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Abstract

Using diverse location-based services (LBSs), especially through mobile smart phones, have be-
come a daily routine for many people. Location privacy is an important concern with each and every
LBS request. Besides whereabouts, location disclosure provides attackers with whatabouts as well.
Since each individual’s location privacy needs are not the same, most solutions enable individual-
ized location privacy profiles. In this work, as attack models and trustfulness of LBS providers are
different, in the context of location check-ins, we provide a framework offering a palette of location
privacy protection methods to be picked for each LBS provider/attacker. Depending on what to pro-
tect per LBS provider, i.e., whereabouts and/or whatabouts, and attack model, i.e., weak or strong,
we develop six privacy protection methods. A top-down location cloaking algorithm which is able
to enforce the six protection methods is presented. An extensive experimental evaluation on two real
datasets are performed.

1 Introduction

Today, various location based services (LBSs) are employed for different purposes by all age groups.
Navigation services and point of interest querying services are two main kinds of LBSs. Navigation
services give recommendations on the shortest route to a target location, and similarly point of
interests services list nearby facilities. Location check-ins are another common use of LBS services.
To consult such services the users need to submit their location data. Moreover, with the high
bandwidth communication capable end-devices, the users stay connected with the service and share
the location data constantly over a period of time, hence resulting in disclosure of the full trajectory.

In a typical mobile LBS interaction, the smart phone companion, called user, first detects his own
location and sends LBS request/query, containing the user location, through a mobile application
to the LBS provider. In this request/response mechanism, the LBS provider then returns with a
response. The user identities are not anonymous with subscription based LBSs. Hence, the LBS
provider knows the user identity, location, time and the requested service identifier. To protect
the location privacy, the canonical solution is to create cloaking regions and share coarse location
information so that the precise user location cannot be re-identified by the LBS provider while the
service quality is still acceptable.
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In a subscription based LBS, an LBS request typically contains the following information: (i) the
user id, (ii) the request time, (iii) the user location, and (iv) the service identifier with possibly ad-
ditional parameters. The user is already aware that "whenabouts" (i.e., privacy of request time),
"whereabouts" (i.e., privacy of place), "whyabouts" (i.e., privacy of service type), "howabouts" (i.e.,
privacy of user condition) and "whatabouts" (i.e., privacy of user habits) can be inferred from the
request. In our framework we are only interested in "whereabouts" and "whatabouts" kinds of in-
ferences. In the "whereabouts", the users simply do not want to be pinpointed, whereas in the
"whatabouts" the users do not want to be associated with a particular sensitive location category
(e.g., night clubs). Yet, sometimes "whereabouts+whatabouts" together may reveal intrusive infer-
ences.

Suppose Alice makes a check-in at an oncology hospital in the downtown and sends an LBS re-
quest. From the request, an attacker can easily conclude about her current whereabouts (i.e., being
in the oncology hospital) and whatabouts (i.e., having cancer treatment). We consider that any or
both of which may be sensitive for Alice depending on her privacy requirement. We would like to
note that there are correlations as well, i.e., whereabouts leak whatabouts (i.e., being in an oncology
hospital is a sign of suffering from cancer) and vice versa (i.e., suffering from cancer causes visits
to oncology hospital). This suggests that we need location privacy solutions preventing intrusive
inferences on only whereabouts, only whatabouts and whereabouts+whatabouts together.

Depending on what the location privacy is involved with, the LBS request should be cloaked so
that attackers cannot surface the sensitive information with high confidence. In this paper, we adopt
spatial cloaking framework as a mean for limiting whereabouts (through providing diversity) and
whatabouts (through protecting sensitivity) disclosures for various location privacy preferences/re-
quirements. There is an inherent tradeoff between the level of the location privacy and the service
quality. Since with the coarser cloaking regions, the location privacy improves but the service quality
degrades, and vice versa.

A typical spatial cloaking solution (e.g., PROBE [7]) creates a cloaking map per user profile. In
our framework, however, several cloaking maps per user profile can be created to address differ-
ent notions of privacy requirements. Depending on the trust levels and possible attack models
by the LBS providers, our framework develops six location privacy protection formulations: (i)
weak whereabouts, (ii) strong whereabouts, (iii) weak whatabouts, (iv) strong whatabouts, (v) weak
whereabouts+whatabouts, (vi) strong whereabouts+whatabouts. Each of them has user specific pa-
rameters to individualize the location privacy requirements and to balance the service utility/location
privacy tradeoff.

The contributions of the paper are given as follows.

* Six location privacy problem formulations, in the context of location check-ins, are provided
to address different needs against various trust levels and attack models of the LBS provider-
s/attackers. All of the formulations are parametric to meet individual location privacy needs.

* Depending on the formulation picked, our framework is able to guard whereabouts, whatabouts
and these two together.

