
TRANSACTIONS ON DATA PRIVACY 13 (2020) 67–90

Solving the Disclosure Auditing Problem
for Secondary Cell Suppression by Means
of Linear Programming
Ton de Waal∗,∗∗, Wieger Coutinho∗∗∗

∗Statistics Netherlands, PO Box 24500, 2490 HA, The Hague, The Netherlands.
∗∗Tilburg University, PO Box 90153, 5000 LE, Tilburg, The Netherlands.
∗∗∗Dunea, Plein van de Verenigde Naties 11-15, 2719 EG, Zoetermeer, The Netherlands.

E-mail: t.dewaal@cbs.nl

Received 28 March 2019; received in revised form 21 October 2019; accepted 8 April 2020

Abstract. National Statistical Institutes (NSIs) have the obligation to protect the privacy of individ-
ual persons or enterprises against disclosure of potentially sensitive information. For this reason,
NSIs protect tabular data against disclosure of sensitive information before they are released. For
tabular magnitude data, the starting point of this protection process usually is a sensitivity measure
for individual cells. Such a sensitivity measure defines when a cell value is considered safe for publi-
cation or not. An often used method to protect a table with unsafe cells against disclosure of sensitive
information is cell suppression. [5] argues that the standard criterion for deciding whether a table
after suppression is safe or not is somewhat inconsistent and proposes a new criterion. [5] also gives
a mixed-integer programming problem formulation for applying this new criterion. The problem
with that formulation is that it is quite large and very hard to solve for even moderately sized tables.
To be more precise, that mixed-integer programming problem formulation suggests that the auditing
problem based on the criterion of [5] is NP-hard. The general assumption among operations research
experts is that the computing time for NP-hard problems is non-polynomial in their input parame-
ters. In the current paper, we propose solving a number of smaller and computationally much easier
linear programming problems instead of solving one large mixed-integer programming problem.
Solving linear programming problems can be done in time polynomial in their input parameters.

Keywords. Cell Suppression, Mathematical programming problems, Sensitivity measures, Statisti-
cal disclosure control, Tabular magnitude data

1 Introduction

National Statistical Institutes (NSIs) have the task to provide policy makers, researchers and
the general public with accurate and detailed information on the current state of society and
its development over time. Such information can, for instance, be published in the form of
statistical tables, which is in fact the traditional and still most important way to publish
statistical information. While NSIs on the one hand have the obligation to provide detailed
statistical information, they also have the obligation to protect the privacy of individual
persons and enterprises against disclosure of potentially sensitive information.

67

68 Ton de Waal, Wieger Coutinho

Such disclosure of sensitive information on individual persons or enterprises may occur
when microdata are released, for instance when an attacker manages to link a data record
in the released microdata to the right person or enterprise in the population. Disclosure
of sensitive individual information may also occur when tabular data are released. A sim-
ple example is a table containing the turnover of enterprises cross-classified by branch of
industry and region. If there is only one enterprise in the population with a certain combi-
nation of branch of industry and region, the turnover of this enterprise can immediately be
disclosed from the published cell value.

For this reason, NSIs protect data against disclosure of sensitive information before these
data are released. This protection process is referred to as statistical disclosure control
(SDC) or statistical disclosure limitation. For a general introduction to SDC, see, for exam-
ple, [14], [29], and [30].

Tabular data can be subdivided into frequency tables, where (estimated) counts are pub-
lished, and magnitude tables, where (estimated) totals of a variable, e.g. turnover of en-
terprises cross-classified by branch of industry and region, are published. In this paper we
focus on SDC for tabular magnitude data.

For tabular magnitude data, the starting point for SDC usually is a sensitivity measure for
individual cells in the table to be protected (see, e.g., [1] and [2]). Such a sensitivity measure
defines when a cell value is considered safe for dissemination or not. Safe cell values may
in principle be published, whereas unsafe (or sensitive) cells must be protected. When all
cell values in a table are considered safe, the table itself is considered safe. If one or more
cell values are unsafe, the table is considered unsafe and needs protection.

An often used method to protect an unsafe table against disclosure of sensitive informa-
tion is cell suppression. When cell suppression is applied, the values of one or more cells
are replaced by some symbol, e.g. a cross (×). When cell suppression is applied, the first
step is to suppress the values of the unsafe cells. This is called primary cell suppression.
Besides suppression of the unsafe cells, it is usually also necessary to suppress the values
of some safe cells, as otherwise the values of (some of) the unsafe cells may be re-calculated
from the marginal totals and the values of the non-suppressed cells. This is referred to as
secondary suppression.

Secondary cell suppressions are found by solving a problem of the kind: find the ”best”
set of secondary suppressions such that the ”table with suppressed cells is safe”. This
problem is referred to as the secondary cell suppression problem. It consists of two important
aspects: find the ”best” suppressions and determine whether a table with suppressions is
safe. ”Best” is defined by means of some target function, which needs to be minimized. Ex-
amples of such target functions are: the total suppressed value, the number of suppressed
cell values, and the number of contributions to the suppressed cells. The problem of deter-
mining whether a table after suppression is safe is called the auditing problem. The auditing
problem is a fundamental part of the secondary cell suppression problem.

The secondary cell suppression problem has been described extensively in the literature,
see, for instance, [3], [4], [6], [8], [9], [10], [14], [17], [24], [29] and [30]. Essential in all these
descriptions is the same criterion for deciding whether a table is safe after cell suppression.
This criterion is the de facto standard criterion for determining whether a table with cell
suppressions is safe.

[5] argues that this standard criterion for deciding whether a table after cell suppression is
safe is inconsistent with the sensitivity measure for individual cells and proposes an alter-
native criterion that is based on applying the sensitivity measure for single cells to aggrega-
tions of suppressed cells. This criterion is an extension of ideas previously described by [4],
[11], [23], [25], [26] and [27]. In [5] also a mixed-integer programming problem formulation

TRANSACTIONS ON DATA PRIVACY 13 (2020)

Solving the Disclosure Auditing Problem 69

for solving the auditing problem is proposed, using this alternative criterion. Section 2 of
this paper recapitulates the standard criterion, the arguments given by [5] against it, and
the alternative criterion proposed by [5].

The safeness of a table with cell suppressions (or an individual cell) is always dependent
on which criterion one uses. We hope that in the rest of the paper it is clear from the
context which (kind of) criterion is used to decide whether a table with cell suppressions
(or individual cell) is safe.

The aim of the current paper is two-fold. First, we show that, in any case in a theoretical
sense, our proposed approach for the auditing problem is more efficient than the approach
of [5] that was based on a mixed-integer problem formulation. Second, we show how our
proposed approach for the auditing problem can, in principle, be extended to solving the
cell suppression problem.

The fundamental issue with the mixed-integer programming problem formulation for the
auditing problem given by [5] is that it is quite large and hard to solve for even moder-
ately sized tables. To be more precise, that mixed-integer programming problem suggests
that the auditing problem based on the criterion of [5] is NP-hard. The general assump-
tion among operations research experts is that the computing time for NP-hard problems
is non-polynomial in their input parameters. In the current paper, we propose solving
a number of smaller and computationally much easier linear programming (LP) problems
instead of solving one large mixed-integer programming problem. Solving linear program-
ming problems can be done in time polynomial in their input parameters. The proposed
approach based on solving a number of linear programming problems is discussed in Sec-
tion 3.

Using the approach for the auditing problem described in Section 3, one can develop an
approach for solving the secondary cell suppression problem, in any case to suboptimal-
ity. A simple example of such an approach is given in Section 4. This approach is based
on combining the new approach for the auditing problem with the so-called hypercube
method (see, e.g., [13], [21] and [22]).

Section 5 gives some test results for our approaches for the auditing problem as well as the
cell suppression problem to show the feasibility of these approaches in practice. For this,
we developed simple prototype software. We do not claim any superiority of our prototype
software over any available software for the auditing problem or the cell suppression prob-
lem, nor over any software based on the mixed-integer programming problem formulation
in [5].

Finally, Section 6 concludes the paper with a brief discussion.

2 Cell suppression

2.1 Prior/posterior rule

As mentioned in the Introduction, cell suppression consists of two steps: primary sup-
pression of unsafe cells and secondary suppression of some additional cell values. Which
cells are unsafe is determined by a sensitivity measure. Well-known classes of sensitivity
measures are the prior/posterior rule and the dominance rule. The prior/posterior rule
considers a cell as unsafe if one of the contributions can be re-calculated to within a cer-
tain threshold percentage of its value using the total cell value and assumed background
information. The threshold percentage and the assumed background information are de-
termined by the parameters of the prior/posterior rule. The dominance rule considers a

TRANSACTIONS ON DATA PRIVACY 13 (2020)

70 Ton de Waal, Wieger Coutinho

cell as unsafe if a substantial part of its value is due to only a few contributors. The param-
eters of the dominance rule determine what is meant by ”a substantial part” and ”a few
contributors”.

