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Abstract. ϵ-Differential privacy (DP) is a well-known privacy model that offers strong privacy guar-
antees. However, when applied to data releases, DP significantly deteriorates the analytical utility of
the protected outcomes. To keep data utility at reasonable levels, practical applications of DP to data
releases have used weak privacy parameters (large ϵ), which dilute the privacy guarantees of DP.
In this work, we tackle this issue by using an alternative formulation of the DP privacy guarantees,
named ϵ-individual differential privacy (iDP), which causes less data distortion while providing the
same protection as DP to subjects. We enforce iDP in data releases by relying on attribute masking
plus a pre-processing step based on data microaggregation. The goal of this step is to reduce the
sensitivity to record changes, which determines the amount of noise required to enforce iDP (and
DP). Specifically, we propose data microaggregation strategies designed for iDP whose sensitivities
are significantly lower than those used in DP. As a result, we obtain iDP-protected data with signifi-
cantly better utility than with DP. We report on experiments that show how our approach can provide
strong privacy (small ϵ) while yielding protected data that do not significantly degrade the accuracy
of secondary data analysis.
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1 Introduction

Data analysis has become an essential tool in today’s world. Its applications range from
the enhancement of customers’ experience (e.g. via recommender systems) to the support
of strategic decision making (e.g. using data mining), and in general may substantially
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improve human life and human endeavors. However, when using data on people for sec-
ondary purposes, the privacy of the subjects in the data set must be preserved. This is
increasingly important under the new stronger privacy regulations, epitomized by the Eu-
ropean General Data Protection Regulation (GDPR).

Personally identifiable information (PII) should be protected before releasing or sharing
it for analysis. Several approaches are possible: one may release a fixed set of statistics,
offer interactive access to the PII via some query mechanism that provides anonymized
answers, or release an anonymized data set. The latter is the most convenient way for
the data analyst, and the one that we consider in this work [1]. Releasing sufficiently useful
protected data sets gives freedom to the data analyst to carry out unconstrained exploratory
data analyses, data mining tasks or even machine learning at will.

We use the term microdata set to refer to a data set whose records contain detailed infor-
mation about a single subject. Privacy protection in microdata releases is a discipline with
a long history. It was initially developed in the context of official statistics under the name
of Statistical Disclosure Control (SDC) [1]. At that time, the number of data controllers was
limited, and the data were collected under a strong pledge of privacy. This allowed making
reasonable assumptions about the side knowledge available to intruders for them to con-
duct inference attacks leading to disclosure. Such assumptions were very useful to adjust
the SDC methods in view of obtaining adequate disclosure protection. However, with the
development of IT, the landscape changed radically. Nowadays, large amounts of hetero-
geneous personal data are collected by a large number of data controllers [2], public and
private; in this context, making assumptions about the knowledge available to intruders
is quite difficult, and using robust privacy models to protect data releases seems the best
option.

ϵ-Differential privacy [3] (ϵ-DP) is a well-known privacy model whose privacy guarantees
are independent of the side knowledge available to intruders. This makes DP particularly
suitable in the current landscape. However, unlike other privacy models originally de-
veloped for data releases (e.g. k-anonymity [4], l-diversity [5] or t-closeness [6]), DP was
initially designed for interactive settings, in which only the outcomes of queries submitted
to a database held by a trusted party are protected.

More recently, DP has also been used in the more convenient non-interactive setting, in
which the aim is to release anonymized data sets [7, 8, 9, 10, 11] Yet, in such a setting,
DP introduces large distortions in the protected outcomes thereby significantly hampering
their analytical utility. As a result, DP has only being deployed to a limited extent in real-
world applications and, when done, the privacy requirements (ϵ value) have been severely
relaxed in order to keep data reasonably useful [12]. A paradigmatic example is the recent
use of DP by the U.S. Census Bureau to protect the 2020 Decennial Census release [13]. To
retain some utility, they were forced to take ϵ = 39.9 [14] and, even with this large value,
data utility significantly degraded w.r.t. the former Census releases using non-DP data
protection [15]. In this sense, it is well-known that employing ϵ values larger than 1 dilutes
the DP privacy guarantees until the point that DP delivers privacy mostly in name [16].

In order to reconcile data utility with DP-like privacy guarantees, we proposed ϵ-individual
differential privacy [17] (ϵ-iDP), a privacy model that can incur less information loss than
the standard DP, while giving subjects the same privacy protection as DP. The focus of
this work is to design mechanisms to use iDP in data releases and thereby benefit from its
enhanced utility-privacy trade-off.
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Contribution and Plan of This Paper

To take advantage of iDP in data releases, we propose several strategies based on data
microaggregation [18] whose local sensitivities are significantly lower than the global sen-
sitivity required in standard DP. In this way, we enable privacy-preserving data releases
that offer the robust privacy guarantees of DP at the individual level while preserving data
utility significantly better than standard DP.

Due to its definition, the microaggregation-based iDP-protected data we obtain can never
offer less protection than the underlying microaggregation, which hides individuals in a
group. In fact, our work shows that it does much better: our approach allows using the small
values of ϵ recommended in [19] (the only ones that are actually meaningful in DP-like privacy
models) while maintaining analytical utility to an extent that standard DP cannot offer for such
small values.

We validate the above through a set of experiments on several standard data sets, whose
utility is evaluated through general-purpose utility metrics and in machine learning tasks.

The rest of this paper is organized as follows. In Section 2 we give background on DP
and iDP. In Section 3, we review our approach to DP data releases and detail our proposal
to generate iDP data sets through carefully tailored microaggregation strategies. In Sec-
tion 4, we report on the experiments we conducted on several data sets. Section 5 gathers
conclusions and identifies future research lines.