¢ An efficient top-down space partitioning algorithm is developed. The algorithm is able to
generate cloaking maps for any of the six formulations within the same framework. The
algorithm exploits the monotonicity property of cloaking regions to do recursive partitioning.

 Several cloaking map quality metrics are defined and an experimental evaluation on two real-
world check-in datasets has been conducted.

The paper is organized as follows. Section 2 presents the related work on location cloaking and
locates our work within the literature. The framework is presented in Section 3. The framework
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develops six location privacy problem formulations regarding various senses of whereabouts and
whatabouts. The nice notion of our framework is that these problem formulations can be uniformly
solved in a top-down region refinement algorithm, which is given in Section 4. Section 5 presents
an extensive experimental evaluation on two real datasets. Finally, Section 6 concludes.

2 Related Work

Privacy issues due to the disclosure of user-specific sensitive microdata can be broadly studied under
two categories: (i) offline, and (ii) online. In the former, the microdata is already stored by the server
and is going to be shared with the third parties. In the latter, however, the microdata is still being
accumulated at the server while the user interacts with it. The user can actively control the disclosure
limitation in the latter. For this reason, the user in the online category have the main responsibility
to exploit privacy enhancing technologies. The privacy problem we studied here falls in the online
category, but the cloaking map generation is usually an offline process, i.e., the cloaking map must
be ready before the LBS requests begin.

2.1 Offline privacy

Sweeney [24] introduced the k-anonymity privacy principle as a mean of limiting the disclosure
of sensitive information from tabular data. Typically the data is perturbed by generalization, e.g.,
ages to age groups. The principle ensures that each subject is indistinguishable from at least k — 1
others, and hence any attack on record linkage (based on quasi-identifiers) cannot succeed with
more than 1/k probability [22]. Other privacy principles like /-diversity[15] and its refinement z-
closeness [14] are proposed to strengthen k-anonymity model. Our whereabouts protection exploits
the k-anonymity and [/-diversity principles to provide diversity of the features within the cloaking
regions.

Originally developed for tabular data publishing, k-anonymity model is extended for data mining
results publishing [4] and trajectory data publishing [1, 18] too. Optimal k-anonymization is proven
to be NP-hard [2, 1].

2.2 Online privacy

The location protection and identity protection are the main privacy concerns of anonymous LBSs
and subscription based LBSs, respectively. In the former case, the classical solution relies on the
concept of location k-anonymity [11, 9]. Similar to classical k-anonymity, location k-anonymity re-
quires at least k — 1 other service requesters from the same coarse location, called mix-zone. Service
handling needs to be delayed most of the time as service requests from at least k users from the same
mix-zone rarely happen. The size of spatial cloaking and temporal cloaking are the two performance
parameters.

In subscription based LBSs, the typical approach is to obfuscate the true location of the user by
sending fake positions [3, 12, 19]. In Kido et al. [12], the user sends one or more fake positions in
addition to the true location. This way the LBS provider is confused about the true location of the
user, but it has the overhead of increased traffic. Moreover, the server can extract the trajectory in
case the user makes multiple requests along his trajectory. In these exact location sharing (no cloak-
ing) solutions, the locations need not to have associated semantics and are not assigned sensitivity
levels. In our whatabouts formulation, however, the locations have semantics with varying degrees
of sensitivities.
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Private information retrieval (PIR) [10] provides strong privacy guarantees by running an encryp-
tion based protocol. However, the communication/computation overhead is very high and, more
importantly, the approach is suitable only for pre-recorded static locations. The typical solution in
this case is to employ a variant of k nearest neighbor (kNN) query processing, e.g., SpaceTwist [27].
Location perturbation methods based on Bayesian statistics [23] and differential privacy have been
proposed too [8].

Spatial cloaking, in which exact coordinates are replaced with more coarse region identifiers, is
another popular approach employed in subscription based LBSs. The spatial cloaking approach
requires the area of operation to be divided into a number of uncertainty regions [5, 6, 7]. The
collection of these regions is called cloaking map. The cloaking map is typically pre-computed
offline based on the location privacy preferences of the user, and shared with the LBS provider.
During online requests, the user reports the region identifier where his true coordinate falls in. The
service quality depends on the average size of the cloaking regions. Being easily applicable, this
approach should be patched when there are multiple requests from the same user over his trajectory.
More concretely, the LBS provider can exploit maximum velocity to constrain the cloaking regions.
The canonical solution to this case is either employing postdating or time delaying [5, 7, 26, 17]
to guard against velocity attacks. In a recent study [21], it has been shown that given the location
history, the current location can be estimated even if the location is obfuscated. Recently, Zheng et al.
[28] proposed a semantic based obfuscation method protecting against the "whyabouts"/"howabouts"
kinds of inferences. Monreale et al. [16] provides a comprehensive survey on location privacy issues
and privacy-preserving strategies in mobility data publishing.

