrypted separately and shared among the participating parties. However, com-
pared to the BSS, SSS, and RSS protocols, ESS, TSS, PSS, and HSS communicate larger
messages between the participating DPs since each message contains a homomorphically
encrypted value. The total message size of RSS and PSS also increases quadratically with
the number of DPs because of the pair-wise communication patterns of RSS and PSS. This
potentially becomes expensive for large numbers of DPs.

As shown in Figure 7 (a) and (b) we measured the average runtime per DP for comput-
ing the summation of vectors with different numbers of values. As can be seen, secure
summation protocols that use homomorphic encryption require larger runtime compared
to BSS, SSS, and RSS. However, in real scenarios RSS, DSS, and PSS will possibly require
longer runtime because of communication delays that occur when sending large numbers
of messages between the parties, as shown in Figure 7 (b). Our proposed TSS, PSS, and
HSS protocols require one order of magnitude less runtime for an individual DP compared
to DSS while providing the same privacy guarantees against collusion risks.

As shown in Tables 3 to 5 we ran each protocol to compute the sum of 10,000 input values
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Table 5: Average runtime for summing vectors of 10 data providers (DPs) each with 10,000
mixed (decimal and integer) values for different secure summation protocols.

Vector size x number of runs BSS ESS SSS RSS DSS TSS PSS HSS

1 x 10,000 16 3,198 19 74 41,146 3,581 3,651 3,917

10 x 1,000 2.7 381 2.7 12 8,445 2,275 2,447 3,589
100 x 100 0.9 39 0.87 6.1 5,107 1,801 2,011 3,421

1,000 x 10 0.58 4.1 0.68 6.7 4,864 1,213 1,802 3,283

10,000 x 1 0.65 0.43 0.77 6.0 4,708 978 1,493 2,988

of 10 DPs where in each protocol run we varied the size of the input value vector and the
number of times the protocol needs to be run to compute the sum. As shown in these tables,
all the protocols run more efficiently when the input vector contains more values compared
to running the protocols multiple times to sum each value separately. This is also applicable
in real scenarios because the protocols will incur significant communication overhead due
to the total number of messages required to sum each value separately.
Overall, RSS and SSS are more suitable for SMC scenarios with and without a TP, respec-

tively, in terms of efficiency. However, for scenarios where collusion is possible between
the participating parties (i.e. a collusion up to P − 2 DPs and the TP) our proposed TSS,
PSS, and HSS are more suitable compared to all the other secure summation protocols as
they provide strong privacy guarantees against collusion with a smaller communication
overhead.

5 Conclusions and Future Work

Secure summation is an important building block in secure multi-party computation (SMC)
to calculate the sum of private inputs held by P data providers (DPs) while not revealing
these values to any party. In this paper we have first presented five existing protocols (with
and without a third party, TP) for securely summing values across multiple DPs, and then
proposed three novel protocols that combine homomorphic encryption with random salt-
ing and sharing. We analysed each protocol in terms of privacy against different collusion
scenarios that are possible in a real-world context. Our privacy analysis showed that our
three novel protocols provide equal or better privacy against collusion between the partic-
ipating parties compared to existing secure summation protocols. We also conducted an
empirical evaluation with different number of DPs and input values which showed our
novel protocols can compute the sum of large input vectors efficiently with less communi-
cation overhead while guaranteeing privacy even when up to P − 2 DPs collude with the
TP.
As future work, we aim to develop secure summation protocols under the covert adver-

sary model [3] for SMC applications where P − 1 parties might be colluding. The aim of
such a protocol would be to allow non-colluding parties to identify any possible collusion
between other parties before the final summation result is computed. This would guaran-
tee that the private input of a non-colluding party cannot be identified using any partial
result computed at a given intermediate step even when P − 1 participating parties col-
lude in the protocol. We aim to investigate the applicability of threshold homomorphic
encryption [18] and commutative encryption [2, 71] schemes under malicious and covert
adversary model. We also aim to investigate the applicability of different security frame-
works (such as Sharemind [8]) to compute the final sum in a shared form such that the plain
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sum result is not observed by any party that participates in a summation protocol. Finally,
we aim to analyse the privacy of other SMC protocols, including secure set intersection and
secure set union protocols, under different collusion risk scenarios [33].
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