2 From Differential Privacy to Individual Differential Pri-
vacy

Differential privacy [3] stands out because of the strong privacy guarantees it offers. DP
does not make any assumptions about the side knowledge available to the intruders; rather,
disclosure risk limitation is tackled in a relative manner: the result of any analysis should be
similar between data sets that differ in one record. Assuming that each record corresponds
to an individual, the rationale of DP is explained in [20]:

Any given disclosure will be, within a multiplicative factor, just as likely
whether or not the individual participates in the database. As a consequence,
there is a nominally higher risk to the individual in participating, and only nom-
inal gain to be had by concealing or misrepresenting one’s data.

With DP, individuals should not be reluctant to participate in the data set because the risk
of disclosure is only very marginally increased by such participation. Differential privacy
assumes a trusted party that: (i) holds the database, (ii) receives the queries submitted
by the data users, and (iii) responds to them in a privacy-aware manner. The notion of
differential privacy is formalized according to the following definition.

Definition 1 (ϵ-Differential privacy). A randomized function κ gives ϵ-differential privacy
if, for all data sets D1 and D2 that differ in one record (a.k.a. neighbor data sets), and all
S ⊂ Range(κ), we have

Pr(κ(D1) ∈ S)≤ exp(ϵ) Pr(κ(D2) ∈ S).

Safe values for ϵ are 0.01, 0.1 [19]; for larger values, the privacy guarantees of DP tend to
vanish because the DP-protected outcomes may be substantially affected by the presence
or absence of each individual, which increases the disclosure risk [17].
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DP has composability properties, that is, aggregating several differentially private results
still satisfies DP although, sometimes, with a different ϵ.

Theorem 2 (Sequential composition). Let κ1 be a randomized function giving ϵ1-DP and κ2 a
randomized function giving ϵ2-DP. Then, any deterministic function of (κ1, κ2) gives (ϵ1+ ϵ2)-DP.

Theorem 3 (Parallel composition). Let κ1 and κ2 be randomized functions giving ϵ-DP. If κ1

and κ2 are applied to disjoint data sets or subsets of records, any deterministic function of (κ1, κ2)
gives ϵ-DP.

For a numerical query f , ϵ-DP can be attained via noise addition; that is, by adding some
random noise to the actual query result: κ(x) = f(x) +N . The amount of noise that needs
to be added depends on the variability of the query function between neighbor data sets,
that is, on the global sensitivity of the query.

Definition 4 (Global sensitivity). Let f be a function that is evaluated at data sets in D and
returns values in Rk. The global sensitivity of f in D is

∆f = max
D1,D2∈D

d(D1,D2)=1

∥f(D1)− f(D2)∥1 ,

where d(D1, D2) means that data sets D1 and D2 differ in one record.

Even though several noise distributions are possible, the Laplace distribution [3] is the
most commonly employed one.

As mentioned in Section 1, the deployment of DP has been limited in practice, in spite
of its strong privacy guarantees. In fact, those guarantees are only meaningful for very
small ϵ values, but practitioners need to use large, unsafe ϵ values to preserve sufficient
utility. In an attempt to improve the accuracy of the protected data, several relaxations
of DP have been proposed, such as (ϵ, δ)-DP [21], concentrated DP [22], zero-concentrated
DP [23] or Rényi DP [24]. Essentially, these relaxations allow DP guarantees to be broken
either by a small amount or with a small probability. An alternative relaxation of DP is
iDP [17]. The latter is particularly interesting because, unlike the above, it preserves the
privacy guarantees that DP gives to individual subjects for a given ϵ.

Next, we recall the rationale of iDP. When formalizing DP in Definition 1, the trusted party
is not allowed to take advantage of her knowledge about the actual data set to adjust the
level of noise. This leads to the formalization of DP being stricter than required by the
intuition of DP (see quotation above), which results in unnecessary accuracy loss. Let us
explain this in greater detail.

Consider an individual subject I who has to decide between participating in a data set
or not. To neutralize any reluctance by I to disclose her private information, I is told
that query answers based on the data set will not allow anyone to learn anything that
was not learnable without I’s presence; this is precisely the intuitive privacy guarantee DP
offers. To attain such privacy guarantees, DP requires the response to be indistinguishable
between any pair of neighbor data sets. While such a requirement yields the target privacy
guarantees, it is an overkill because the trusted party is not allowed to take advantage of
her knowledge of the data set. In other words, if D is the collected data set, the target
privacy guarantees can be attained by just requiring indistinguishability of the responses
between D and its neighbor data sets. Notice that, although the data set D is not known
until all the individuals have made their decisions about participating/contributing to it, it
is known to the trusted party at the time of query response.
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According to the previous discussion, ϵ-individual differential privacy (ϵ-iDP) is defined
as follows.

Definition 5 (ϵ-Individual differential privacy [17]). Given a data set D, a response mech-
anism κ(·) satisfies ϵ-individual differential privacy (or ϵ-iDP) if, for any neighbor data set
D′ of D, and any S ⊂ Range(κ) we have

exp(−ϵ) Pr(κ(D′) ∈ S) ≤ Pr(κ(D) ∈ S)
≤ exp(ϵ) Pr(κ(D′) ∈ S).

