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Abstract. Privacy regulations require that images depicting humans be anonymized before they are
publicly released or shared for secondary use. However, current image anonymization methods sig-
nificantly degrade the analytical utility of protected images. This paper addresses the challenge of
balancing privacy protection and utility preservation in image anonymization. We propose a general
disclosure risk-aware anonymization framework that leverages explainability techniques to target
identity-revealing features in images. Contrary to conventional methods, which uniformly perturb
all image pixels, our proposal focuses on perturbing the pixels that contribute most to disclosure.
Moreover, pixel perturbation is enforced incrementally and it is driven by the observed residual risk.
Our framework is not tied to a specific pixel perturbation mechanism, and is versatile enough to sup-
port a wide variety of techniques, including blurring, pixelation, noise addition and pixel masking.
Empirical results show that even with the simplest perturbation techniques, our approach signifi-
cantly improves the privacy/utility trade-off compared to conventional and advanced state-of-the-art
methods.
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1 Introduction

In today’s ubiquitous world of high-resolution mobile devices, people easily share personal
images on social networks. Instagram alone witnessed the posting of more than 1,100 im-
ages every second in 2022 [13]. In particular, images with human faces are prevalent be-
cause they are 38% more likely to attract engagement on social networks [1].

However, when an image depicts a human being, it poses privacy risks due to the identify-
ing features of human faces [28]. Facial recognition (FR) methods leverage these features to
create a distinctive identifier for re-identification, and this has privacy implications. Specif-
ically, when an image is successfully linked to a real identity, the image content can be
leveraged to infer sensitive information [42], such as personal preferences, habits, politi-
cal affiliations, or health conditions. Moreover, aggregating extracted data from multiple
re-identified images can lead to invasive profiling, which can be exploited for various pur-
poses, including harassment and surveillance [29]. To forestall these privacy threats, image
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anonymization methods are used to remove or obfuscate the re-identificative features in
the images [27].

On the other hand, face images are very useful for research, including emotion recognition
or biometric research [4, 34, 14, 17, 41]. Most of these applications do not actually require
re-identifiable images, but they need (privacy-protected) source images that retain enough
analytical utility [16]. Preventing re-identification while retaining as much utility as possible
is therefore the ultimate goal of image anonymization methods.

The most widely used image anonymization methods in real applications are blurring
and pixelation [26, 45]. Differential privacy-based pixelation and blurring also add noise,
which is bounded by a specific distribution [11]. A common feature of all these methods is
that they apply a uniform distortion to all the pixels in the image. However, several studies
have concluded that both humans and algorithms focus on specific facial features for re-
identification, such as the eyes and forehead [6, 18, 44]. Hence, blindly and uniformly
distorting all image pixels unnecessarily degrades the utility of the anonymized images.
Even if some methods focus on masking specific facial features such as eyes or mouth [37],
they still enforce a fixed masking criterion (e.g., all pixels in the targeted areas are blacked
out) and, therefore, result in a suboptimal privacy/utility balance.

This paper presents a novel image anonymization framework whose balance between
privacy protection and utility preservation is better than that of existing methods. Rather
than using a fixed masking criterion, the proposed framework is disclosure risk-aware and
it leverages explainability techniques to detect and target identity-revealing pixels within
the images. As a result, and in contrast to conventional methods that uniformly perturb
image pixels, our framework focuses on perturbing only those pixels that contribute the
most to disclosure. Moreover, pixel perturbation is enforced incrementally and it is driven
by the observed residual risk in order to add the minimal distortion required to attain
the desired level of privacy protection. Thus, our anonymization framework might be
dubbed “utility-first”, in that it strives to preserve as much utility as possible. The empirical
results we report show that our approach is able to encompass a wide variety of image
perturbation techniques, and provides a significantly better privacy/utility balance than
the state of the art even when using the simplest perturbation techniques.

The remainder of this paper is organized as follows. Section 2 discusses related work on
image anonymization. Section 3 presents our image anonymization framework. Section 4
reports and discusses experimental results. Finally, Section 5 gathers the conclusions and
depicts several lines of future research.