PROBE [7] like spatial cloaking approaches run in two stages: (i) offline cloaking map generation,
and (ii) online location transformation which includes mechanisms to prevent against velocity at-
tacks. The nice feature of this separation is that these stages are decoupled, i.e., the second stage
can run on any cloaking map generated for different privacy needs. Indeed our current work devel-
ops location privacy solutions to generate alternative cloaking maps across several location privacy
requirements. In PROBE, a user is assigned the same privacy profile across all LBSs, while in this
paper, each user may have multiple privacy profiles depending on the kind of LBSs.

Our framework has three main differences from PROBE. First, PROBE’s location privacy prob-
lem formulation protects from a particular attack scenario but our framework develops six targeted
location privacy problem formulations to protect against a wide range of attack scenarios. Second,
PROBE needs features’ spatial extensions to be represented on a gridded space while our formu-
lations are based on points. Third, PROBE operates in a bottom-up manner (i.e., uniting smaller
regions), while our algorithm is top-down (i.e., dividing larger regions).

3 The Framework of Whereabouts/Whatabouts Protection

In our framework, the operating region of LBSs is fixed to a region R which is a rectangular bounded
two dimensional spatial area containing a set of geo-referenced features F, e.g., check-in places.
Each feature f € F is an institution/business/facility which is identified with its spatial coverage
Coverage(f) C R. Moreover, each feature is assigned with a name (e.g., Johnson’s Steak House)
and a semantic annotation to express its category (e.g., restaurant).

Due to the location privacy requirements and sensitivity of some features (e.g., bars and night clubs)
the users prefer their locations to be cloaked before shared with LBSs. To this end, our framework
creates a set of coarse spatial cloaking regions each with a unique identifier. The set of the cloaking
regions is called cloaking map CM and shared between the LBS and the user. Each user is able to
locally find the cloaking region cr € CM in which the current exact location falls in, and shares the
identifier of the cr with the LBS.
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Since peoples’ location privacy requirements are different across LBS servers and cultures, they
have to be provided with a wide variety of location privacy protection solutions, the main focus in this
paper. Broadly speaking, people may declare as sensitive the (i) whereabouts, (ii) whatabouts, or (iii)
whereabouts+whatabouts together. In the sequel, we define parametric location privacy protection
schemes for each of the three requirements.

3.1 Protecting whereabouts

Classical table anonymization involves creating equivalence groups w.r.t. quasi-identifier values.
Classical k-anonymity requires that each equivalence group has at least k records. This way, the
attacker cannot reidentify the correct record within the group, i.e., his success of correct record
linkage is not greater than 1/k. However, the sensitive values within an equivalence group need
not to be distinct/diverse. Classical /-diversity principle insists that sensitive values in every group
is diverse enough so that each sensitive value is "well-represented". The /-diversity simply ensures
that none of the sensitive values can be assigned to a screened participant with high probability.
By an analogy, we can define k-anonymous and /-diverse cloaking regions as given next.

Definition 1 (k-anonymous location cloaking region/map). A cloaking region cr is k-anonymous if
it contains at least k features. A cloaking map CM is k-anonymous if every cloaking region cr € CM
is k-anonymous.

The definition simply states that each cloaking region cr € CM (usually a rectangular region) con-
tains at least kK number of features (check-in places) so that when the respective identifier is shared
with LBS provider, the user’s check-in location is at least kK anonymous within the respective cloak-
ing region. There are certain efficiency (e.g., runtime) and effectiveness (e.g., mean spatial coverage
of all cloaking regions) metrics to cloaking map generation process and its results.

Problem 1 (k-anonymous location cloaking region privacy). Given a set of geo-referenced feature
set F and anonymity level k, find a cloaking map CM which is k-anonymous.

Suppose we have k-anonymous cloaking map CM and the user makes an LBS request at a cr € CM.
Since the cr contains at least k features, the attacker cannot identify the true source of the LBS request
with probability more than 1/k.

Although Definition 1 is conceptually very simple, we identify a serious drawback that the source
of the request within the cr need not to be equally likely, e.g., one of the features may be highly
frequented while the others are quite rarely. In such cases, we talk about pseudo k-anonymous
cloaking regions and cloaking map. To this end, we need relative and normalized likelihoods of
being frequented for features within the same cloaking region. Indeed, this defines a probability
distribution within each cloaking region. On the other hand, Problem 1 is still relevant in case
no probability distribution of the features are available apriori or the features are equally likely
frequented.

Given a prior probability distribution P (which can be obtained from the frequencies of previous
check-ins) over all features F (a set of check-in places), and the reported cloaking region cr in the
LBS request, one can easily compute the posterior probability distribution of features P(f|cr).Vf €
cr since the equation Y, fech( fler) = 1 holds by definition (as each location check-in is done at
one of the places in F). As the cr is explicit in the LBS request then any feature out of the cr has
probability zero, i.e., P(f|cr) = 0.Vf ¢ cr. Definition 2, which we call (entropy) /-diverse cloaking
region, is the strong notion (i.e., employing the P) of the anonymity defined in Definition 1.