In line with Definition 1, iDP requires the probability of any result to differ between neigh-
bor data sets at most by a factor exp(ϵ). However, unlike in Definition 1, the role of the data
sets D and D′ is not exchangeable: D refers to the actual data set, and D′ to a neighbor
data set of D. The asymmetry between D and D′ is relevant, because indistinguishability
is achieved only between D and its neighbor data sets. As a side effect of this asymmetry,
we need to explicitly enforce an upper bound (Pr(κ(D) ∈ S)≤ exp(ϵ) Pr(κ(D′) ∈ S)) and
a lower bound (exp(−ϵ) Pr(κ(D′) ∈ S)) ≤ Pr(κ(D) ∈ S)). This was not needed in Defi-
nition 1 because the upper bound could be obtained from the lower bound by exchanging
the roles of D and D′.

This difference has an important and beneficial practical consequence. Unlike DP, which
requires calibrating the added noise to the global sensitivity (that is, to the greatest change
between any pair of neighbor data sets), iDP can be attained by calibrating noise to local
sensitivity (which is normally much lower).

Definition 6 (Local sensitivity [25]). The local sensitivity of a query function f at a data set
D is

LSf (D) = max
y:d(y,D)=1

∥f(y)− f(D)∥1 ,

where d(y,D) means that data set y differs from D in one record.

The following result is proven in [17].

Proposition 7. Let f be a query function that takes values in Rk. The mechanism κ(x) = f(x) +
(N1, . . . , Nk), where Ni are independent identically distributed Laplace(0, LSf (D)/ϵ) random
noises, gives ϵ-iDP.

3 iDP Data Sets via Individual Ranking Microaggregation

Even though the natural application of DP and iDP is the interactive setting, both can be
used to generate protected data sets via data masking. In the following, we first discuss
how this can be achieved for standard DP, and then we tailor masking to reap the utility-
preserving advantages of iDP.

3.1 DP Data Sets

For years, the usual approach to generate DP data sets was based on computing DP his-
tograms [8, 7]; that is, on approximating the data distribution by partitioning the data do-
main and counting the number of records in each partition set in a DP manner. However,
histogram-based approaches have severe limitations when the number of attributes grows:
for a fixed granularity in each attribute, the number of histogram bins grows exponentially
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D D̄
A1 . . . Am A1 . . . Am

I1 x1
1 . . . xm

1 c1ρ1(I1)
. . . cmρm(I1)

I2 x1
2 . . . xm

2 → c1ρ1(I2)
. . . cmρm(I2)

...
...

...
...

...
In x1

n . . . xm
n c1ρ1(In)

. . . cmρm(In)

Figure 1: Generation of D̄ via univariate microaggregation of each attribute in D

with the number of attributes, which has a devastating effect on both computational cost
and accuracy. To mitigate these issues, an alternative approach has been proposed that is
based on masking attribute values of the records in the original data set [9, 10]. In order to
reduce the sensitivity to record changes (which is the factor that basically determines the
noise needed to attain DP and hence the utility damage incurred), this approach applies a
microaggregation step before masking.

Let D be the collected data set. Assume that one wants to generate Dϵ –an anonymiz-
ed version of D– that satisfies ϵ-DP. Let Ir(D) be the query that returns r. Then, one can
think of the data set D as the collected answers to the queries Ir(D) for r ∈ D, and one
can generate Dϵ by collecting ϵ-DP responses to the previous queries. However, since the
purpose of DP is to make sure that individual records do not have any significant effect
on query responses, the amount of noise that should be added to the responses of Ir(D) to
fulfill DP is necessarily high, which severely deteriorates the accuracy of Dϵ.

To make masking a viable option for generating DP data sets, the sensitivity of individual
records needs to be reduced. This was attained in [10, 26] for standard DP by adding a
microaggregation step before the actual DP data set generation. Even though microaggre-
gation was initially proposed as an anonymization technique in its own right [18], in this
work we will use it as a means to reduce the sensitivity of the queries.

Microaggregation proceeds in two steps:

1. Split the data set into clusters of similar records of cardinality greater than or equal to
k (a given parameter).

2. Compute a representative record of each cluster and replace each record in the cluster
by a copy of the representative.

In Figure 1 we describe the generation of a microaggregated data set D̄ via univariate
microaggregation of each attribute in D. Let D contain data about attributes A1, . . . , Am, for
individuals I1, . . . , In. To microaggregate attribute Aa, we cluster records by their similarity
w.r.t. attribute Aa, compute the centroid for Aa of each cluster, and replace the original
values in Aa by the corresponding centroid. Formally, let Ca = {Ca

j }j be the clustering
associated with attribute Aa, let caj be the centroid associated with cluster Ca

j , and let ρa(Ii)
be the index of the centroid associated with individual Ii. We replace xa

i (the value of
attribute Aa for individual Ii) by the corresponding centroid caρa(Ii)

.
Once the microaggregated data set D̄ has been created, we generate D̄ϵ, a DP version of
D̄, through the process depicted in Figure 2.

• We work independently with each attribute Aa to make it ϵa-DP, where ϵa is the share
of the privacy budget assigned to attribute Aa. Afterwards, we combine all the DP
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D̄ D̄ϵ

A1 . . . Am A1 . . . Am

I1 c1ρ1(I1)
. . . c1ρm(I1)

c1ρ1(I1)
+ n1

ρ1(I1)
. . . cmρm(I1)

+ nm
ρm(I1)

I2 c1ρ1(I2)
. . . c1ρm(I2)

→ c1ρ1(I2)
+ n1

ρ1(I2)
. . . cmρm(I2)

+ nm
ρm(I2)

...
...

...
...

...
In c1ρ1(In)

. . . c1ρm(In)
c1ρ1(In)

+ n1
ρ1(In)

. . . cmρm(In)
+ nm

ρm(In)

where na
j is drawn from Laplace(0,∆caj /ϵa)

Figure 2: Generation of D̄ϵ by masking the centroids with the appropriate amount of noise

attributes to generate the ϵ-DP data set. By sequential composition (see Theorem 3),
the overall privacy budget must be split among each of the attributes: ϵ =

∑
ϵa.