In this paper we will focus on the prior/posterior rule. The prior/posterior rule uses
two parameters p and q where p < q. It is assumed that, prior to the publication of the
table, everyone can estimate the contribution of each contributor to the table to within
q percent. It is also assumed that an attacker knows who contributed to the table, and to
which cell each contributor to the table contributes. A cell is considered unsafe if a non-zero
contribution of an individual contributor to that cell can be estimated by someone else to
within p percent after publication of the table. The prior/posterior rule can be formulated
in a version that is more easily applicable in practice. The formulation given below is based
on Section 5 in [5] and can be applied to tables with negative contributions. Note that since
we assume that a priori each contribution can be estimated to within q percent, it is a priori
also known whether this contribution is positive or negative, assuming that q ≤ 100 which
is generally the case. In this paper we indeed assume that q ≤ 100.

We denote the number of contributors to a table by R and the number of suppressed cell
values by SC . A suppressed cell value is denoted by xi (i = 1, . . . , SC) and the contribution
of contributor r to xi by xri (i = 1, . . . , SC ; r = 1, . . . , R). In this paper we assume that each
contributor contributes to one cell only, i.e. there are no holdings contributing to several
cells, and hence that xri equals zero for all but one i = 1, . . . , SC . We also assume that there
are no collusions of several contributors to a table, trying to disclose sensitive information
of another contributor to the table. We have xi =

∑R
i=1 x

r
i . We use the notation x

[r]
i to

denote decreasingly ordered absolute contributions to suppressed cell xi (i = 1, . . . , SC),
i.e. |x[1]i | ≥ |x

[2]
i | ≥ . . . ≥ |x

[R]
i | ≥ 0.

Let us suppose that a contributor s in a suppressed cell iwants to estimate the contribution
xti of contributor t to cell i. Contributor s can derive an upper bound for xti by subtracting
his own contribution xsi to suppressed cell i and lower bounds for the values of xri (r 6= s, t)
from xi. The lower bound for xri from the perspective of contributor s is based on his prior
knowledge (parameter q of the prior/posterior rule) and equals (1 − q

100)xri if xri ≥ 0 and
(1 + q

100)xri if xri < 0. The upper bound for xti, Us(x
t
i), from the perspective of contributor s

is hence given by

Us(x
t
i) = xi − xsi − (1− q

100
)

∑
r:xr

i≥0,r 6=s,t

xri − (1 +
q

100
)

∑
r:xr

i<0,r 6=s,t

xri = xti +
q

100

∑
r 6=s,t

|xri |

In a similar way contributor s can derive that the lower bound on xti from his perspective,
Ls(x

r
t), is given by

Ls(x
t
i) = xti −

q

100

∑
r 6=s,t

|xri |

Cell i is unsafe if and only ifUs(x
t
i) < xti+(p

100)|xti| (or equivalently Ls(x
t
i) > xti−(p

100)|xti|)
for some contributors s and t. So, cell i is unsafe if and only if q

100

∑
r 6=s,t |xri | <

p
100 |x

t
i| for

all contributors s and t (s 6= t). That is, cell i is safe if and only if

q

100

∑
r 6=s,t

|xri | ≥
p

100
|xti| (1)

for all contributors s and t (s 6= t). Since q
100

∑
r 6=1,2 |x

[r]
i | ≤

q
100

∑
r 6=s,t |xri | and p

100 |x
[1]
i | ≥

p
100 |x

t
i|, (1) is satisfied for all contributors s and t (s 6= t) if and only if

TRANSACTIONS ON DATA PRIVACY 13 (2020)

Solving the Disclosure Auditing Problem 71

q

100

∑
r 6=1,2

|x[r]i | ≥
p

100
|x[1]i | (2)

This extended formulation of the prior/posterior rule that allows for negative contribu-
tions reduces to the traditional prior/posterior rule that allows for nonnegative contribu-
tions only when all contributions are nonnegative.

We can re-express (2) as: cell i is unsafe if and only if

q

100

R∑
r=1

|x[r]i | −
q

100
|x[2]i | −

q

100
|x[1]i | <

p

100
|x[1]i |

i.e. if and only if

(p+ q)|x[1]i |+ q|x[2]i | − q
R∑

r=1

|x[r]i | > 0 (3)

By defining the sensitivity function

Sp,q(xi) = (p+ q)|x[1]i |+ q|x[2]i | − q
R∑

r=1

|x[r]i | (4)

we can express (3) as: cell i is unsafe if and only if Sp,q(xi) > 0. The sensitivity function (4)
is subadditive (see [1] and [2] for a definition of subadditivity). In our case, this means that
Sp,q(

⋃
i∈I xi) ≤

∑
i∈I Sp,q(xi) for any set of suppressed cells I , where

⋃
i∈I xi denotes the

artificial cell consisting of the union of all data corresponding to the cells xi for i = 1, . . . , I .
That is, a combination of cells is at most as sensitive in terms of the sensitivity function Sp,q

as the sum of values of the sensitivity function for the individual cells. This implies that a
combination of safe cells is also safe.

The so-called p%-rule, extended to allow for negative contributions, is defined as the
prior/posterior rule with parameters p and q = 100. In this paper, we will use the prior/
posterior rule, although for computational convenience we will use q = 100 in the exam-
ples.

We note that the prior/posterior and the p%-rule are in fact equivalent. Namely, a prior/
posterior rule with parameters p and q is equivalent to a p∗%-rule, with p∗ = p

q as one can
see by dividing the left hand-side of (3) by q.

In the rest of Section 2 we will discuss the auditing problem.

2.2 The traditional criterion for the auditing problem

After determining and suppressing the unsafe cells, some of the suppressed cell values may
be re-calculated from the remaining information in the table. Consider for example Table
1, which is taken from [5]. In this table all contributions are known to be nonnegative, and
x1,1 and x2,1 are primary suppressions. Obviously, x1,1 and x2,1 must both have the value
100.

As already mentioned in the Introduction, in order to protect suppressed unsafe cells
against recalculation, it is usually necessary to suppress additional cell values. In Table 2
some cells have been secondarily suppressed.

TRANSACTIONS ON DATA PRIVACY 13 (2020)

72 Ton de Waal, Wieger Coutinho

Table 1: A table with primary suppressions
C1 C2 C3 Total

R1 x1,1 1 3 104
R2 x2,1 2 1 103
R3 70 3 2 75
Total 270 6 6 282

Table 2: Primary and secondary suppressions
C1 C2 C3 Total

R1 x1,1 1 x1,3 104
R2 x2,1 2 x2,3 103
R3 70 3 2 75
Total 270 6 6 282

In the traditional criterion for the auditing problem, which can only be applied to tables
with nonnegative cell values, a central role is played by the so-called suppression intervals of
the suppressed cell values. The suppression interval of a suppressed cell is the interval of
all possible values that this cell could take for someone who knows nothing more than the
published table and the nonnegativity of the cell values. The suppression interval can be
calculated by solving simple LP problems. For instance, the minimum of x1,1 can be found
by solving the LP problem

Minimize x1,1 subject to
x1,1 + x1,3 = 103

x1,3 + x2,3 = 4

x1,1 + x2,1 = 200

x2,1 + x2,3 = 101

xi,j ≥ 0

This yields a minimum of 99 for x1,1. Similarly, we find that the maximum for x1,1 is 101.
The suppression interval for x1,1 is hence [99, 101]. Note that, unlike the (p, q)-rule, the
traditional criterion for the auditing problem does not assume any prior knowledge on the
values of the contributions, apart from nonnegativity of the cell values.

Traditionally, a table with suppressed cells is considered safe if the suppression interval
for each sensitive cell is ”sufficiently” wide. ”Sufficiently” wide is usually operationalized
by requiring that the upper bound on the suppression interval is at least equal to that value
for which the cell would be safe according to sensitivity measure, i.e. the prior/posterior
rule in our case, and similarly that the lower bound on the suppression interval is at most
equal to that value for which the cell would be safe according to sensitivity measure. We
will refer to this criterion as the traditional auditing criterion. In Sections 2.3 and 5.1 we
will give some examples illustrating how ”sufficiently” wide is operationalized.

TRANSACTIONS ON DATA PRIVACY 13 (2020)

Solving the Disclosure Auditing Problem 73

2.3 Why do we need an alternative criterion for the auditing problem?

The traditional criterion for the auditing problem as described in Section 2.2 suffers from
a flaw as pointed out by [5], namely that the traditional criterion for the auditing problem
may be inconsistent with the applied sensitivity measure. We will give an example to
illustrate the point.

Suppose that in Table 3 only cell R1 × C1 is unsafe according to the used sensitivity mea-
sure, the prior/posterior rule with p = 20 and q = 100, and that the other cells are safe.
Suppose furthermore that the largest two contributions to cell R1 × C1 equal 155 and 4,
respectively (and hence that the sum of all other contributions to cellR1×C1 equals 1), and
that the largest contribution to cell R2 × C1 equals 28.