Definition 2 (/-diverse location cloaking region/map). A cloaking region cr is I-diverse if H(cr) =
Y reer —P(flcr)log(P(flcr)) > log(l) holds, where H(cr) denotes the entropy of cr. A cloaking
map CM is [-diverse if every cr € CM is [-diverse.
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Problem 2 (/-diverse location cloaking privacy). Given a set of geo-referenced feature set F', prior
probability distribution P and diversity /, find a cloaking map CM which is [-diverse.

Theorem 1 (monotonicity of k-anonymity and [-diversity). 1. Let crl € CM and cr2 € CM be
k-anonymous cloaking regions, then cr1|Jcr2 is k-anonymous too.

2. Let crl € CM and cr2 € CM be -diverse cloaking regions, then crl1|]Jcr2 is l-diverse too.
Proof.

1. lerl| > k and |cr2| > k together implies that |cr1Jcr2| > k.

2. This is simply due to the concavity of the entropy function. More formally, let o (resp. 1 — )
be the probability of drawing a feature from crl (resp. cr2). Then, the two cloaking regions act
as if they are disjoint mixtures. Hence, H(cr1Ucr2) = oH(crl) + (1 — a)H(cr2) + H(o)
[20]. Clearly, for any o, H(cr1Jcr2) > log(1) provided that H(crl) > log(l) and H(cr2) >
log(1).

The monotonicity property is an important property that enables us to stop looking solutions with
finer granularity when a candidate cloaking is not safe. Since, all the of the six problem definitions
are handled within the same framework we show this property for each of the problem definitions.

3.2 Protecting whatabouts

Suppose a cloaking region cr is diverse according to Definition 2. Unfortunately, diversity does not
necessarily imply that an LBS request from the cr is safe. Just consider, for instance that, all of the
features within the cr are sensitive for the user. Although the diversity is ensured, being at whichever
feature within the cr is immaterial as far as the sensitivity is concerned. On the other hand, the
same cr may be quite insensitive for another user as his sensitivity requirement might be different.
This suggests that though cloaking region diversity is not user specific whereas the cloaking region
sensitivity is. This in turn suggests that each user should have own sensitivity profile. Moreover, the
features may have differing level of sensitivities.

To capture the sensitivity of the features, we define the sensitivity function S, i.e., S: F — [0..1],
which assigns a sensitivity value between [0..1] for each feature from the feature set F. Features with
sensitivity values closer to 1 are very sensitive while the values closer to O are less sensitive. Indeed
the function S is part of the user’s feature sensitivity profile. Total, average and expected sensitivity
of a cloaking region cr are defined next.

Definition 3 (Sensitivity of cloaking region). Total sensitivity of cloaking region cr is defined as
TSer = YreerS (f), its average sensitivity as AS,, = % and its expected sensitivity as ES,, =

cr| 2
ZfEch(f|cr)S(f)

The sensitivity profile of a user is a tuple PP =< S, T > where S is a user specific sensitivity function
and 7 is the sensitivity threshold for maximum value for average/expected sensitivity of any cloaking
region cr. For a given PP, the safe cloaking region and the insensitive cloaking map are defined as
follows.

Definition 4 (7-insensitive cloaking region/map). A cloaking region cr is average T-insensitive if
AS¢r < 7. Similarly, a cloaking region cr is expected T-insensitive if ES. < 7. A cloaking map CM
is average (resp. expected) T-insensitive if every cloaking region cr € CM is average (resp. expected)
insensitive.
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Problem 3 (average (7)-safe location cloaking privacy). Given a set of geo-referenced feature set
F and user-specific privacy profile PP =< S, 7 >, find a cloaking map CM where for each cr € CM
it holds that AS,, < 7.

Problem 4 (expected (7)-safe location cloaking privacy). Given a set of geo-referenced feature set
F, prior probability distribution P and user-specific privacy profile PP =< §,7 >, find a cloaking
map CM where for each cr € CM it holds that ES., < 7.

Problem 3 defines a weak protection scheme as it does not use the prior probability distribution P.
On the other hand, Problem 4 defines a strong protection scheme as it utilizes P when it is available.
Note that Problem 3 is relevant in the absence of P.

Theorem 2 (monotonicity of average/expected (7)-safe location cloaking). 1. Letcrl € CM and
cr2 € CM be average (T)-safe cloaking regions, then cr1|Jcr2 is average (T)-safe cloaking
region too.

2. Letcrl € CM and cr2 € CM be expected (T)-safe cloaking regions, then cr1\Jcr2 is expected
(7)-safe cloaking region too.
Proof.

TSer1 Uer2

1. AScr1 < Tand ASqp < T together implies, by a simple arithmetic, that ASc1\jer2 = et Fler] <

T.