2 Related work

The earliest and most widely used methods for preventing face-based re-identification are
pixelization and blurring [47]. Pixelization reduces the amount of information by segment-
ing the image into n × n blocks and setting all the pixels within each block to the same
intensity resulting from averaging neighboring pixels. On the other hand, blurring is used
to reduce the sharpness and clarity of an image by introducing Gaussian noise [35]. This
noise is applied by using a Gaussian kernel of size k, which averages the pixel values with
those of their neighbors. Since more weight is given to the pixels closer to the center of the
kernel, the resulting images have a smoother appearance.

In [10] the author enforced pixelation under the umbrella of ε-differential privacy (DP).
DP offers a formal privacy guarantee, which states that the presence or absence of any
individual’s data in a dataset should not be noticeable in the protected output up to an
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exponential factor denoted as ε [9]. DP is enforced by adding Laplacian noise to the data
proportional to i) the ε value (the lower the ε value, the larger the noise and the higher the
protection), and ii) the global sensitivity (GS) of the output to the presence or absence of
any individual’s data in the dataset to be protected. DP was originally defined to protect
answers to statistical queries on a remote database; in that setting, aggregated queries are
quite insensitive to changes in individual data points and relatively little noise may suffice
for protection. However, DP poses significant challenges when applied to data releases
[8], as is the case for the release of collections of images. For images, noise should be
proportional to the maximum change that can occur to any individual’s image; such a
change may entail replacing all image pixels with max/min RGB values. Applying DP
under this premise would produce nearly random images with no utility.

To avoid this issue, [10] employs the notion of m-neighboring images, which limits to m
the maximum number of pixels that can be changed when calibrating noise. The rationale
is that not all the pixels of an image are related to the depicted individual (e.g., background
pixels); therefore, it is possible to confine all individual-related/disclosive pixels to a set
of size m. The value of m can be customized to account for the individual’s silhouette or
specific facial features (e.g., the eyes) but it should be quite low w.r.t. the image resolution
for the utility of the protected images to be reasonably preserved. For instance, the author
used a value of m = 16 for face images with more than 10,000 pixels and, even in that case,
the loss of visual quality was noticeable.

It is important to note that the original formulation of DP requires that any data related
to the individual to be protected be accounted for when calibrating noise. Assuming that
only 0.16% of pixels in a face image are related to the depicted individual, i.e., 16 out of
10,000 pixels, as done in [10], hardly captures the guarantee DP aims to offer.

To further reduce the noise to be added, [10] first pixelates the input image, which reduces
the sensitivityGS to changes in individual pixels. The value ofGS is thus 255m/b2 for each
b× b grid cell. The perturbation is applied to the pixelated image using the Laplacian noise
distribution with mean 0 and scale of 255m/(b2ε). This method, called DP-Pix, is formalized
as

DP-Pix(i,j) = P(i,j) + Lap

(
GS

ε

)
,

where DP-Pix(i,j) is the pixel value in the DP-pixelated image and P(i,j) is the pixel value
in the pixelated image.

In [11], the author extended the method above by adding a post-processing step based on
Gaussian blur to produce smoother images. This method, called DP-Blur, is formalized as

DP-Blur(i,j) = DP-Pix(i,j) +B(i,j).

Regardless of the questionable application of the DP principles, DP-Pix and DP-Blur pro-
duce more privacy-preserving anonymizations than the plain application of pixelation and
blurring [10], but at the cost of a larger utility loss.

All the methods considered so far apply a uniform perturbation to all image pixels. In
contrast, some image protection methods, such as eye and mouth masking, focus on spe-
cific facial features. These techniques superimpose black circles or boxes on the images to
emulate sunglasses or face masks in order to obfuscate facial features that are crucial for re-
identification [12, 20]. However, these methods also present several limitations. Firstly, re-
search shows that masking these facial regions may not be entirely effective, and that their
performance closely depends on the size of the drawn circles or boxes [37]. Also, some
studies suggest the importance of masking other facial features, such as eyebrows [38].
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Moreover, determining common parameters for detecting and masking eyes and mouths
in a large and heterogeneous dataset can be complex, often requiring manual adjustment
due to variations in facial structures, poses and feature sizes.