Table 3: An unprotected table (example 1)
C1 C2 Total

R1 160 340 500
R2 50 60 110
R3 610 270 880
Total 820 670 1490

According to the traditional criterion for the auditing problem, the upper bound on the
suppression interval of cell R1×C1 should be at least 190. Namely, when the upper bound
on the suppression interval equals 190, the second largest contributor toR1×C1 can derive
that the upper bound on the largest contribution toR1×C1 is 186 = 190−4−0, with 4 being
his own contribution to cell R1 ×C1 and 0 a lower bound on the other contributions to cell
R1 × C1 according to the used (p, q)-rule with q = 100%. This upper bound exceeds the
actual value of the largest contribution to cellR1×C1 (i.e. 155) by exactly 20%. Analogously,
the lower bound on the suppression interval of R1 ×C1 should be at most 130, for then the
second largest contributor to R1 ×C1 can derive a lower bound on the largest contribution
toR1×C1 of 130−4−2 = 124, with 4 being his own contribution and 2 an upper bound on
the other contributions to cell R1×C1 according to the used (p, q)-rule.This lower bound is
exactly 20% less than 155.

The suppression interval of cell R1 × C1 in Table 4 is given by [100, 210], which can be
checked in the manner explained in Section 2.2. Since 210 > 190 and 100 < 130, Table 4 is
considered safe according to the traditional criterion for the auditing problem.

Table 4: A safe table according to the traditional auditing criterion (example 1)
C1 C2 Total

R1 × × 500
R2 × × 110
R3 610 270 880
Total 820 670 1490

Now, consider Table 5, which has been obtained from Table 3 by recoding categories R1

and R2 into one category. Note that from Table 4 it is clear that values of cells C1 ×R1 and
C1 × R2 add up to 820 − 610 = 210, and that the values of cells C2 × R1 and C2 × R2 add
up to 670 − 270 = 400. Table 4 contains a bit more information than Table 5 since Table 5
does not give the totals for categories R1 and R2 separately, only the total for R1 and R2

together.

TRANSACTIONS ON DATA PRIVACY 13 (2020)

74 Ton de Waal, Wieger Coutinho

Table 5: A recoded table (example 1)
C1 C2 Total

R1&R2 210 400 610
R3 610 270 880
Total 820 670 1490

The inconsistency between the traditional criterion for the auditing problem and the sen-
sitivity measure becomes clear from Table 5. Namely, cell (R1&R2)×C1 in Table 5 is unsafe
according to the used sensitivity measure, since the second largest contibutor (with contri-
bution 28) can re-calculate the largest contribution (i.e. 155) to within 20%, as can easily
checked. So, although Table 5 contains a bit less information than Table 4, Table 5 is con-
sidered unsafe whereas Table 4 is considered safe!

In the above example, cell suppression was basically equivalent to recoding the table. The
same kind of inconsistency as noted can also occur when cell suppression is not equivalent
to recoding the table. We illustrate this by a small extension of the above example, and
consider Table 6.

Table 6: An unprotected table (example 2)
C1 C2 C3 Total

R1 160 (155 / 4) 380 (80 / 50) 340 (90 / 50) 880
R2 50 (28 /10) 80 (24 / 16) 60 (18 / 12) 190
R3 610 (110 / 100) 800 (250 / 200) 270 (80 / 60) 1680
Total 820 1260 670 2750

In Table 6, we mention the two largest contributions per cell between brackets. We again
assume that cell R1 × C1 is unsafe, whereas the other cells are safe. Again, we also assume
that largest two contributions to cell R1 × C1 equal 155 and 4, respectively and that the
largest contribution to cell R2 × C1 equals 28. We again use a prior/posterior rule with
parameters p = 20 and q = 100.

According to the traditional criterion for the auditing problem, Table 7 is considered safe
for the same reason as for Table 4.

Indeed, τ -ARGUS (see, e.g. [7] and [12]) will give Table 7 as output, if we measure infor-
mation loss due to suppression by the sum of the suppressed cell values.

Table 7: A safe table according to the traditional auditing criterion (example 2)
C1 C2 C3 Total

R1 × 380 × 880
R2 × 80 × 190
R3 610 800 270 1680
Total 820 1260 670 2750

However, the largest contributor to cell R2 × C1 can derive that the upper bound on the
largest contribution to cell R1 × C1 is 820 − 610 − 28 − 0 = 182 (the first two terms are
available from the table, the third term is his own contribution to cell R2 × C1, and the
fourth term is a lower bound on the other contributions to cellsR1×C1 andR2×C1, which

TRANSACTIONS ON DATA PRIVACY 13 (2020)

Solving the Disclosure Auditing Problem 75

can be computed using the q parameter). Since, 182 is within 20% of 155, the combination of
cellsR1×C1 andR2×C1 is considered unsafe according to the applied sensitivity measure.

This phenomenon where several suppressed cell values can be combined into an unsafe
combined cell has been referred to as an ”ad-hoc roll up” (see [28]).

2.4 The alternative criterion for the auditing problem

[5] notes that conceptually separate cells and aggregations of cells for which the total value
is known are basically the same and should hence be treated the same way. Namely, in
both cases, we have some underlying microdata from individual persons or enterprises
summing up to a known total. From this point of view it is logical that separate cells and
aggregations of cells should be subjected to the same sensitivity measure. [5] therefore
considers a table safe if and only if all aggregations of suppressed cells are safe, using the
same sensitivity measure (or a slightly extended version thereof) as for separate cells.

We will illustrate the concept of aggregations by means of an example. Let us suppose
that we aim to protect Table 8 against disclosure. To each cell in this table, one or more
contributors contribute. We suppose that cells R1 × C1 and R5 × C3 are the sensitive cells
in this table.

Table 8: An unprotected table (example 3)
C1 C2 C3 C4 C5 Total

R1 16 44 48 35 18 161
R2 47 82 51 80 29 289
R3 59 88 16 28 86 277
R4 61 78 59 94 84 376
R5 3 93 82 41 5 224
Total 186 385 256 278 222 1327

Let us suppose that Table 9 is suggested - usually by a software package such as τ -ARGUS
- as a protected version of Table 8. We aim to check whether Table 9 is indeed safe.

Table 9: The ”protected” version of Table 8 (example 3)
C1 C2 C3 C4 C5 Total

R1 x1,1 44 48 35 x1,5 161
R2 47 82 x2,3 80 x2,5 289
R3 59 88 16 28 86 277
R4 61 78 59 94 84 376
R5 x5,1 93 x5,3 41 5 224
Total 186 385 256 278 222 1327

The values of some aggregations in Table 9 can be deduced immediately, simply by look-
ing at the rows and columns of the table. Such aggregations are called explicit aggregations.
The values of aggregations that are linear combinations of the explicit ones are known too.
Such aggregations are called implicit aggregations.

An explicit aggregation always is a sum of suppressed cells in one dimension. That is,
in a two-dimensional table an explicit aggregation is always a sum of suppressed cells in

TRANSACTIONS ON DATA PRIVACY 13 (2020)

76 Ton de Waal, Wieger Coutinho

a certain row or a certain column. The explicit aggregations of Table 9 together with their
known values are:

x1,1 + x1,5 = 34 (5)
x1,5 + x2,5 = 47 (6)
x2,5 + x2,3 = 80

x2,3 + x5,3 = 133

x5,3 + x5,1 = 85

x5,1 + x1,1 = 19

An example of an implicit aggregation with its known value is

x1,1 − x2,5 = −13 (7)

This implicit aggregation is obtained by subtracting the second explicit aggregation (6)
from the first (5).

Any (explicit or implicit) aggregation for Table 9 can be written as

µ1(x1,1 + x1,5) + µ2(x1,5 + x2,5) + µ3(x2,5 + x2,3)+ (8)
µ4(x2,3 + x5,3) + µ5(x5,3 + x5,1) + µ6(x5,1 + x1,1)

where µ1 to µ6 are parameters that can, in principle, take any value between −∞ and∞.
However, since

αµ1(x1,1 + x1,5) + αµ2(x1,5 + x2,5) + αµ3(x2,5 + x2,3)+

αµ4(x2,3 + x5,3) + αµ5(x5,3 + x5,1) + αµ6(x5,1 + x1,1)

is essentially the same aggregation as (8) for any α 6= 0, we may rescale the µk so −1 ≤
µk ≤ 1 (for k = 1, . . . , 6). Note that (7) can be obtained from (8) by setting µ1 = 1, µ2 = −1,
and µ3 = µ4 = µ5 = µ6 = 0.

The prior/posterior rule as presented in Section 2.1 needs to be reformulated slightly for
an aggregation with a known total. We will write such an aggregation Xj as

Xj =

SC∑
i=1

λjixi (9)

where λji (i = 1, . . . , SC) are coefficients, the subscript i refers to a certain cell and the
superscript j is used to identify the aggregation. For example, in the case of (7) we have
λ11,1 = 1 and λ12,5 = −1 where we have numbered this aggregation as the first one and the
superscript of the λ’s therefore equals 1. In the general case (8) we have λ1,1 = µ1 + µ6,
λ1,5 = µ1 + µ2, λ2,5 = µ2 + µ3, λ2,3 = µ3 + µ4, λ5,3 = µ4 + µ5 and λ5,1 = µ5 + µ6, where we
did not number the aggregation because this is the general expression for an aggregation
for Table 9 rather than for a specific aggregation. In general, the coefficients λji defining an
aggregation given by (9) may differ from -1 or +1.