2. Suppose, after the union, all the probabilities in crl and cr2 are scaled by 0 < o0 < 1 and 0 <

1— o < 1, respectively. Then, ES¢y1(jer2 = QY reert P(fler1)S(f) 4 (1—0) L peca P(fler2)S(f) <

at+(l—-a)r<

3.3 Protecting whereabouts and whatabouts

We would like to note that whereabouts protection (studied in Problem 1 and Problem 2) does not en-
sure whatabouts protection (studied in Problem 3 and Problem 4), and vice versa. Indeed, they solve
different location privacy issues as their problem formulations are quite different and are not convert-
ible. Thus section provides new problem definitions aimed at solving whereabouts and whatabouts
protections simultaneously. Monotonicity property is shown to be maintained so that all of the six
problem formulations are solvable in a unified framework.

Definition 5 ((k,7)-safe cloaking region/map). A cloaking region cr is (k,7)-safe if it is (i) k-
anonymous according to Definition 1 and (ii) average t-insensitive according to Definition 4. A
cloaking map CM is (k, T)-safe if every cloaking region cr € CM is (k, T)-safe.

Problem 5 ((k, T)-safe location cloaking privacy). Given a set of geo-referenced feature set F,
anonymity k and user-specific privacy profile PP =< §,7 >, find a cloaking map CM which is
(k,7)-safe.

Strong notion (i.e., employing probability distribution P) of Definition 5 is provided in Definition
6.

Definition 6 ((/, 7)-safe cloaking region/map). A cloaking region cris (I, 7)-safe if it is (i) /-diverse
according to Definition 2 and (ii) expected 7-insensitive according to Definition 4. A cloaking map
CM is (I, 7)-safe if every cloaking region cr € CM is (I,7)-safe.

Problem 6 ((/, 7)-safe location cloaking privacy). Given a set of geo-referenced feature set F, prior
probability distribution P, diversity / and user-specific privacy profile PP =< S, T >, find a cloaking
map CM which is (1, 7)-safe.
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Theorem 3 (monotonicity of (k, 7)-safe and (1, T)-safe location cloaking). 1. Letcrl € CM and
cr2 € CM be (k,T)-safe cloaking regions, then crl\Jcr2 is (k,T)-safe cloaking region too.

2. Letcrl € CM and cr2 € CM be (1,7)-safe cloaking regions, then cr1Jcr2 is (1,7)-safe cloak-
ing region too.
Proof.

1. This follows from Theorems 1.1 and 2.1.
2. This follows from Theorems 1.2 and 2.2.

3.4 Optimal Cloaking

Problems 1 through 6 did not define the optimization objective but rather what is a safe cloaking
map. However, trivial but useless solutions may exist meeting the objective unless no optimization
objective is provided. Fortunately, it is very intuitive to define the optimal cloaking: the smaller the
coverage of cloaking regions the better it is. The following problem definition formalizes this notion.

Problem 7 (Optimal location cloaking privacy). Given one of the cloaking privacy problem formu-
lations (i.e., Problem 1 through 6) with respective parameters, find a cloaking map CM so that,

* CM meets the location cloaking privacy definition of the problem, and
* Max{Coverage(cr) : cr € CM} is minimized.

Since minimum k-clustering, the relaxed version of Problem 1 which is being the simplest of the
six, is NP-Hard ! we develop an efficient polynomial solution in the next section.

4 A Top-Down Cloaking Map Generation

The monotonicity properties as shown in Theorems 1, 2 and 3 enable us to use a top-down region
division approach to solve all of the six problem formulations within the same framework.

Our cloaking map generation consists of two stages: (i) intra-feature cloaking and (ii) inter-feature
cloaking. In the former, we simply calculate the centroid point of the each feature’s spatial coverage
while in the latter we divide R into a number of cloaking regions by recursive partitioning. Note that
the former stage is skipped in case the feature locations are already given as points, i.e., longitude-
latitude pairs, or check-in places.

4.1 Inter-feature cloaking

Our inter-feature cloaking method partitions the region R. Starting from the whole region, the
method evaluates the safety property against the specified problem definition. If it is found safe,
then it is divided into two and each part is checked for safety again. We keep recursive partitioning
as far as the safety property is satisfied, and stop when the safety property is violated. At each step
we consider both equal area vertical and horizontal partitionings and pick the best promising one
according to an evaluation function.

Algorithm 1 sketches the progress of the method. The inputs are the privacy profile (problem
definition and its parameters) PP and the cloaking region R. PP is either Problem 1 through Problem

"https://www.nada.kth.se/~viggo/wwwcompendium/nodel29.html#5750
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6 and its related parameters. For instance, in case it is Problem 2 then its parameters include the geo-
referenced feature set F, prior probability distribution P and diversity preference /. R and the other
regions (obtained through partitioning) are rectangles represented with the upper-left and lower-right
corner points. The function isSafe(r, PP) checks the safety property of the region r w.r.t. the privacy
profile PP. In case region r is empty (i.€., with no feature within it) the function isSafe(r, PP) always
returns true as any region with no feature is not private.