More recently, there has been a rise in machine learning (ML)-based methods for anonymiz-
ing images based on generative adversarial networks (GANs) [24, 33, 22]. GANs are dis-
tinguished for their ability to create synthetic images that conceal identifiable information
[15]. GANs comprise two neural networks: i) a generator network responsible for generat-
ing synthetic images, and ii) a discriminator network tasked with discerning between real
and synthetic images. Through adversarial training, these networks collaborate until they
converge and generate synthetic images that satisfy privacy requirements.

StyleGAN-2 [23] is a GAN-based method for anonymizing images that employs latent
vectors as replacements for original images to generate new ones. To enhance image qual-
ity, multiple latent vectors are provided to the model, and the anonymized image with the
best quality is selected from the generated outputs. Perceptual Indistinguishability-Net (PI-
Net) [5] employs an encoder-decoder architecture to produce perceptually indistinguish-
able obfuscated images. Like StyleGAN-2, PI-Net operates in the latent space; however, in-
stead of replacing original images by latent vectors, it extracts the vector from the original
image and uses it to generate a single anonymized version. Unfortunately, both methods
lack proper privacy evaluation, as the data used in their experiments are not annotated
for face identification. Furthermore, neither the code nor the trained models are publicly
available, hindering their reproducibility.

Other state-of-the-art GAN-based methods, such as CIAGAN [33] and DeepPrivacy [22],
leverage conditional generative adversarial networks (cGANs) for image anonymization.
These methods preserve background information by incorporating it into the GAN gen-
erator while using an autoencoder to extract a latent vector that captures pose and facial
features. CIAGAN introduces a one-hot identity vector into the generator’s bottleneck to
ensure that the generated face corresponds to an identity not present in the dataset. In
contrast, DeepPrivacy does not impose such constraints. Based on this, DeepPrivacy2 [21]
enhances the original DeepPrivacy approach by ensuring that the generated face does not
appear in the dataset and extending anonymization to the entire body.

3 Explainability-Driven Incremental Image Anonymization

The conventional anonymization techniques discussed in Section 2, such as pixelation and
blurring, operate in a one-shot and untargeted manner: they take an input image and apply
a uniform perturbation across all pixels according to a predefined privacy parameter to
produce an anonymized image in a single step. Facial masking also operates in a one-
shot manner, but confines perturbation to the eyes or the mouth of the individual. Still,
the perturbation applied to those facial features –which need to be defined beforehand– is
uniform. This conventional image anonymization workflow is depicted in Fig. 1.

We argue that these conventional approaches incur an unnecessary loss of utility due to a
fundamental intuition: not every pixel contributes the same to re-identification and, there-
fore, does not require the same level of perturbation (if any). This insight led us to develop
a targeted anonymization framework that aims to perturb or obfuscate only the identity-
revealing pixels, and up to a degree proportional to their contribution to re-identification.
The goal of this disclosure risk-aware solution is to reduce the re-identification risk (RIR)
of images while preserving as much analytical utility as possible. It is noteworthy that our
framework neither proposes nor is tied to a specific image perturbation technique, but can
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Figure 1: Workflow of conventional image anonymization techniques

enforce existing techniques –including pixelation, blurring, noise addition, and masking–,
under this new image anonymization paradigm.

Disclosure awareness is enabled in our approach by using an ML FR model trained on the
images to be anonymized.

Then, an explainable artificial intelligence (XAI) method is applied to the FR model on
the images to be protected in order to detect the image pixels that contributed the most to
successful re-identifications. Only the most disclosive pixels will be subjected to protection
by applying existing perturbation techniques, such as those detailed in Section 2. Moreover,
pixel perturbation is applied incrementally, and it is guided by a continuous re-evaluation
of the RIR through the FR model in order to introduce the minimum perturbation needed
and, therefore, maximize utility preservation. The workflow of our framework, termed
Explainability-Driven Incremental Anonymization (EDI-Anon), is shown in Fig. 2.
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Figure 2: Workflow of EDI-Anon

3.1 EDI-Anon modules

EDI-Anon has a modular design as most of its components are replaceable, e.g., to adapt
to specific needs or to incorporate new developments that may arise. In the following, we
describe the modules of EDI-Anon in detail.
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3.1.1 FR model

The face recognition model is trained on the original dataset of images that require protection,
and provides the risk awareness that drives EDI-Anon. Specifically, once trained, the FR
model is applied to each image from the same dataset it was trained on in order to generate
probabilities for each class, indicating the likelihood of each input image belonging to each
class. The class with the highest probability is considered the predicted label (i.e., identity)
for the input image.