• In the generation of the ϵa-DP attributes, parallel composition applies (see Theorem 2)
because each centroid depends on a disjoint set of individuals (records). Thus, we
can use the entire privacy budget assigned to attribute Aa, ϵa, to mask each of the
centroids associated with Aa. This is done by masking each centroid caj (e.g., via
Laplace noise) according to its global sensitivity (∆caj ) and privacy budget ϵa.

The global sensitivity of a centroid is the maximum change in the centroid value that
can ensue from a change in one of the records in the cluster. Since the sensitivity of the
centroids is smaller than the sensitivity of the original records, making D̄ differentially pri-
vate requires less noise than making D differentially private. Loosely speaking, centroids
are less sensitive than individual records because the former are an aggregation of several
records. Counterintuitively, even though the prior microaggregation step distorts data to
some extent, by starting from the microaggregated data set rather than the original data set,
we manage to obtain a DP data set that preserves substantially more utility for a given ϵ, as
shown in [10]. This is so because the noise reduction enabled by the prior microaggregation
(due to cluster centroids being less sensitive than individual records), more than compen-
sates the information loss introduced by such microaggregation; specifically, whereas noise
is random, microaggregation can exploit the underlying structure of data.

Algorithm 1 formalizes the process described in Figures 1 and 2. The algorithm receives
the original data set, the privacy budget assigned to each attribute and the microaggrega-
tion algorithm associated with each attribute. For each attribute, we run the microaggrega-
tion (line 08), compute the global sensitivity of the centroids (line 10), draw the noise from
the Laplace distribution (line 11), and mask each occurrence of the centroid (line 12). The
algorithm receives the microaggregation algorithms as a parameter. As discussed in [10],
a sensible choice is to use individual-ranking microaggregation (form clusters containing
consecutive values of the attribute) and compute the centroid as the arithmetic mean of the
values in the cluster:

caj =
1

|Ca
j |

∑
x∈Ca

j

x.

In this case, the global sensitivity of a centroid equals the size of the attribute domain over
the size of the associated cluster:

∆caj =
maxAa −minAa

|Ca
j |

,
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Algorithm 1 ϵ-DP data set generation via univariate microaggregation and Laplace noise
addition
01 Require:
02 D : data set with attributes A1, . . . , Am

03 ϵa : privacy budget assigned to Aa (with ϵ =
∑

ϵa)
04 Ma: univariate microaggregation algorithm over attribute Aa

05 Output:
06 D̄ϵ: ϵ-DP data set

07 for a = 1 to m
08 let (Ca

j , c
a
j )j = the clusters and centroids produced by applying Ma to Aa

09 for each Ca
j

10 let ∆caj be the global sensitivity of cluster caj
11 let na

j be a draw from a Laplace(0,∆caj /ϵa) distribution
12 Replace each caj ∈ Ca

j by caj + na
j

13 end for
14 end for
15 return D

where maxAa is the maximum of the domain of Aa, and minAa is the minimum of the
domain of Aa.

3.2 iDP Data Sets

To enforce DP, the proposal described in Algorithm 1 needs to use the global sensitivity
of the attributes. Unfortunately, global sensitivities can be very large, especially when at-
tributes have domains that are much larger than their actual value ranges in the original
data set. This results in much noise being added, which severely damages the accuracy of
the generated data set. Also, it may be difficult to bound the domain of some attributes
(what is the upper bound of an attribute such as income?) or it may be thoroughly im-
possible (if the attribute is naturally unbounded). In such cases, attribute domains should
be artificially limited to reasonably large bounds, which will also significantly increase the
global sensitivity. These issues are the result of mechanisms enforcing DP not being al-
lowed to leverage the knowledge of D, due to the strict formulation of DP (see Section 2).

In the following, we face these issues with a proposal to generate iDP data sets. Under iDP,
individual subjects are given the same privacy guarantees as under DP (i.e., the presence
or absence of any single subject’s data does not have a significant effect on the protected
data set), but the accuracy of the iDP data set is better because local sensitivities are used
rather than global ones. One significant distinction between DP and iDP is that the latter
permits the trusted party to leverage its understanding of the actual data set to calibrate
the noise addition. Consequently, by evaluating the data set’s characteristics, such as size
and attribute distribution, trusted parties can implement privacy mechanisms that uphold
individual privacy while enhancing the utility of the data.

First, we describe a naive adaptation of the approach described above for DP to iDP: the
global sensitivity is merely replaced by the local sensitivity. Then, we take several steps to
use the knowledge of D and to further reduce the sensitivity. This is done by introducing a
pre-processing step that alters the data set before microaggregation.
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3.2.1 iDP Data Sets Using Local Sensitivity

By using iDP, we can adjust the noise to the local sensitivity of the attributes rather than to
their global sensitivity:

• The local sensitivity of an attribute centroid is the maximum change in the centroid
value that can occur when switching from D to a neighbor data set. In other words, it
is the maximum change of the centroid value that can result from a change in one of
the records in D. In the worst case, we may change the smallest record in the cluster
w.r.t. attribute A to maxA (the maximum value of A’s domain), or change the largest
record in the cluster to minA (the minimum value of A’s domain).

• On the other hand, the global sensitivity of a centroid is the maximum of the local
sensitivity across all pairs of neighbor data sets. Thus, in general, the global sensi-
tivity is greater than the local sensitivity. They are equal only if the original data set
is one in which the distance between the smallest (largest) record to maxA (minA)
equals the distance between maxA and minA.