A region r is called degenerate if it contains zero or one feature. The function isDegenerate(r)
returns true if it is degenerate. Clearly there is no point to further partition a degenerate region.
Moreover, for most practical purposes, there is no point to shrink a cloaking region if it is already
very small. Just consider a cloaking region with dimensions of 100m x 100m, then for most people
there is no point for further partitioning it into two half size cloaking regions. To address this fact,
the function isSmallEnough(r,rst) returns true if the spatial area of r is not greater than region
size threshold rst, a user parameter. Hence this way, for small enough cloaking regions, we do not
consider further partitioning.

The algorithm considers both of the equal area horizontal and vertical partitionings. Let rhl,rh2
(resp. rvl,rv2) be the result of the candidate horizontal (resp. vertical) partitioning of the region
r. The function Pref erredPartition(rhl, rh2,rvl, rv2,PP) returns the result of either horizontal par-
titioning or vertical partitioning. Algorithm 2 implements this function. In case only one of the
partitioning is safe, then it returns the respective partitioning result. In case both of them are safe, it
returns the more compact one. The compactness is measured as the diagonal length (i.e., maximum
walk distance) of the resulting region.

The resulting cloaking map CM from Algorithm 1 contains two kinds of regions: (i) degenerate
region set CM, and (ii) non-degenerate (true cloaking) region set CM,,;. The latter regions (added
at lines 9 and 27) are indeed the true cloaking regions in the sense that any LBS request within this
region is cloaked with the region identifier. On the other hand, the former regions (added at lines 17
and 22) indeed are not cloaking regions as any LBS request from the respective region need not to
be cloaked, i.e., the precise point can be used at the LBS request.

4.2 Complexity and improvement

Let n be the number of features in R and m be the size of CM. The total number of regions generated
and safety check performed is O(m). This is because region cutting generates a binary tree where
the leaf node set is CM. So, the number of the total nodes in the tree is not more than 2m. For each
tree node we consider vertical and horizontal cuts and take one of them. As a result, the total regions
generated and the safety check performed are not more than 4m. The complexity of each invocation
of PreferredPartition is O(1), and for O(m) invocation it has a total complexity of O(m). In the
straightforward implementation of Algorithm 1, each invocation of isSafe and isDegenerate have
the worst-case complexity of O(n) as they need all the features within a region to be identified. In
total, the algorithm runs in O(nm) time.

The total complexity can be improved by using a spatial index on the features. For instance, using
kd-trees, the index can be constructed in O(nlogn) and each range query can be answered in O(/n)
time [13]. With spatial indexing, the total complexity of the algorithm then becomes O(nlogn +
m/n). In our implementation, however, we assign the features to one of the partitions at each step
and scan only features within the partition for next partitioning. This is a kind of binary search and
hence achieves O(n + mlogn) complexity.
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Require: Privacy profile PP, operating region R, region size threshold rst
Ensure: Cloaking map CM

. CMy <0

2 CMpug <0

3 OpenQueue < 0

s+ OpenQueue.Enqueue(R)

s. while |OpenQueue.isEmpty() do

& 1< OpenQueue.Dequeue()

7 ifisSafe(r,PP) then

8: if isSmallEn()ugh(r, rsl) then

9 CMpq < CMpq U{r}

10: continue

1 end if

12 (rh1,rh2) + Horizontal Partition(r)
e (rvl,mnv2) < Vertical Partition(r)

14: (rl, r2) — PreferredPartition(rhl, rh2,rvl, rv2,PP)
is: if isSafe(rl,PP) A isSafe(r2,PP) then
i6: if isDegenerate(r1) then

17: CMy + CM, J{r1}

18: else

19: OpenQueue.Enqueue(rl)

20: end if

a1 if isDegenerate(r2) then

22: CMd %CMd U{r2}

2: else

2 OpenQueue.Enqueue(r2)

25 end if

2: else

27: CMq < CM,,q U{r}

28: end if

. end if

30. end while
st CM < CMy; | JCM,,4

3 return CM
Algorithm 1: Top-down Inter-Feature Cloaking

Require: Horizontal cut (r/1,rh2) and vertical cut (rv1l,r2) partitionings, Privacy profile PP
Ensure: The pair (rhl,rh2) or (rvl,rv2)
i if l(isSafe(rvl,PP) A isSafe(rv2,PP)) then
»  return (rhl,rh2)
3 elseif |(isSafe(rhl,PP) A isSafe(rh2,PP)) then
& return (rvl,r2)
5. else
&  if Diagonal(rhl) < Diagonal(rvl) then
7 return (rhl,rh2)
s else
5 return (rvl,rv2)
10: end if

1. end if
Algorithm 2: Function Pre ferredPartition
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5 Experimental Evaluation

All of the experiments are done on a dual core laptop computer (2.33 GHz with total 8 GB of RAM)
running Windows 10. The algorithms are implemented in Java.