On the one hand, the FR model is used to quantify the RIR of the (preliminary) anonymized
dataset that results from each iteration. RIR is calculated as the accuracy achieved by the
FR model on the input data, as follows:

RIR =
Correct Predictions

Total Predictions
. (1)

On the other hand, the FR model is also the basis for detecting the pixels that contributed
the most to successful re-identification, as described in Section 3.1.2.

3.1.2 Explainer

The explainer provides information about the impact of each individual pixel on the FR
model’s predictions, thereby allowing us to detect the pixels that contributed the most to
re-identification, which we call identity-disclosing pixels set (IDPS). We opted to use the ex-
plainer introduced in [18], which leverages adversarial examples to alter the model predic-
tions. This method provides a comprehensive weighted list that reflects the influence of
each pixel on the model’s prediction. In contrast, other explainers like LIME (Local Inter-
pretable Model-agnostic Explanations) [36] employ linear models to interpret the model’s
predictions. However, they categorize the image pixels into only two labels, making them
less suitable to guide the anonymization process.

Specifically, the explainer takes each input image and its second-most probable class pre-
dicted by the FR model. The latter is treated as the target class of the adversarial exam-
ple for that image; thus, it corresponds to forcing the minimum possible misclassification.
Then, we calculate the loss between the correct prediction of the FR model and that incor-
rect target class, and backpropagation computes the gradients of this loss w.r.t. each pixel
in the input image. Finally, the explainer provides us with a tensor of these gradients as
output.

These gradients represent the sensitivity of the loss to changes in individual pixels. Higher
magnitude gradients indicate pixels that have a greater influence on the model’s predic-
tion, especially for misclassification (a sample of such pixels is depicted in Fig. 2 with a
blue shade on the image to be protected). Therefore, by analyzing the gradients, we can
detect which pixels, if changed, would increase the likelihood of the model misclassifying
the input; or, in other words, which pixels, if obfuscated, will result in an incorrectly re-
identified (that is, anonymized) image. These pixels, which consequently contribute the
most to re-identification, constitute the IDPS, and will be subjected to perturbation.

3.1.3 Anonymization function

The anonymization function in our framework can be based on any of the conventional im-
age perturbation techniques detailed in Section 2. It takes the input image and adds a
chosen pixel-level obfuscation (i.e., pixelation, blurring, noise-addition, or masking) to the
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IDPS obtained in the previous step. In addition to being targeted, pixel perturbation is
also applied incrementally: instead of perturbing pixels in a single shot, we perturb them
incrementally over several times, by taking each time a weak value of the method’s privacy
parameter (e.g., the pixel block size for pixelation or the kernel size for Gaussian noise),
that is, a value that achieves only a small privacy increment (and presumably a small util-
ity decrement). We call the privacy parameter used in this manner the ∆-parameter. As
we will describe in Section 3.2, by iteratively applying perturbations to each image in small
increments, we can re-evaluate the RIR of each previously perturbed image through the
FR model and apply (if needed) further perturbations on a freshly re-assessed IDPS. The
motivation underlying this targeted incremental approach is to minimize the amount of
perturbation needed to reach a desired level of protection, and thereby maximize utility
preservation.

3.1.4 Privacy threshold

It is important to note that, whereas the (privacy) parameter employed in conventional
methods directly influences the attained level of protection, in our approach the ∆-parameter
described above only sets the amount of perturbation added per iteration. Larger in-
crements will result in fewer iterations and faster anonymization, but also coarser (and
therefore more harmful) perturbations. Inversely, smaller increments will result in more
iterations and slower anonymization, but more fine-tuned (i.e., more utility-preserving)
perturbations.