Note that an aggregation Xj is defined by the λji only, i.e. without its known total. How-
ever, in some cases we will also give the known total of such an aggregation.

TRANSACTIONS ON DATA PRIVACY 13 (2020)

Solving the Disclosure Auditing Problem 77

The contribution of contributor r (r = 1, . . . , R) to aggregation Xj is given by
∑SC

i=1 λ
j
ix

r
i .

Since we need the absolute contributions in an aggregation (see also Section 2.1), we de-
fine two operators. The first operation is the Φr

ABS operator, which returns the absolute
contribution of contributor r (r = 1, . . . , R) to aggregation Xj . It is defined by

Φr
ABS(Xj) =

SC∑
i=1

|λjix
r
i |

The Φr
ABS operator can also be applied to a single suppressed cell xi (i = 1, . . . , SC):

Φr
ABS(xi) = |xri |. Later in this paper we will also use the ΦTOT operator. We need this

operator for a single suppressed cell xi (i = 1, . . . , SC) only, and it is defined by

ΦTOT (xi) =

R∑
r=1

|xri |

Φr
ABS(Xj), Φr

ABS(xi) and ΦTOT (xi) can be calculated from the data underlying the table
for (i = 1, . . . , SC) and all aggregations j.

In a similar way as in Section 2.1 we can now derive that aggregationXj is safe if and only
if

q

100

∑
r 6=1,2

Φ
[r]
ABS(Xj) ≥

p

100
Φ

[1]
ABS(Xj)

where we again use the superscript [r] to denote decreasingly ordered absolute contribu-
tions to aggregation Xj , i.e. Φ

[1]
ABS(Xj) ≥ Φ

[2]
ABS(Xj) ≥ . . . ≥ Φ

[R]
ABS(Xj) ≥ 0. That is,

aggregationXj is safe if and only if (p+q)Φ
[1]
ABS(Xj)+qΦ

[2]
ABS(Xj)−q

∑R
r=1 Φ

[r]
ABS(Xj) ≤ 0.

Equivalently, aggregation Xj is unsafe if and only if

(p+ q)Φ
[1]
ABS(Xj) + qΦ

[2]
ABS(Xj)− q

R∑
r=1

Φ
[r]
ABS(Xj) > 0 (10)

For details of the derivation of (10), we refer to [5]. As already noted in Section 2.1, the
prior/posterior rule with parameters p and q is equivalent to a p∗%-rule with p∗ = p

q .
Similar to the sensitivity function (4) for individual cells, we can define the sensitivity

function

Sagg
p,q (Xj) = (p+ q)Φ

[1]
ABS(Xj) + qΦ

[2]
ABS(Xj)− q

R∑
r=1

Φ
[r]
ABS(Xj) (11)

for aggregations.
One way to look at sensitivity function (11) for an aggregation Xj is that all absolute con-

tributions Φr
ABS(Xj) =

∑SC

i=1 |λ
j
ix

r
i | (r = 1, . . . , R) are first combined into one ad-hoc cell

and next these absolute contributions are seen as contributions of individual contributors
to that cell. That is,

Sagg
p,q (Xj) = Sp,q({Φ1

ABS(Xj),Φ
2
ABS(Xj), . . . ,Φ

R
ABS(Xj)})

where {Φ1
ABS(Xj),Φ

2
ABS(Xj), . . . ,Φ

R
ABS(Xj)} is an ad-hoc cell with contributions Φ1

ABS(Xj)
to ΦR

ABS(Xj).

TRANSACTIONS ON DATA PRIVACY 13 (2020)

78 Ton de Waal, Wieger Coutinho

3 A Linear Programming Formulation for the Auditing Prob-
lem

To check whether a table with cell suppressions is safe according to the criterion proposed
by [5], that article proposes to determine the most sensitive aggregation of suppressed cells.
If even the most sensitive aggregation is safe, the table is safe. Finding the most sensitive
aggregation is not trivial, however. [5] formulates a complicated mixed-integer program-
ming problem that needs to be solved in order to find the most sensitive aggregation of
suppressed cells. For more information on that formulation we refer to Section 6 of [5].

Mixed-integer programming problems can be notoriously hard to solve. In particular,
the computing time can become very large for large or even medium-sized problem in-
stances. In principle, the computing time of a mixed-integer programming problem can be
exponential in terms of its unknowns; in any case this is the general assumption amongst
operations research experts.

In order to overcome this problem, we propose to solve a sequence of LP problems, where
we - for each of these LP problems - fix the attacker and attacked contributor beforehand.
These LP problems can generally be solved quite quickly. In essence, a mixed-integer pro-
gramming problem is often also solved by cleverly solving a sequence of LP problems.
Examples of such approaches include Branch-and-Bound algorithms, Branch-and-Cut al-
gorithms and Branch-and-Price algorithms (see, e.g., [15], [16], [18], [19] and [31]). What
makes our approach different is that for each LP problem we can fix the attacker and at-
tacked contributor beforehand.

The underlying idea of our LP approach is that, for each sensitive cell, we will check how
accurate any other contributor to the table can calculate the value of the largest (absolute)
contribution to that sensitive cell. We only have to check this for the largest (absolute) con-
tributions to the other suppressed cells and for the second largest (absolute) contribution
to the sensitive cell itself. Each of these checks can be expressed as an LP problem. This
kind of audit check is also available in τ -ARGUS, but only for contributors within the same
suppressed cell, not for contributors within aggregations of suppressed cells.

We will illustrate the LP approach by means of Tables 8 and 9. We recall that Table 8 has
two unsafe cells, denoted as x1,1 and x5,3 in Table 9. As already noted in Section 2.4, all
linear aggregations for Table 9 can be written as (8) with−1 ≤ µk ≤ 1 (for k = 1, . . . , 6). For
x1,1, we then check whether, in a certain (explicit or implicit) aggregation, the contributors
with the largest (absolute) contributions to cells x1,5, x2,5, x2,3, x5,3, respectively x5,1 can
re-calculate the largest (absolute) contribution to x1,1 too accurately in any aggregation. We
also check whether the contributor with the second largest (absolute) contribution to x1,1
can re-calculate the largest (absolute) contribution to x1,1 too accurately in any aggregation.

Say, we first check whether the largest (absolute) contribution to cell x1,5 can re-calculate
the largest (absolute) contribution to cell x1,1 too accurately. This largest (absolute) con-
tribution to cell x1,5 can, in principle, have 2 different signs for the corresponding λji in
(9), namely a minus sign or a plus sign, in an aggregation involving x1,1. For each of the
two possible signs, we perform a check. We perform similar checks for the largest (abso-
lute) contributons to x2,5, x2,3, x5,3 and x5,1, respectively. For the second largest (absolute)
contribution to x1,1 we have to perform only one check, because the second largest (abso-
lute) contribution to x1,1 can only have the same sign for the corresponding λji in (9) as the
largest (absolute) contribution to x1,1 in any aggregation.

Similarly, for x5,3, we check whether the contributors with the largest (absolute) contribu-
tions to cells x5,1, x1,1, x1,5, x2,5, respectively x2,3, and the second largest (absolute) contri-

TRANSACTIONS ON DATA PRIVACY 13 (2020)

Solving the Disclosure Auditing Problem 79

bution to cell x5,3, can re-calculate the largest (absolute) contribution to x5,3 too accurately.
We have to check 22 = 2 × (5 × 2 + 1) relatively small LP problems instead of one large

mixed-integer programming problem. Here the first 2 refers to the number of sensitive
cells, the 5 to the number of other suppressed cells besides the unsafe cell under consid-
eration, the second 2 to the possible signs in an aggregation of an attacker from another
cell than the sensitive cell under consideration, and the 1 to the second largest (absolute)
contribution in the unsafe cell under consideration.

We will describe two of those 22 LP problems, namely the LP problems to check whether
the contributor with the largest (absolute) contribution to cell R1 × C5 can re-calculate the
largest (absolute) contribution to cellR1×C1 too accurately. The contribution of cellR1×C1

to an aggregation given by (8) is (µ6 + µ1)x1,1. Similarly, we can find the contribution of
the other suppressed cells to aggregation (8).

According to criterion (10), we should look at the absolute contributions to an aggregation
given by (8). In order to find the absolute contributions to an aggregation we introduce
variables y+i,j and y−i,j for the suppressed cells and some constraints for these variables. For
instance, for y+1,1 and y−1,1 we demand that

y+1,1 ≥ (µ6 + µ1)ΦTOT (x1,1)

and

y−1,1 ≥ −(µ6 + µ1)ΦTOT (x1,1)

When y+1,1 + y−1,1 is minimized, this sum will become equal to |(µ6 + µ1)ΦTOT (x1,1)| =∑R
r=1 |µ6 + µ1||xr1,1|, i.e. the sum of the absolute contributions to cellR1×C1 in aggregation

(8).
The LP problem assuming that the largest (absolute) contribution to x1,1 is attacked by the

largest (absolute) contribution to x1,5 is given in (12) to (30) below.