5.1 Datasets

We experimented with two Foursquare check-in datasets: NYC and TKY [25]. The former contains
227.428 check-ins in New York City and the latter contains 573.703 check-ins in Tokyo. Each
check-in record contains anonymized user id, venue id, venue category with category name, venue
location (latitude and longitude) and check-in time. The following table gives some statistics from
the datasets.

Dataset || # of users | # of venues | # of venue categories | # of check-ins
(features) (feature types)
NYC 824 38.336 417 227.428
TKY 1.939 61.858 417 573.703

We used the number of check-ins in a venue as the indicator of respective popularity and obtained
the probability distribution P accordingly. Assigning sensitivity function § to features is a subjective
matter. In our scheme, we manually assigned the sensitivity values for each category according to
our sense of location privacy. The sensitivity of the individual features are assigned the sensitivity
value of the respective category.

5.2 Performance metrics

We measure the algorithm’s runtime as an efficiency metric and develop several effectiveness metrics
to measure the quality of the resulting cloaking map. We distinguish between the degenerate regions
CM, and non-degenerate (true cloaking) regions CM,,;. Then, the cloaking map CM is union of CM,
and CM,4, i.e., CM = CM;| JCM,,4. The effectiveness metrics are as follows:

_ Trccm,, Coverage(r)

¢ Cloaking ratio (CR): CR(CM) = S o Coveragel) > Where Coverage(r) is the area of r.
re

* Cloaking region count: It is simply the |CM,4|.

* Mean feature count (MeanFC): MeanFC(CM) = Avg{Nbrfeatures(r) : r € CM,,}, where
Nbrfeatures(r) gives the number of features within r.

* Mean spatial coverage (MeanSC): MeanSC(CM) = Avg{Coverage(r) : r € CM,4}, where
Coverage(r) is the area of r.

* Mean spatial diameter (MeanSD): MeanSD(CM) = Avg{Diameter(r) : r € CM,,}, where
Diameter(r) is the length of r’s diagonal.

5.3 Results

To see how a sample cloaking map visually looks like we give the resulting cloaking maps for
Problem 1 at two extremes of k for rst = 10000m? in Figure 1. The red color shows the degenerated
regions and the other colors show the true cloaking regions.
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£ aporter
7

Figure 1: Cloaking maps due to Problem 1 with rst = 10000m> on NYC

PROBE is the closest proposal to our approach. But PROBE’s location privacy definition is quite
different from all of our six problem definitions. Hence, the experimental comparison is not fair due
to the different problem formulations. Nevertheless, we provided PROBE results in some figures for
reference only, i.e., not for comparison. We used Sensg,, variant of PROBE as it is the only variant
which outputs rectangular cloaking regions. Since PROBE is a bottom-up algorithm it needs a user-
specified gridding. For NYC, we picked 512x512 gridding which ended up roughly 80mx120m size
for each grid cell. For TKY we tried with several gridding ranging from 256x256 to 2048x2048, but
for each case we ended up with a single connected cloaking region covering the extension of the
whole dataset. This is because, the TKY dataset is too dense and our sensitivity levels are relatively
high. Therefore, we are unable to show the reference PROBE results for TKY dataset.

PROBE operates by enlarging cloaking regions by vertically or horizontally in one of four dimen-
sions of North, South, West and East. The stopping criteria is arrived when the cloaking region is
large enough to provide enough sensitivity according the location privacy preference. In all of our
experiments we used the default values (0.5) for its sensitivity arrays. As a result, PROBE perfor-
mances are straight lines as it does not accept k and / as the parameter.

5.3.1 Whereabouts protection (Problem 1 and Problem 2):

The overall effectiveness and efficiency results of the privacy definition given in Problem 1 on NYC
(resp. TKY) are shown in Figure 2 (resp. in Figure 3). The results are provided for three different
rst thresholds of 1000, 10000 and 10000000 m?s. The cloaking ratio increases with increasing k at
all rst values. Indeed this is evident on the maps as shown in Figure 1. The number of cloaking
regions and runtime tend to decrease with increasing k at all rst values. This is mostly because the
algorithm terminates earlier with larger k. All the results agree with the expectation that the larger
the k the more coarse the cloaking regions and hence bigger values for mean metrics as shown in the
sub-figures (d), (e) and (f) of Figures 2 and 3 .