The first mechanism we propose is an adaptation of Algorithm 1 to iDP: we merely replace
the global sensitivity (∆caj ) by the local sensitivity at D̄, which is computed for each cluster
centroid (LScaj

(D̄)). Notice that, since each centroid is computed on a disjoint set of records,
by parallel composition we can work with each centroid independently. More specifically,
the changes to Algorithm 1 are:

• At line 10, we compute LScaj
(D̄), the local sensitivity of the centroid caj at D̄.

• At line 11, we draw the noise na
j from a Laplace(0, LScaj

(D̄)/ϵa) distribution.

To compute LScaj
(D̄), we need to fix the way in which attribute centroids are computed.

The following proposition gives the expression for the local sensitivity of a centroid when
the centroid is computed as the arithmetic mean of the attribute values in the cluster.

Proposition 8. Let Ca = {Ca
1 , . . . , C

a
p} be a clustering of records created w.r.t. the values of

attribute Aa. Let caj = 1
|Ca

j |
∑

x∈Ca
j
xa , for j = 1, . . . , p, be the centroid associated with cluster

Ca
j , where xa is the value of record x for attribute Aa. The local sensitivity for each centroid,

LScaj
(D̄), is

max{maxAa −minx∈Ca
j
xa, maxx∈Ca

j
xa −minAa}

|Ca
j |

where maxAa and minAa are, respectively, the maximum and the minimum of the domain of Aa.

Proof. The local sensitivity of caj measures the greatest change in caj that can occur as a
consequence of a change in one of the records in Ca

j . Since the centroid is computed as
the arithmetic mean of the values of attribute Aa for all records in the cluster, the largest
change in caj happens when the change in the record for such attribute is greatest.

Specifically, the maximum change in a record x ∈ Ca
j is reached when changing the record

value xa by one of the extremes of the domain: either maxAa or minAa. Thus, we can
express the local sensitivity as

LScaj
(D̄) =

maxx∈Ca
j
{maxAa − xa, xa −minAa}

|Ca
j |

,
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which is equivalent to

max{maxAa −minx∈Ca
j
xa, maxx∈Ca

j
xa −minAa}

|Ca
j |

.

□

3.2.2 iDP Data Sets Using Cluster-based Local Sensitivity

As discussed in Section 3, to compute the global and local sensitivities we need the do-
mains of attributes to be bounded. However, for some attributes (e.g., income), there may
not be a natural limit and we may need to artificially bound the attributes to apply the al-
gorithm. Bounding the attribute domain to the maximum and minimum values in the data
set is problematic, because those maximum and minimum values correspond to specific
individuals and DP is designed precisely to hide information about any individual. Alter-
natively, we can fix the bounds in a way that is independent from the actual data set. How-
ever, if we fix the bounds without taking the original data set into account, the empirical
distribution of the data set is likely to be more compact than the data-independent bounds.
This problem also arises with attribute domains that are bounded but include a few outliers
within their bounds. In either case, we will get local sensitivities much larger than the ones
that correspond to the actual data, which leads to adding much noise and hence to poor
accuracy. Notice that the approach proposed in the previous section to generate iDP data
sets may also have the same outlier-related issues, because it uses the attribute bounds to
compute the local sensitivity (see Proposition 8).

In this section we tackle these problems and improve the generation of iDP data sets
by making the local sensitivity of a centroid depend only on the values within the cor-
responding cluster. This has two important advantages: (i) we avoid the shortcoming of
unbounded attributes, and (ii) we reduce the local sensitivity (and thus the amount of noise
required) when the attribute values in the cluster do not span the entire domain.

To make the local sensitivity of a centroid depend only on the values of the associated
cluster, we apply the following pre-processing to the data set before using the method
described in Section 3.2.1. For each attribute Aa and cluster Ca

j , we select one individual
among those with the smallest value for Aa in Ca

j and replace its value by the second small-
est value of Aa in Ca

j ; similarly, we select one individual among those with the largest value
for Aa in Ca

j and replace its value by the second largest value of Aa in Ca
j . It is important to

note that our definition of second smallest (second largest) does not necessarily imply that
it is a different value from the smallest (largest); if there are two or more individuals that
have the smallest (largest) value, then the second smallest (largest) value is the same as the
smallest (largest) value. For example in a cluster {3, 3, 3, 4, 5, 6, 6}, we take 3 as the second
smallest value (rather than 4) and we take 6 as the second smallest value (rather than 5).
More formally, the proposed replacements are:

• Let Imina
j
= argminIi∈Ca

j
{xa

i } be one individual with the smallest value for Aa in Ca
j ,

and let Imin
′a
j

= argminIi∈Ca
j \Imina

j
{xa

i } be one individual with the second smallest
value in Ca

j . We replace the value of Imina
j

for Aa by the value of Imin
′a
j

, that is,
xa
mina

j
= xa

min
′a
j

.

• Let Imaxa
j
= argmaxIi∈Ca

j
{xa

i } be one individual with the largest value for Aa in Ca
j ,

and let Imax
′a
j

= argmaxIi∈Ca
j \Imaxa

j
{xa

i } be one individual with the second largest
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value in Ca
j . We replace the value of Imaxa

j
for Aa by the value of Imax

′a
j

, that is,
xa
maxa

j
= xa

max
′a
j

.

Let us call D′ the data set that results from applying this pre-processing step to D. The
purpose of the pre-processing is to make sure that modification of a single record of D
keeps the values of cluster Ca

j in D′ within the range [xa
mina

j
, xa

maxa
j
]. Indeed, if we modify

a record to a value smaller than xa
mina

j
, resp. larger than xa

maxa
j

(which causes the modified
value to become the smallest, resp. the largest value in Ca

j ) the pre-processing step will
automatically replace the modified value by xa

mina
j
, resp. xa

maxa
j

(that is, the former smallest
value, resp. largest value, which is now the second smallest value, resp. second largest
value).