In our approach, the desired level of privacy is set as a privacy threshold that defines the
maximum RIR allowed for the anonymized dataset. RIR is recomputed with Equation (1)
at the end of each iteration by giving the perturbed image dataset resulting from that last
iteration as input to the FR model. The resulting RIR value is used as the stopping criterion:
the process halts when the observed RIR falls below the user-defined privacy threshold, as
depicted in Fig. 2. Defining the desired privacy level in terms of RIR is also more intuitive
and aligns better with real-world privacy requirements than employing the abstract and
non-privacy-grounded parameters of conventional methods (such as pixel block or kernel
sizes).

3.2 EDI-Anon workflow and algorithm

Next, we describe in detail the workflow of EDI-Anon in detail, which is also formalized
in Algorithm 1.

First, the FR model is trained on the original image dataset (line 3 of Algorithm 1). Then,
the anonymized dataset is initialized to the original data set, and the RIR of the anonymized
dataset is assessed through the FR model (line 5). If it does not fulfill the user-defined
privacy threshold (line 6), each input image in the anonymized dataset is individually as-
sessed for re-identification using the FR model (line 8). Each correctly re-identified input
image (line 9) then undergoes the following process in order to be anonymized:

1. Calculate its gradient tensor using the explainer to quantify the contribution of each
pixel toward re-identification as detailed in Section 3.1.2 (line 10).

2. Select the IDPS most disclosive from the gradient tensor based on a predefined IDPS
percentage (line 11).

3. Apply the user-selected anonymization function with the ∆ parameter to perturb the
IDPS. The output of this function is a perturbed image (line 12).
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4. Replace the input image with the perturbed image in the anonymized dataset (line 13).

Once all the images have been assessed for re-identification (and perturbed, if neces-
sary), the RIR of the resulting (anonymized) dataset is re-evaluated through the FR model
(line 16). The process is repeated until the RIR falls below the user-defined privacy thresh-
old. Through this iterative process, each perturbation increment is applied on a freshly
re-assessed IDPS, which may significantly change from one iteration to the other due to
the incrementally added perturbations. This results in more targeted and less unnecessary
perturbations, thereby reducing utility loss.

In addition to the input parameters that define the type of anonymization function to be
used (i.e., pixelation, blurring, noise addition, or masking) and the desired privacy thresh-
old for the RIR, the algorithm relies on two interrelated constants for the anonymization
function: the IDPS percentage and the ∆-parameter. Both control the amount of distortion
added to the images at each iteration: whereas the IDPS percentage defines the number of
pixels to be distorted, the ∆-parameter controls the amount of distortion added to those
pixels. Their values thus influence i) the speed of the process (i.e., the larger they are, the
fewer iterations are required to reach the desired level of privacy) and ii) the granularity of
the added perturbation (i.e., the smaller the parameter values, the more targeted the added
perturbation is, because more re-assessments of the IDPS are performed). The nature of the
∆-parameter depends on the type of anonymization function. For instance, for pixelation
the ∆-parameter is block size, for blurring it is kernel size, and for DP-based noise addi-
tion it is ε. Even though the values of those parameters are, in principle, fixed for a given
anonymization function, advanced users might want to tune them in order to encompass
specific utility/performance needs. The influence of such tuning will be evaluated in Sec-
tion 4.4.1.

It is important to highlight that once its parameters are configured, EDI-Anon operates
seamlessly without the need for human intervention, and thus it is a fully automated frame-
work.

4 Empirical results

In this section, we report empirical results from conventional image anonymization tech-
niques, along with the outcomes of their application to the EDI-Anon framework under
different privacy thresholds. For comparison, we also include the results of DeepPrivacy2,
a state-of-the-art GAN-based image anonymization approach described in Section 2. All
methods have been evaluated and compared in terms of privacy protection, utility preser-
vation, and runtime. In the following, we describe the evaluation dataset and the privacy
and utility metrics employed for the evaluation. The code associated with the reported
results is available in the Git repository https://github.com/RamiHaf/EDI-Anon

All experiments were carried out on an AMD Ryzen 5 3600 CPU (base speed 3.6 GHz), 32
GB of RAM, and an NVIDIA GeForce RTX 3060 GPU (12 GB VRAM).