The overall effectiveness and efficiency results of the privacy definition given in Problem 2 on NYC
(resp. TKY) are shown in Figure 4 (resp. in Figure 5). The results are provided for three different
rst thresholds of 1000, 10000 and 10000000 m?s. The cloaking ratio increases with increasing [ at
all rst values. The number of cloaking regions and runtime tend to decrease with increasing [ at
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Figure 3: Performance metrics of Problem 1 on TKY
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Figure 4: Performance metrics of Problem 2 on NYC

all rst values. This is mostly because the algorithm terminates earlier with larger /. All the results
agree with the expectation that the larger the / the more coarse the cloaking regions and hence bigger
values for mean metrics as shown in the sub-figures (d), (e) and (f) of Figures 4 and 5.

Comparing the performance metrics of the resulting cloaking maps shows that the size of the cloak-
ing regions are larger, as expected, with the strong version (Problem 2) in comparison to the results
of the weak version (Problem 1) for both of the datasets. Similarly for both of the problems and for
both of the datasets, bigger rsts result in coarser cloaking regions.

5.3.2 Whatabouts protection (Problem 3 and Problem 4):

The overall effectiveness and efficiency results of the privacy definition given in Problem 3 on NYC
(resp. TKY) are shown in Figure 6 (resp. in Figure 7). The results are provided for three different
rst thresholds of 1000, 10000 and 10000000 m?s. The cloaking ratio decreases with increasing t
at all rst values. The number of cloaking regions and runtime tend to increase with increasing 7 at
all st values. This is mostly because the algorithm terminates earlier with larger 7. All the results
agree with the expectation that larger 7 values result in fine grained cloaking regions, and hence
gives decreasing value trends for mean metrics as shown in the sub-figures (d), (e) and (f) of Figures
6 and 7. We observe similar trends from Figures 8 and 9 for Problem 4 on both of the datasets.

Comparing the performance metrics of the resulting cloaking maps shows that the size of the cloak-
ing regions are larger, as expected, with the strong version (Problem 4) in comparison to the results
of the weak version (Problem 3) for NYC.

5.3.3 Whereabouts+Whatabouts protection (Problem 5 and Problem 6):

The overall effectiveness and efficiency results of the privacy definition given in Problem 5 on NYC
(resp. TKY) are shown in Figure 10 (resp. in Figure 11). The results are provided for the rst threshold
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Figure 6: Performance metrics of Problem 3 on NYC
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Figure 8: Performance metrics of Problem 4 on NYC
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Figure 9: Performance metrics of Problem 4 on TKY

of 10000 m?s. The runtime and the number of cloaking regions tend to increase with decreasing k
and with increasing 7. On the other hand, with increasing k and decreasing T we observe decreasing
trends for other metrics, as shown in the sub-figures (b), (d), (e) and (f) of Figures 10 and 11. We
would like to note that the effect of £ is much more dominant in comparison to 7. We observe similar
trends for Problem 6 on both of the datasets, as shown in Figures 12 and 13.

The experimental results, in essence, show that our framework produces effective cloaking maps
even under the strict location privacy profiles (characterized by higher values of k, higher values
of [ and lower values of 7) for all of the six problem formulations on the two real world datasets.
This can be simply verified by looking at the number of the cloaking regions in the plots. Indeed
even with the strict cases (e.g., k = 40), the number of cloaking regions does not go to 1 (at which
it degenerates to the whole city). In other words, our approach produces cloaking maps that is
useful in practice. We consider that our framework is easily deployable in practice as it provides
the user with six choices of location privacy preservation methods based on the additional available
information and the individual privacy requirements. For instance, being the simplest of all, Problem
1 is very practical to use as it only asks the anonymity level k as the only parameter to be decided.
The experimental results also confirm the utility/privacy tradeoff as with looser privacy requirements
(e.g. k = 10) the cloaking maps contain large number of cloaking regions each with smaller spatial
coverage.

6 Conclusion

As the diversity and trustfulness of LBSs get widespread, each individual needs different location
protection mechanisms and location privacy specification. For this reason, we proposed that users
should be provided with a palette of location privacy specification alternatives addressing various
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needs. As a result we introduced weak and strong notions of whereabouts, whatabouts and where-
abouts+whatabouts protection for LBSs, resulting six different parametric location privacy specifica-
tion alternatives. Fortunately, all of the six respective problem formulations can be solved within the
same framework by exploiting the respective monotonicity properties. The algorithm, implementing
the framework, progresses by a top-down method of space partitioning to obtain a cloaking map.
The first stage of the algorithm, Intra-feature cloaking, is especially useful when spatial coverage
rather than the representative points are available for the features.

We introduced several metrics to evaluate the utility of the resulting cloaking maps. The algorithm
has been evaluated with the six problem formulations on two real world location check-in datasets.
Using the datasets, we are able to obtain customized location privacy profiles with all of the six prob-
lems we proposed. This indeed shows the relevance and applicability of the problem formulations in
the real world. The experimental results show that the algorithm is both effective and efficient with
all of the problem formulations.
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