Composing the pre-processing step with the microaggregation can be viewed as an al-
ternative microaggregation algorithm, which we expect to be substantially less sensitive
to changes of the records in D. To attain iDP we need to adjust the noise to the sensitiv-
ity of this alternative microaggregation algorithm. Such a sensitivity is computed in the
following proposition.

Proposition 9. Let Ca = {Ca
1 , . . . , C

a
p} be a clustering of records created w.r.t. the values of

attribute Aa and assume each cluster contains at least three values (not necessarily different). Let
P a = {P a

1 , . . . , P
a
p } be the clustering that results from replacing the largest and the smallest values

of attribute Aa in each cluster by the second largest and the second smallest value in the cluster
(that is, the clusters that result from applying the previously described pre-processing step to Ca).
Let paj = 1

|Pa
j |

∑
x∈Pa

j
xa , for j = 1, . . . , p, be the centroid associated with cluster P a

j , where xa is

the value of the record x for the attribute Aa. The local sensitivity for each centroid, LSpa
j
(D̄), is

max{|xmaxa
j
− xmin

′a
j
|+ |xmin

′′a
j

− xmin
′a
j
|+ |xmaxa

j
− xmax

′a
j
|,

|xmina
j
− xmax

′a
j
|+ |xmax

′′a
j

− xmax
′a
j
|+ |xmina

j
− xmin

′a
j
|} (1)

divided by |P a
j |, where xmin

′′a
j

and xmax
′′a
j

are, respectively, the third smallest and the third largest
values in the cluster.

Proof. Let us assume the maximum possible change of a record. This occurs when the
smallest value becomes greater than the largest value so far, or when the largest value
becomes smaller than the smallest value so far. Let us begin with the first case.

Assume xmina
j

changes to a value greater than the largest value xmaxa
j
. Initially, the pre-

processed value was xmin
′a
j

and it becomes xmaxa
j

after the change (as xmaxa
j

is the second
largest value of the cluster in the modified data set). Additionally, after pre-processing,
the former second smallest value xmin

′a
j

is changed to the third smallest value xmin
′′a
j

and
xmax

′a
j

becomes xmaxa
j
. Hence, the change in the sum of pre-processed cluster values is

|xmaxa
j
− xmin

′a
j
|+ |xmin

′′a
j

− xmin
′a
j
|+ |xmaxa

j
− xmax

′a
j
|. (2)

Symmetrically, if xmaxa
j

changes to a value less than the smallest value xmina
j
, the change

in the sum of pre-processed cluster values is

|xmina
j
− xmax

′a
j
|+ |xmax

′′a
j

− xmax
′a
j
|+ |xmina

j
− xmin

′a
j
|. (3)

Let us now consider changes in the second smallest or second largest values, which are
also relevant for the range of the pre-processed cluster. If the second smallest record
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changes maximally, that is, becomes greater than the largest value so far, the pre-processed
cluster will have values in the range [xmin

′′a
j
, xmaxa

j
]. Hence, the change in the sum of

pre-processed cluster values is the same as in Expression (2). Symmetrically, if the second
largest value changes maximally, the change in the sum of values is the same as in Expres-
sion (3).

Thus, the maximum change in the sum of pre-processed cluster values is the maximum of
Expressions (2) and (3). To obtain the sensitivity, we must divide by the cardinality |P a

j | of
the cluster. This concludes the proof. □

In this way, if we add the pre-processing step to the approach proposed in Section 3.2.1,
the local sensitivity of each centroid can be computed from the values in the corresponding
cluster. Hence, we do not need the attributes to be bounded and we obtain smaller local
sensitivities –because the cluster value range is usually narrower than the domain value
range–.

By using the approach described in Section 3.2.1 on the pre-processed data set (D′) and
computing the local sensitivity as specified in Expression (1), we generate an ϵ-iDP data
set.

4 Experimental Evaluation

This section reports the empirical evaluation of the two microaggregation strategies we
propose for generating iDP data sets. Two well-known data sets have been used as evalu-
ation data:

• Census: This is a test data set extracted from the U.S. Census Bureau 1995 Current
Population Survey [27]. It contains 1,080 records with numerical attributes and it has
been widely used for evaluating privacy-preserving methods [9, 10, 28]. The follow-
ing (unbounded) attributes about finance and taxes have been used in our experi-
ments: AFNLWGT, AGI, EMCONTRB, FEDTAX, STATETAX, TAXINC, POTHVAL,
INTVAL, and FICA.

• Wine Quality: This is a double data set for classification/regression tasks found in
UCI [29]. There is a data set related to red wines and another related to white wines.
We used the white wine data set, which contains significantly more instances than
the red wine data set (4,898 vs. 1,600). Attributes are discrete or numerical, and they
describe physicochemical properties of wine.

All the attributes of the two data sets we used represent non-negative numerical magni-
tudes and most of them are unbounded. To compute the (global and local) sensitivities, we
fixed the attribute domains as

[0, . . . , (α×max_attr._value_in_dataset)],

and took α ∈ {1.5, 3.0}. By varying α we tested the influence of the size of the attribute
domains on the sensitivity that applies for each method. Since the Laplace distribution
takes values in the range (−∞,+∞), for consistency we bounded noise-added outputs to
the domain ranges defined above.