Maximize (p+ q)S + qA− qT (12)

subject to

T = y+1,1 + y+1,5 + y+2,5 + y+2,3 + y+5,3 + y+5,1 + y−1,1 + y−1,5 + y−2,5 + y−2,3 + y−5,3 + y−5,1 (13)

y+1,1 ≥ (µ6 + µ1)ΦTOT (x1,1) (14)

y+1,5 ≥ (µ1 + µ2)ΦTOT (x1,5) (15)

y+2,5 ≥ (µ2 + µ3)ΦTOT (x2,5) (16)

y+2,3 ≥ (µ3 + µ4)ΦTOT (x2,3) (17)

y+5,3 ≥ (µ4 + µ5)ΦTOT (x5,3) (18)

y+5,1 ≥ (µ5 + µ6)ΦTOT (x5,1) (19)

TRANSACTIONS ON DATA PRIVACY 13 (2020)

80 Ton de Waal, Wieger Coutinho

y−11 ≥ −(µ6 + µ1)ΦTOT (x1,1) (20)

y−15 ≥ −(µ1 + µ2)ΦTOT (x1,5) (21)

y−25 ≥ −(µ2 + µ3)ΦTOT (x2,5) (22)

y−23 ≥ −(µ3 + µ4)ΦTOT (x2,3) (23)

y−53 ≥ −(µ4 + µ5)ΦTOT (x5,3) (24)

y−51 ≥ −(µ5 + µ6)ΦTOT (x5,1) (25)

y+1,1 ≥ 0, y+1,5 ≥ 0, y+2,5 ≥ 0, y+2,3 ≥ 0, y+5,3 ≥ 0, y+5,1 ≥ 0 (26)

y−1,1 ≥ 0, y−1,5 ≥ 0, y−2,5 ≥ 0, y−2,3 ≥ 0, y−5,3 ≥ 0, y−5,1 ≥ 0 (27)

−1 ≤ µk ≤ 1 (for k = 1, . . . , 6) (28)

S ≤ (µ6 + µ1)|xmax
1,1 | (29)

A ≤ (µ1 + µ2)|xmax
1,5 | (30)

Here xmax
1,1 and xmax

1,5 are the maximum contributions to cells R1 × C1 and R5 × C3, respec-
tively. The µk (k = 1, . . . , 6) refer to the (explicit and implicit) aggregations (see (8)). The
unknowns in the above LP problem are the µk (k = 1, . . . , 6), S, A, T and the y+i,j and y−i,j .
Note that, when we maximize (12), T is in fact

T = |y1,1|+ |y1,5|+ |y2,5|+ |y2,3|+ |y5,3|+ |y5,1| =
R∑

r=1

Φ
[r]
ABS(X∗)

where aggregation X∗ is the optimal aggregation for the above LP problem, since maxi-
mizing (12) will make T as small as possible (and A and S as large as possible).

The upper and lower bounds on the µk (k = 1, . . . , 6) given by (28) ensure that the out-
come of (12) is finite. By maximizing (p + q)S + qA − qT (see (12)) we try to construct
an unsafe aggregation. This is the case when the optimal value of (p + q)S + qA − qT is
larger than zero (see (10)). As already explained, equations (13) to (27) are needed to ensure
that T =

∑R
r=1 Φ

[r]
ABS(X∗). Equation (29) ensures that S = |(µ6 + µ1)ΦTOT (xmax

1,1)| for the
optimal aggregation X∗.

However, it is not guaranteed that for this choice of the µk (k = 1, . . . , 6), we also have
that A = |(µ1 +µ2)ΦTOT (xmax

1,5)|, since µ1 +µ2 is not necessarily nonnegative in the optimal
aggregationX∗. Therefore, we also solve a second problem given by: maximize (12) subject
to (13) to (29) and

A ≤ −(µ1 + µ2)ΦTOT (xmax
1,5) (31)

TRANSACTIONS ON DATA PRIVACY 13 (2020)

Solving the Disclosure Auditing Problem 81

In either of these two LP problems we will now have that µ1 + µ2 or −(µ1 + µ2) is non-
negative, and hence that either the LP problem with (30) or the one with (31) ensures that
A = |(µ1 + µ2)ΦTOT (xmax

1,5)| for the optimal aggregation X∗. That is, one of the two LP
problems solves the problem we were aiming to solve, and the most sensitive aggregation
(in terms of target function (12)) will be constructed. If the optimal value of (12) is positive,
the thus constructed aggregation is unsafe. Otherwise, even the most sensitive aggregation
where the largest (absolute) contribution to cellR1×C1 is attacked by the largest (absolute)
contribution to cell R1 × C5 is still safe.

4 Finding Secondary Cell Suppressions

The LP formulation for checking whether a table with suppressed cell values is safe for pub-
lication can also be used as a basis for a method for actually finding secondarily suppressed
cells, i.e. for solving the secondary suppression problem. The simplest way of doing this is
to combine the LP approach described in Section 3 with the so-called hypercube approach
for cell suppression (see, e.g., [13], [21] and [22]).

The hypercube approach is essentially a sequential approach, where for each unsafe ta-
ble a hypercube of suppressed cells is constructed in order to protect the selected unsafe
cell. In a two-dimensional table without any hierarchical structure such a hypercube is
simply a rectangle. In a three-dimensional table without any hierarchical structure, such a
hypercube is a cuboid.

In the basic version of the hypercube approach, a hypercube is constructed by first testing
all possible hypercubes with the selected unsafe cell as one of its corner points. When a
hypercube sufficiently protects the selected unsafe cell, i.e. if the largest (absolute) contri-
bution of the unsafe cell under consideration is sufficiently protected in any aggregation
that can be constructed from this hypercube, the hypercube is a candidate for suppression.
Of all candidate hypercubes, the one that leads to the least information loss is selected, and
all corner points of the selected hypercube are suppressed. This is done for all unsafe cells.
The final suppression pattern is the union of the hypercubes for the individual unsafe cells.

In order to combine our LP approach for the auditing problem with the hypercube ap-
proach, all we need to do is to invoke our LP approach whenever we need to test whether
a hypercube sufficiently protects the selected unsafe cell. That is, we need to check if any of
the contributors to a corner point of the hypercube can estimate the value of the largest (ab-
solute) contribution to the unsafe cell too accurately. We have implemented this basic idea
in prototype software in order to test whether this approach is indeed feasible in practice.

That a table with suppressed cells obtained by the hypercube method in combination with
our LP approach for the auditing problem is safe is non-trivial and requires some proof.
Table 10 illustrates why it is not trivial that a combination of safe hypercubes - one for each
unsafe cell - leads to a safe table.

Let us assume that cells x2,2 and x4,5 are unsafe, that the (safe) hypercube for x2,2 is given
by x1,1, x1,2, x2,1 and x2,2 itself, and that the (safe) hypercube for x4,5 is given by x2,2, x2,5,
x4,2 and x4,5 itself. One could imagine that it is possible for x2,2 or x4,5 to be involved in
an unsafe aggregation that involves both hypercubes, for instance the aggregation x1,1 −
x2,2 + x4,5 = 18, which is obtained by adding x1,1 + x1,2 = 60 to x4,2 + x4,5 = 162, and
then subtracting the aggregation x1,2 + x2,2 + x4,2 = 204. We will, however, show that it
is not possible for x2,2 or x4,5 to be involved in an unsafe aggregation that involves both
hypercubes.

TRANSACTIONS ON DATA PRIVACY 13 (2020)

82 Ton de Waal, Wieger Coutinho

Table 10: A table with suppressions
C1 C2 C3 C4 C5 Total

R1 x1,1 x1,2 48 35 18 161
R2 x2,1 x2,2 51 80 x2,5 289
R3 59 88 16 28 86 277
R4 61 x4,2 59 94 x4,5 376
R5 3 93 82 41 5 224
Total 186 385 256 278 222 1327

We start by proving a lemma.

Lemma: Suppose that an unsafe cell xi is sufficiently protected in a certain aggregation of
suppressed cells Xj , i.e. none of other contributors to aggregation Xj can derive the value
of the largest (absolute) contribution x[1]i to that cell to within p%. Aggregation Xj could,
for instance, have been constructed from a hypercube of suppressed cells. Suppose fur-
thermore that we have a larger aggregation Xk that contains Xj , i.e. if Xj =

∑
i∈S λ

j
ixi for

some set of suppressed cells S then Xk =
∑

i∈S λ
j
ixi +

∑
t∈T λ

k
t xt where T is another set

of suppressed cells (T ∩ S = ∅). Then unsafe cell xi is sufficiently protected from an attack
from any contributor to Xk.

Proof: Let us denote the largest (absolute) contribution to cell xi by x[1]i . Since cell x[1]i is suf-
ficiently protected in aggregationXj we have (p+q)|λjix

[1]
i |+qΦ

[2]
ABS−q

∑R
r=1 Φ

[r]
ABS(Xj) ≤

0. For aggregation Xk we have two options: the largest (absolute) contribution to Xk be-
sides λjix

[1]
i is the second largest (absolute) contribution to Xj , i.e. Φ

[2]
ABS(Xk) = Φ

[2]
ABS(Xj),

or the largest (absolute) contribution to Xk besides λjix
[1]
i is not the second largest (abso-

lute) contribution to Xj , i.e. the largest (absolute) contribution to Xk besides λjix
[1]
i is not

involved in Xj .