Two well-differentiated evaluation experiments were carried out. In the first one, we mea-
sured the information loss incurred by our methods w.r.t. that of standard DP with general
metrics. In the second experiment, we assessed the utility retained by the masked data
produced by our methods when employed in machine learning tasks.
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4.1 Information Loss Evaluation

Information loss refers to the difference between the masked and the original data, that is,
to the harm inflicted by masking to the analytical accuracy of the original data. The Sum of
Squared Errors (SSE) is a standard measure of information loss [1], and it is defined as the
sum of squares of distances between original and masked records:

SSE =
∑

dist(ri, (ri)
′)2, (4)

where ri is the i-th record in the original data set and (ri)
′ represents its masked version.

The mean SSE, calculated by dividing the SSE by the number of records n, is usually more
informative because it does not depend on the cardinality of the data set.

To compute SSE, we need a distance between records:

d((x1, ..., xm), (y1, ..., ym)) =

= (1/m)
√

(d1(x1, y1)/σ2
1)

2 + . . .+ (dm(xm, ym)/σ2
m)2, (5)

where dj(·, ·) is the distance between values of the j-th attribute, σ2
j is the sample variance

of the j-th attribute in the original data set and m is the number of attributes.
For differential privacy, we have considered ϵ values 0.01, 0.1 and 1.0, which cover the

range of reasonably safe values [19]. In all the DP/iDP methods discussed/proposed in
this paper, the sensitivity of the centroids obtained after the microaggregation step depends
on the parameter k that establishes the minimum number of records in each cluster; that
is, it defines the cardinality |C| of the cluster associated with the centroid. In order to
evaluate the influence of the microaggregation step, and considering the cardinality of the
Census and Wine Quality data sets, we have taken parameter k between 3 and 100 for the
former data set and between 3 and 400 for the latter; notice that k = 3 is the minimum
microaggregation level supported by the method using cluster-based local sensitivity.

To put in context the results obtained with our methods –iDP using microaggregation and
local sensitivity (iDP-LS) and iDP using microaggregation and cluster-based local sensitiv-
ity (iDP-CBLS)–, we compared them with the following alternatives:

• Plain Laplace noise addition for ϵ-differential privacy (DP) with no prior microaggre-
gation, as described in Section 2. This is the naive mechanism to produce differen-
tially private data sets. We used it as an upper bound for the information loss.

• Differential privacy using univariate microaggregation (DP-UM), as described in Sec-
tion 3.1. This mechanism uses the prior microaggregation step to reduce the sensitiv-
ity, even though the noise applied to the centroids needs to be adjusted to the global
sensitivity.

For each data set, each above-mentioned method and each method parameterization (in
terms of α, k and ϵ values), we made 10 runs and computed the mean SSE over them. The
result is depicted in Figures 3 and 4. Notice that the plain Laplace noise addition method
(DP) is displayed as a horizontal line, because it entails no microaggregation and is hence
independent of k. Also, since SSE values are quite diverse among the different methods, a
log10 scale has been used in the ordinates.

The results obtained for the two data sets show that:
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Figure 3: Census data set: mean SSE for the proposed methods (iDP-LS and iDP-CBLS) and
baselines (DP-UM and DP) with ϵ = 0.01 (top), ϵ = 0.1 (center) and ϵ = 1.0 (bottom), and
α ∈ {1.5, 3.0}, for microaggregation parameter k from 3 to 100
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Figure 4: Wine Quality data set: mean SSE for the proposed methods (iDP-LS and iDP-
CBLS) and baselines (DP-UM and DP) with ϵ = 0.01 (top), ϵ = 0.1 (center) and ϵ = 1.0
(bottom), and α ∈ {1.5, 3.0}, for microaggregation parameter k from 3 to 400
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• Plain Laplace noise addition (DP), with no prior microaggregation, results in the
highest SSE due to the large global sensitivity. In fact, SSE barely decreases when
moving from ϵ = 0.01 to ϵ = 1.0 and, thus, we may consider the masked data nearly
random in all cases.

• Both DP-UM and iDP-LS yield similar results, with SSE decreasing as the microaggre-
gation level (k) increases. This shows the benefits of the prior microaggregation step
to reduce the sensitivity. iDP-LS achieves lower SSE thanks to its ability to use the lo-
cal sensitivity instead of the global sensitivity employed by DP-UM. The differences
between the two methods are larger for higher values of ϵ, but stay proportional when
varying the boundaries of the attribute domains (α). In this respect, even though iDP-
LS uses the local sensitivity, it still depends on the domain boundaries, as stated in
Proposition 8.

• For the three previous methods, SSE values decrease as the attribute domains get
smaller (smaller α). This illustrates that large (or even unbounded) domains severely
deteriorate the utility of the masked data when using the straightforward approach
to generate differentially private data sets.

• Our most sophisticated strategy (iDP-CBLS) is able to improve the accuracy of the
previous methods by several orders of magnitude. In fact, its SSE for ϵ = 0.01 is sim-
ilar to the ones of DP-UM and iDP-LS for ϵ = 1.0 and large k, which shows that iDP-
CBLS can accommodate stronger privacy requirements (smaller ϵ). Moreover, since
the sensitivity calculation is based on clusters rather than on attribute domains (see
Proposition 9), it is not affected by (large) domains. Also, unlike the former methods,
iDP-CBLS requires very small microaggregation levels (k among 5-15) to obtain op-
timal results. Larger microaggregation levels produce a small SSE increase because
the distortion caused by microaggregation is greater (for large k) than the benefits
resulting from reducing the sensitivity (the cluster-based sensitivity is already quite
small).

4.2 Evaluation in Data Classification

The second set of experiments aims at evaluating the utility retained by the masked out-
comes in a specific machine learning task, namely data classification. This scenario is es-
pecially relevant because DP has also been adopted as the de facto standard for privacy
protection in machine learning and, like in data releases, researchers struggle to reconcile
meaningful DP guarantees with usable model accuracy [30].