In the first case we have for Xk:

(p+ q)|λjix
[1]
i |+ qΦ

[2]
ABS(Xk)− q

R∑
r=1

Φ
[r]
ABS(Xk) =

(p+ q)|λjix
[1]
i |+ qΦ

[2]
ABS(Xj)− q

R∑
r=1

Φ
[r]
ABS(Xk) ≤

(p+ q)|λjix
[1]
i |+ qΦ

[2]
ABS(Xj)− q

R∑
r=1

Φ
[r]
ABS(Xj) ≤ 0

The first inequality follows from the assumption that Xk contains Xj .

In the second case we have for Xk:

TRANSACTIONS ON DATA PRIVACY 13 (2020)

Solving the Disclosure Auditing Problem 83

(p+ q)|λjix
[1]
i |+ qΦ

[2]
ABS(Xk)− q

R∑
r=1

Φ
[r]
ABS(Xk) =

(p+ q)|λjix
[1]
i | − q

R∑
r=1,r 6=2

Φ
[r]
ABS(Xk) ≤

(p+ q)|λjix
[1]
i | − q

R∑
r=1

Φ
[r]
ABS(Xj) ≤

(p+ q)|λjix
[1]
i |+ qΦ

[2]
ABS(Xj)− q

R∑
r=1

Φ
[r]
ABS(Xj) ≤ 0

The first inequality follows from −q
∑R

r=1,r 6=2 Φ
[r]
ABS(Xk) ≤ −q

∑R
r=1 Φ

[r]
ABS(Xj) since the

largest (absolute) contribution to Xk besides λjix
[1]
i is not involved in Xj and Xj is con-

tained in Xk.
In both cases we conclude that the largest (absolute) contribution to cell xi is sufficiently

protected in Xk, which concludes the proof of the lemma. �

Note that aggregation Xk itself need not be safe since it may involve other unsafe cells
besides cell xi. Those other unsafe cells may be insufficiently protected in aggregation Xk.

Table 11: Illustration of part of the proof of the lemma
C1 C2 C3 C4 C5 Total

R1 x1,1 x1,2 300 200 100 800
R2 x2,1 x2,2 x2,3 200 300 750
R3 250 x3,2 x3,3 200 350 1000
Total 450 250 500 600 750 2550

We provide a short illustration of the second case mentioned in the proof of the above
lemma using Table 11. Suppose x2,1 and x2,3 are the unsafe cells in Table 11. We assume
that both of these cells have only one contributor with contribution 100. The hypercube
constructed to protect x2,1 consists of x1,1, x1,2, x2,2 and x2,1 itself. The hypercube con-
structed to protect x2,3 consists of x3,3, x3,2, x2,2 and x2,3 itself. Suppose cell x2,2 consists
four contributors, three with a contribution of 10 and one with a contribution of 20. We as-
sume that a (p, q)-rule with p = 20 and q = 100 is used. One aggregation in the hypercube
for x2,1 is x2,1 + x2,2 = 150. Based on this aggregation, the largest (absolute) contribution
to cell x2,2 can derive an upper bound of 150 − 20 − 0 = 130 (the total for the aggregation
minus the attacker’s own contribution minus lower bounds for the other contributors to
cell x2,2) for the (only) contribution to cell x2,1. Since this deviates more than 20% from the
true value, the only contribution to cell x2,1 is indeed sufficiently protected in this aggre-
gation. Similarly, the only contribution to cell x2,3 is sufficiently protected in aggregation
x2,2 + x2,3 = 150.
We examine aggregation x2,1 + x2,2 + x2,3 = 250 and check what the contributor to cell
x2,3 can derive about the contribution to cell x2,1. The contributor to cell x2,3 can derive the
following upper bound on the contribution to cell x2,1: 250 − 100 − 0 = 150 (the total for
the aggregation minus the attacker’s own contribution minus lower bounds for the other

TRANSACTIONS ON DATA PRIVACY 13 (2020)

84 Ton de Waal, Wieger Coutinho

contributors to cell x2,3). The only contribution to x2,1 is better protected in aggregation
x2,1 + x2,2 + x2,3 = 250 than in aggregation x2,1 + x2,2 = 150, which was checked when the
hypercubes were constructed, since the contribution of the largest (absolute) contribution
to x2,2 is no longer subtracted (cf. the first inequality of the second case of the lemma).
Similarly, the contribution to x2,3 is better protected in aggregation x2,1 + x2,2 + x2,3 = 250
than in aggregation x2,2 + x2,3 = 150.

Below we will illustrate how the above lemma can be applied to Table 10. In this illus-
tration we will use the term ”restricting an aggregation to a hypercube”. We will explain
this term for a hypercube in a two-dimensional table. Suppose this hypercube is given by
xi1,j1 , xi1,j2 , xi2,j1 and xi2,j2 , where i1 6= i2 and j1 6= j2. We assume that besides this hy-
percube more cells with indices given by a set U have been suppressed, where U 6= ∅ and
U ∩ {(i1, j1), (i1, j2), (i2, j1), (i2, j2)} = ∅. The explicit aggregations involving xi1,j1 , xi1,j2 ,
xi2,j1 or xi2,j2 are then given by

xi1,j1 + xi1,j2 +
∑

(i1,j)∈U

xi1,j

xi1,j1 + xi2,j1 +
∑

(i,j1)∈U

xi,j1

xi2,j1 + xi2,j2 +
∑

(i2,j)∈U

xi2,j

xi1,j2 + xi2,j2 +
∑

(i,j2)∈U

xi,j2

Any (explicit or implicit) aggregation (possibly) involving xi1,j1 , xi1,j2 , xi2,j1 or xi2,j2 is
hence given by

(µ1 + µ2)xi1,j1 + (µ1 + µ4)xi1,j2 + (µ2 + µ3)xi2,j1 + (µ3 + µ4)xi2,j2+

µ1

∑
(i1,j)∈U

xi1,j + µ2

∑
(i,j1)∈U

xi,j1 + µ3

∑
(i2,j)∈U

xi2,j + µ4

∑
(i,j2∈U

xi,j2+

terms involving suppressed cells with indices in U

for some µ1, µ2, µ3 and µ4.
The restriction of such an aggregation to the hypercube given by xi1,j1 , xi1,j2 , xi2,j1 and
xi2,j2 is then defined as

(µ1 + µ2)xi1,j1 + (µ1 + µ4)xi1,j2 + (µ2 + µ3)xi2,j1 + (µ3 + µ4)xi2,j2

We can define the restriction of an aggregation to any set of suppressed cells - instead of
a hypercube of supressed cells - that was constructed to protect a certain unsafe cell in a
similar way.

Now, let us consider an aggregation in Table 10 in which an unsafe cell is involved, say
x1,1−x2,2+x4,5 = 18, which in fact involves both unsafe cells x2,2 and x4,5. We now restrict
this aggregation to the hypercube for the first unsafe cell x2,2. This gives the aggregation
x1,1− x2,2. During the cell suppression process it was concluded that the largest (absolute)
contribution to unsafe cell x2,2 is sufficiently protected in this latter aggregation. By ap-
plying the lemma, we conclude that the largest (absolute) contribution to unsafe cell x2,2 is
also sufficiently protected in aggregation x1,1 − x2,2 + x4,5 .

TRANSACTIONS ON DATA PRIVACY 13 (2020)

Solving the Disclosure Auditing Problem 85

Similarly, we restrict x1,1 − x2,2 + x4,5 = 18 to the hypercube for the second unsafe cell
x4,5. This gives the aggregation x4,5 − x2,2. During the cell suppression process it was
concluded that the largest (absolute) contribution to unsafe cell x4,5 is sufficiently protected
in this latter aggregation. By applying the lemma, we conclude that the largest (absolute)
contribution to unsafe cell x4,5 is also sufficiently protected in aggregation x1,1 − x2,2 +
x4,5. Since both unsafe cells involved in the aggregation are sufficiently protected, the
aggregation itself is sufficiently protected.

The same idea, i.e. restricting an aggregation based on several hypercubes to a single hy-
percube that was constructed to protect a certain unsafe cell and then applying the lemma,
can be used to show that other tables that are protected by means of the hypercube method
in combination with our LP approach for the auditing problem are safe too. Namely, re-
stricting an aggregation based on several hypercubes to a single hypercube that was con-
structed to protect a certain unsafe cell leads to an aggregation in that hypercube in which
the largest (absolute) contribution to the unsafe cell is sufficiently protected. This holds
true more generally: restricting any aggregation to any set of suppressed cells that was
constructed to protect a certain unsafe cell leads to an aggregation in which the largest (ab-
solute) contribution to that unsafe cell is sufficiently protected. The lemma shows that a
cell is at least as well protected in a larger aggregation than in a smaller aggregation that is
contained in the larger aggregation.