We built a classification model using masked training data, and we compared its classifi-
cation accuracy with that of a model built on original training data. The same original data
were used in both cases as evaluation data to measure the classification accuracy. For both
the Census and the Wine Quality data sets, we used the first 66% of (masked, resp. original)
records for training and the rest of (original) records for evaluation. As in the former ex-
periments, we report here the average result of 10 runs for the same parameter values (ϵ, k
and α) and for the two methods we propose: iDP-LS and iDP-CBLS.

The classifier we chose is Random Forest, which is fast and easy to implement, produces
highly accurate predictions and can handle a very large number of input variables without
overfitting [31].

To measure the classification accuracy, we focused on the F-measure of the class attribute,
which is the harmonic mean between precision and recall.
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4.2.1 Census data set

Since Census is a general purpose data set (not specifically aimed at classification), we had
to adopt ERNVAL (business or farm net earnings in the year of reference) as class attribute
by categorizing it into “≤30K” and “>30K” if the balance is less/equal than 30,000 and
greater than 30,000, respectively. Thus, the classification objective is to predict whether an
individual obtains earnings below or above 30,000.

Fig. 5 depicts the F-measure for both classes with original training data and with the
masked training data produced by our methods for the different parameters. In general,
the results are coherent with the SSE figures reported above. On the one hand, the results of
iDP-LS improve proportionally to the microaggregation level k and are better for narrower
attribute domains (which result in a smaller sensitivity) with ϵ > 0.01. For such values of
ϵ, F-measures remain quite stable from k = 50 onwards, and the best results are around
20%, 10% and 5% worse for ϵ = 0.01, ϵ = 0.1 and ϵ = 1.0, respectively, than the upper
bound defined by the original training data. On the other hand, iDP-CBLS provides much
better results, that for ϵ = 1.0 are identical to the upper bound, and for ϵ = 0.1 and ϵ = 0.01
only 3% and 10% worse, respectively. In this scenario, the utility retained by iDP-CBLS for
ϵ = 0.01 is similar to that of iDP-LS for ϵ = 0.1. As we also observed in the former exper-
iments, F-measures for iDP-CBLS degrade for large k because the distortion added by the
microaggregation step becomes comparatively larger than the reduction of sensitivity (and
thus than the reduction of the noise, which is already very small).

4.2.2 Wine Quality data set

In the Wine Quality data set, the class attribute is QUALITY, ranging from 0 to 10, where 0
is the worst quality score and 10 the best. To simplify the classification, we considered two
classes: “Not Excellent” and “Excellent”, which correspond to QUALITY values ≤ 6 or > 6
respectively.

Fig. 6 depicts the F-measures for these two classes with the same methods and parameters
as above. The tendencies observed in the results are similar to those for Census, but with
some differences. On the one hand, the F-measures for the two classes are significantly
different because the classes are unbalanced: “Not Excellent” has 3.5 times more records
than “Excellent”; thus, the latter class is more difficult to classify due to the smaller amount
of training data, and results in lower F-measures. On the other hand, iDP-CBLS for ϵ = 0.1
and ϵ = 1.0 was able not only to reach the upper bound, but also to slightly improve it
for some values of k. This phenomenon can be explained by the fact that adding a small
amount of noise to the training data, as is the case for iDP-CBLS, may improve the classi-
fication accuracy as long as the distribution of the data remains similar [32]. Thus, we can
observe that iDP-CBLS was not only able to maintain a low SSE, but the (small) noise it
added had even a positive effect on data classification in some cases.

5 Conclusions and Future Research

The strong privacy guarantees of DP only hold for small values of ϵ, which usually re-
sult in limited data accuracy in non-interactive settings, such as data releases and machine
learning [12].

To tackle this problem, in this paper we have leveraged the (potential) advantages of iDP
regarding data utility with the sensitivity (and noise) reduction enabled by microaggregation-
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Figure 5: Census data set: F-measures for classes “≤30K” (left) and “>30K” (right) with
original training data and masked training data for different parameters
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Figure 6: Wine Quality data set: F-measures for classes “Excellent” (left) and “Not Excel-
lent” (right) with original training data and masked training data for different parameters
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based DP masking. Two microaggregation strategies have been proposed, of which the sec-
ond (that computes the local sensitivity based on clusters) is the one that brings the greatest
utility benefits. In fact, with iDP-CBLS we were able to improve the utility of the masked
outcomes for a given ϵ by several orders of magnitude in comparison with plain DP data
sets. As shown in the experiments, for a given ϵ, the utility preserved by iDP-CBLS rivals
the one preserved by DP data sets with 10-100 times larger ϵ values. Therefore, our method
is able to reconcile the small values of ϵ (say ϵ < 0.1) that are needed for DP to offer real
privacy, with the data accuracy that is needed for data releases to be useful. Also, for larger
ϵ values, iDP-CBLS was not only able to keep the noise low, but also to reach the accuracy
upper bound for classification tasks (corresponding to the case in which original data are
used for training). These results are significantly better than those obtained when applying
standard DP in machine learning tasks, even with much larger ϵ [30].

As future work, we plan to design iDP-enforcing mechanisms (other than noise addition)
for non-numerical discrete attributes, which are commonly found in microdata sets. We
also plan to explore the use of multivariate microaggregation instead of individual-ranking
microaggregation. Although multivariate microaggregation might cause more information
loss, it might also guarantee that the protection offered by iDP-CBLS can be no less than
the one offered by k-anonymity, no matter the value of ϵ chosen.
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