The above-described basic idea for constructing hypercubes can (and sometimes needs)
to be extended, because in some cases suppressing a single hypercube may not suffice to
protect a particular unsafe cell and more (hypercubes of) cells need to be suppressed. Note
that the lemma applies to this situation as well. Another reason for extending the basic
idea for constructing hypercubes is that after several hypercubes have been suppressed,
some of the earlier suppressed cells may not need to be suppressed after all and may be
released without disclosing any unsafe information. Whether earlier suppressed cells may
be released after all can be checked by means of our LP approach for the auditing prob-
lem. We have not implemented such extensions in our prototype software, but have only
implemented the basic version of the hypercube approach.

5 Test results

As already mentioned, we have developed prototype software for testing our LP approaches
for the auditing problem and the cell suppression problem. For this, we have developed
simple tailor-made software in Delphi. For solving linear programming problems, we have
used the code from [20]. Much more efficient solvers for linear programming problems are
nowadays available, not only commercially, but also freely. The development of efficient
software is, however, out of scope of this paper. We have developed our prototype soft-
ware only to show that our proposed LP approaches for the auditing and cell suppression
problems are indeed feasible.

5.1 The auditing problem

Our LP approach for the auditing problem indeed shows that Table 4 (example 1) and Table
7 (example 2) described earlier are unsafe according to the criterion proposed by [5].

We give another example. Table 12 requires protection against disclosure of sensitive in-
formation. The parameters of the used protection rule again are p = 20, q = 100. Cell
R1 × C1 is unsafe, whereas the other cells in Table 12 are safe.

TRANSACTIONS ON DATA PRIVACY 13 (2020)

86 Ton de Waal, Wieger Coutinho

Table 12: An unprotected table (example 4), in brackets the largest two contributions to
each cell are mentioned

C1 C2 C3 Total
R1 100 (90 / 5) 1200 (600 / 360) 2100 (1050 / 630) 3400
R2 1000 (500 / 300) 80 (75 / 3) 1600 (800 / 480) 2680
R3 2200 (1100 / 660) 3100 (1550 / 930) 4800 (2400 / 1440) 10100
Total 3300 4380 8500 16180

According to traditional criterion for the auditing problem described in Section 2.2, the
upper bound on the suppression interval for cell R1 × C1 should be at least 113. Namely,
when the upper bound on the suppression interval cell R1 × C1 equals 113, the second
largest contributor to cell R1 ×C1 can derive that the upper bound on the largest contribu-
tion is 108 (= 113 − 5). This upper bound exceeds the actual value (i.e. 90) of the largest
contribution to cell R1 × C1 by exactly 20%.

Similarly, the lower bound on the suppression interval for cell R1 × C1 should be at most
87, for then the second largest contributor to cell R1 × C1 can derive that the lower bound
on the largest contribution is 72 (= 87− 5− 2× 5, where the first 5 is the contribution of the
second largest contributor to cell R1×C1 and 2×5 is the upper bound on the contributions
of the other contributors to cell R1 × C1). A lower bound of 72 on the largest contribution
to cell R1 × C1 is exactly 20% less than its actual value.

With the requirement that the upper bound on the suppression interval is at least 113 and
the lower bound at most 87, τ -ARGUS gives Table 13 as output, if we measure information
loss due to suppression by the sum of the suppressed cell values.

Table 13: A safe table version according to τ -ARGUS (example 4)
C1 C2 C3 Total

R1 × × 2100 3400
R2 × × 1600 2680
R3 2200 3100 4800 10100
Total 3300 4380 8500 16180

We check whether the privacy of the largest contributor toR1×C1 is sufficiently protected
against an attack from the largest contributor to cell R2 × C2 according to the alternative
criterion proposed by [5]. The result of our LP approach, and of our prototype software, is
that Table 13 is unsafe according to that criterion. To check this result of our LP approach,
we introduce the notation in Table 14.

Table 14: Checking the table protected by τ -ARGUS (example 4)
C1 C2 C3 Total

R1 x1,1 x1,2 2100 3400
R2 x2,1 x2,2 1600 2680
R3 2200 3100 4800 10100
Total 3300 4380 8500 16180

One of the (implicit) aggregations that can be obtained from this table is x1,1 − x2,2 = 20.
This aggregation, for instance, follows by subtracting the explicit aggregation x1,2 + x2,2 =

TRANSACTIONS ON DATA PRIVACY 13 (2020)

Solving the Disclosure Auditing Problem 87

1280 from the explicit aggregation x1,1 + x1,2 = 1300.
The largest contributor to cellR2×C2 can hence derive that the upper bound on the largest

contribution to cell R1 ×C1 is 20 + 75 + 10− 0 = 105 (the first term follows from the above
implicit aggregation, the second term is his own contribution to cell R2×C2, the third term
is an upper bound on the other contributions to cell R2×C2, and the fourth term is a lower
bound on the other contributions to cell R1×C1. These latter upper and lower bounds can
be computed by using the q parameter). That is, Table 13 is indeed unsafe according to the
alternative criterion proposed by [5], because 105 ≤ 90 + 20%× 90 = 108.

Similarly, the largest contributor to cell R2 × C2 can also derive that the lower bound on
the largest contribution to cell R1 ×C1 is 20 + 75 + 0− 20 = 75 (the first term follows from
the implicit aggregation, the second term is his own contribution to cell R2 × C2, the third
term is a lower bound on the other contributions to cell R2 × C2, and the fourth term is
an upper bound on the other contributions to cell R1 × C1. These latter upper and lower
bounds can again be computed by using the q parameter). This again confirms that Table
13 is unsafe according to the alternative criterion proposed by [5].

The LP approach and our prototype software construct the implicit aggregation x1,1 −
x2,2 = 20, and conclude that too much information on the largest contribution to cellR1×C1

can be disclosed from this aggregation by the largest contributor to cell R2 × C2.

5.2 Finding cell suppressions

We have also tested our prototype software for the cell suppression problem. We were
in particular interested to see if our prototype software indeed avoids selecting the cell
suppression patterns that are selected by τ -ARGUS, but that are unsafe according to the
alternative criterion proposed by [5].

The objective of our prototype software is to minimize the sum of the suppressed cell
values.

For Table 6 (example 2) our prototype software finds the suppression pattern in Table 15,
and for Table 12 (example 4) it finds the suppression pattern in Table 16. Tables 15 and 16
are indeed safe according to the alternative criterion proposed by [5].

Table 15: A table protected by our prototype software (example 2)
C1 C2 C3 Total

R1 × 380 × 880
R2 50 80 60 190
R3 × 800 × 1680
Total 820 1260 670 2750

Table 16: A table protected by our prototype software (example 4)
C1 C2 C3 Total

R1 × 1200 × 3400
R2 1000 80 1600 2680
R3 × 3100 × 9100
Total 3300 3380 8500 15180

Given that Tables 15 and 16 are safe according to the alternative criterion proposed by [5],
it is easy to verify that Tables 15 and 16 are indeed the protected tables that lead to the least

TRANSACTIONS ON DATA PRIVACY 13 (2020)

88 Ton de Waal, Wieger Coutinho

information loss. Namely, the cell suppression patterns with at least one secondarily sup-
pressed cell in each row and each column of the unsafe cell R1 × C1 that have the lowest
information loss for Tables 6 and 12 are given in Tables 7 and 13, respectively. However, the
cell suppression patterns in Tables 7 and 13 lead to unsafe tables according to the criterion
proposed by [5]. Tables 15 and 16 give the suppression patterns with at least one secon-
darily suppressed cell in each row and each column of the unsafe cell R1 × C1 that have
the second lowest information loss for Tables 6 and 12, respectively. Since Tables 15 and 16
are safe according to the criterion proposed by [5], these tables are therefore the protected
tables with the least information loss.

6 Discussion

In this paper, we have shown that it is feasible to apply the criterion proposed by [5] for the
auditing problem in practice. This can be done by implementing this criterion by means of a
series of LP problems rather than by means of a large mixed-integer programming problem
as was originally proposed by [5]. This shows that the auditing problem based on the
criterion proposed by [5] can be solved in polynomial time in its input parameters, rather
than in non-polynomial time as the mixed-integer programming problem formulation of
[5] suggests.

In principle, this approach based on using a series of LP problems can also be used for the
development of a cell suppression method and accompanying software. One way to do this
is by combining the LP approach for the auditing problem with the hypercube approach
as sketched in Section 4 of the current paper. In order to show the feasibility of such an
approach we developed some theory in Section 4.

We have not studied how often the alternative criterion for the auditing problem proposed
by [5] leads to major differences with the traditional criterion. The examples where the
traditional criterion gives undesirable results given in this paper were specially constructed
for demonstrating the flaws of the traditional criterion. So, it is quite possible that the
differences with the traditional criterion may be small in practice. From a theoretical point
of view, we feel that the difference between the alternative criterion proposed by [5] and
the traditional criterion is important as the traditional criterion can lead to inconsistencies
with the applied sensitivity measure for individual cells. The alternative criterion proposed
by [5] avoids this inconsistency. Our contribution in the current paper is a step towards
implementability of this alternative criterion in practice.

We are aware of the fact that our LP approach is only a small step towards implementabil-
ity of the alternative criterion. More efficient algorithms for the auditing problem and,
especially, the cell suppression problem are highly desired. Undoubtedly, such more effi-
cient algorithms can indeed be developed. We leave the development of such algorithms
to specialists in operations research.

Related to the development of more efficient algorithms for the auditing and the cell sup-
pression problems is the development of efficient and user-friendly software for solving
these problems in practice. For this paper we have developed simple prototype software,
demonstrating the feasibility of implementing the alternative criterion proposed by [5] as
a series of LP problems. As already mentioned in the Introduction, we do not claim any
superiority of our prototype software over any available software for the auditing problem
or the cell suppression problem, nor over any software based on the mixed-integer pro-
gramming problem formulation in [5]. For producing software based on our LP approach
that can be used in the day-to-day routine at a statistical office, a substantial effort would

TRANSACTIONS ON DATA PRIVACY 13 (2020)

Solving the Disclosure Auditing Problem 89

be required.
In this paper we have assumed that holdings do not occur in the data to be protected. Our

approach should preferably be extended in order to take holdings into account. The basic
idea of such an extension is quite straightforward: protect the largest contributing holding
to an aggregation against an attack from the second largest contributing holding to that
aggregation. The translation of this idea into mathematical machinery may, however, be
quite complicated, especially if one wants to develop efficient software for this situation.
We leave the extension of our approach to holdings as a potential topic for future research.

Even more important seems to be the development of an extension of our approach to
hierarchical tables, where, for instance, cells sum up to subtotals, which in turn sum up to
higher-level totals. Hierarchical tables frequently occur in practice at NSIs. The hierarchical
structure of such tables has to be taken into account while solving the auditing problem and
during the cell suppression process. Extending our approach to hierarchical tables would
be an important step towards the use of this (extended) approach in practice.

References

[1] Cox, L.H. (1980), Suppression Methodology and Statistical Disclosure Control. Journal of the Amer-
ican Statistical Association 75, pp. 377-385.

[2] Cox, L.H. (1981), Linear Sensitivity Measures in Statistical Disclosure Control. Journal of Statistical
Planning and Inference 5, pp. 153-164.

[3] Cox, L.H. (1995), Protecting Confidentiality in Business Surveys. In: Business Survey Methods (eds.
B.G. Cox, D.A. Binder, B.N. Chinnappa, A. Christianson, M.J. Colledge and P.S. Kott), John Wiley
& Sons, Inc., New York, pp. 443-473.

[4] Cox, L.H. (2001), Disclosure Risk for Tabular Economic Data. In: Confidentiality, Disclosure and
Data Access: Theory and Practical Applications for Statistical Agencies (eds. P. Doyle, J.I. Lane, J.J.M.
Theeuwes and L.V. Zayatz), North-Holland Elsevier, Amsterdam, pp. 167-183.

[5] Daalmans, J. and T. de Waal (2010), An Improved Formulation of the Disclosure Auditing Prob-
lem for Secondary Cell Suppression. Transactions on Data Privacy 3, pp. 217-251.

[6] Dellaert, N.P. and W.A. Luijten (1999), Statistical Disclosure in General Three-Dimensional Tables.
Statistics Neerlandica 53, pp. 197-221.

[7] De Wolf, P.-P., A. Hundepool, S. Giessing, J.-J. Salazar and J. Castro (2014), τ -ARGUS (version 4.1)
- User’s Manual. Statistics Netherland.

[8] Duarte De Carvalho, F., N.P. Dellaert and M. De Sanches Osório (1994), Statistical Disclosure
in Two-Dimensional Tables: General Tables. Journal of the American Statistical Association 89, pp.
1547-1557.

[9] Duncan, G.T., S.E. Fienberg, R. Krishnan, R. Padman and S.R. Roehrig (2001), Disclosure Lim-
itation Methods and Information Loss for Tabular Data. In: Confidentiality, Disclosure and Data
Access: Theory and Practical Applications for Statistical Agencies (eds. P. Doyle, J.I. Lane, J.J.M.
Theeuwes and L.V. Zayatz), North-Holland Elsevier, Amsterdam, pp. 135-166.

[10] Fischetti, M. and J.J. Salazar-González (2000), Models and Algorithms for Optimizing Cell Sup-
pression in Tabular Data with Linear Constraints. Journal of the American Statistical Association 95,
pp. 916-928.

[11] Giessing, S. (2001), Nonperturbative Disclosure Control Methods for Tabular Data. In: Confi-
dentiality, Disclosure and Data Access: Theory and Practical Applications for Statistical Agencies (eds.
P. Doyle, J.I. Lane, J.J.M. Theeuwes and L.V. Zayatz), North-Holland Elsevier, Amsterdam, pp.
185-213.

TRANSACTIONS ON DATA PRIVACY 13 (2020)

90 Ton de Waal, Wieger Coutinho

[12] Giessing, S. (2004), Survey on Methods for Tabular Data Protection in ARGUS. In: Privacy in
Statistical Databases (eds. J. Domingo-Ferrer and V. Torra), Springer-Verlag, Berlin, pp. 1-13.

[13] Giessing, S. and D. Repsilber (2002), Tools and Strategies to Protect Multiple Tables with the
GHQUAR Cell Suppression Engine. In: Inference Control in Statistical Databases, From Theory to
Practice (ed. J. Domingo-Ferrer), Springer Lecture Notes in Computer Science, Vol. 2316, pp. 181-
192.

[14] Hundepool, A., J. Domingo-Ferrer, L. Franconi, S. Giessing, E. Schulte Nordholt, K. Spicer and
P.-P. de Wolf (2012), Statistical Disclosure Control. Wiley & Sons, Chichester.

[15] Johnson, E.I., G.l. Nemhauser, and M.W.P. Savelsbergh (2000), Progress in Linear Programming-
Based Algorithms for Integer Programming: An Exposition. FORMS Journal on Computing, Vol.
12, pp. 2-23.

[16] Jünger, M., G. Reinelt, and G. Rinaldi (1995), The Traveling Salesman Problem, In: Handbooks
in Operations Research and Management Science, Volume 7: Network Models (eds. M.O. Ball, T.L.
Magnanti, C. Monma, and G.L. Nemhauser), Elsevier, Amsterdam, pp. 225–330.

[17] Kelly, J.P., B.L. Golden and A.A. Assad (1992), Cell Suppression: Disclosure Protection for Sen-
sitive Tabular Data. Networks 22, pp. 397-417.

[18] Ladányi L., T.K. Ralphs and L.E. Trotter (2001), Branch, Cut, and Price: Sequential and Parallel.
In: Computational Combinatorial Optimization. Lecture Notes in Computer Science, Vol 2241 (eds. M.
Jünger and D. Naddef), Springer, Berlin, Heidelberg, pp. 223-260.

[19] Nemhauser, G.L. and L.A. Wolsey (1988), Integer and Combinatorial Optimization, Wiley, New
York.

[20] Press, W.H., B.P. Flannery, S.A. Teukolsky, B.P. Flannery and W.T. Vetterling (1989), Numerical
Recipes in Pascal: The Art of Scientific Computing. Cambridge University Press, Cambridge.

[21] Repsilber, D. (1994), Preservation of Confidentiality in Aggregated Data. Paper presented at the Sec-
ond International Seminar on Statistical Confidentiality, Luxembourg.

[22] Repsilber, D. (2002), Sicherung Persönlicher Angaben in Tabellendaten. In: Statistische Analysen
und Studien Nordrhein-Westfalen, Landesamt für Datenverarbeitung und Statistik NRW, Ausgabe
1/2002 (in German).

[23] Robertson, D. (2000), Improving Statistics Canada’s Cell Suppression Software (CONFID). In:
Proceedings in Computational Statistics 2000 (eds. J.G.Bethlehem and P.G.M. Van der Heijden),
Physica-Verlag, New York, pp. 403-408.

[24] Salazar-González, J.J. (2002), Extending Cell Suppression to Protect Tabular Data against Several
Attackers. In: Inference Control in Statistical Databases, From Theory to Practice (ed. J. Domingo-
Ferrer), Springer, pp. 34 - 58.

[25] Sande, G. (1977), Towards Automated Disclosure Analysis for Establishment Based Statistics. Report,
Statistics Canada.

[26] Sande, G. (1978a), A Theorem Concerning Elementary Aggregations. Report, Statistics Canada.

[27] Sande, G. (1978b), Confidentiality and Polyhedra - An Analysis of Suppressed Entries and Cross-
Tabulations. Report, Statistics Canada.

[28] Sande, G. (2000), Blunders by Official Statistical Agencies while Protecting the Confidentiality of Busi-
ness Statistics (unpublished paper).

[29] Willenborg, L. and T. de Waal (1996), Statistical Disclosure Control in Practice. Springer-Verlag,
New York.

[30] Willenborg, L. and T. de Waal (2001), Elements of Statistical Disclosure Control. Springer-Verlag,
New York.

[31] Wolsey, L.A. (1998), Integer Programming, Wiley, New York.

TRANSACTIONS ON DATA PRIVACY 13 (2020)