4.1 Evaluation dataset

Since we are interested in measuring both privacy protection and utility preservation of
image anonymization, we chose the Multi-Task Face (MTF) dataset [19] because it is the
only available dataset that provides comprehensive multi-label annotations necessary for
this dual evaluation. The MTF dataset consists of a manually curated collection of 5,246
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Algorithm 1 Explainability-Driven Incremental Anonymization

1: Constants: ∆-parameter, IDPS Percentage
2: Inputs: Original Dataset, Anonymization Function, Privacy Threshold
3: Model.Train(Original Dataset)
4: Anonymized Dataset← Original Dataset
5: RIR←Model.Evaluate(Anonymized Dataset)
6: while RIR > Privacy Threshold do
7: for (Input Image, Label) in Anonymized Dataset do
8: Prediction←Model.Predict(Input Image)
9: if Prediction = Identity label then

10: Gradient Tensor← Explainer (Input Image, Target Class)
11: IDPS← Disclosive Pixels(Gradient Tensor, IDPS Percentage)
12: Perturbed Image← Anonymization Function(Input Image, ∆-parameter, IDPS)

13: Replace.Image(Anonymized Dataset, Input Image, Perturbed Image)
14: end if
15: end for
16: RIR←Model.Evaluate(Anonymized Dataset)
17: end while
18: return Anonymized Dataset

high-resolution images (1024 × 1024) depicting the faces of 240 individuals. Unlike other
datasets, such as CelebA [31], which contains low-resolution images and suffers from sig-
nificant labeling inaccuracies due to automatic annotation [30], MTF offers accurate and
manually verified annotations for identity, age, gender, and race. These annotations are
essential for evaluating both the success of anonymization in preventing face recognition
(FR) and utility preservation across key classification tasks. Furthermore, MTF follows
legally and ethically compliant curation practices, ensuring its long-term availability and
reproducibility. Table 1 reports the distribution of annotation labels in all four tasks.

The data set is divided into 70% training data, while the remaining 30% is allocated to
validate and test the four tasks.

Table 1: Number of individuals for the various tasks and labels in the MTF dataset

Task Number of individuals
FR Identities = 240
Age Young = 190 Old = 50
Gender Males = 130 Females = 110

Race Asian
(Chin.
& Kor.)
= 80

Asian
(In-
dian) =
49

Black =
35

White =
76

4.2 Evaluation metrics

To evaluate privacy, we employed the RIR metric defined in Equation (1), which is cal-
culated by using the FR model trained on the original FR data from the MTF dataset. Our
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evaluation considers a worst-case scenario in which the adversary is assumed to have com-
plete access to all images of the individuals. The privacy figures we report are thus on the
conservative side, and better privacy will be attained in more plausible attack settings, in
which adversaries have access to smaller sets of images.

The FR model is a ConvNeXt convolutional neural network [32], which is recommended
by the authors of the dataset. The base model is pre-trained on ImageNet [7]. The last layer
is adapted to the number of classes (i.e., number of individuals) in the dataset. To train the
FR model, we used cross-entropy loss as the optimization criterion [46] and Adam [25] as
the optimizer for updating the model parameters. The model was trained for 100 epochs.
Recall that RIR measures the accuracy of the predictions without making a distinction be-
tween false positives and false negatives, and thereby captures the overall correctness of
the FR task.

Since our goal is to evaluate the performance of anonymization methods at protecting a
set of images (or, in other words, to assess the re-identifiability of the actual anonymized
images), we measured the RIR of the anonymized images in the training dataset through
the FR model trained on the original (non-anonymized) versions of those very same im-
ages. As a reference, the RIR of the original FR training images was 100%. This means that
the RIR of the anonymized images for each of the methods considered in the following can
be interpreted in absolute terms.

To assess utility preservation, we focused on the other three tasks supported by the MTF
dataset: age, gender and race classification. Following the methodology outlined in the
MTF paper [19], we trained three corresponding ML models on the original (non-anonymized)
images of the training data set by using the ConvNeXt pre-trained Base model. The hyper-
parameters for those three models were the same as used in the MTF paper, with a batch
size of 32 images.

Utility preservation was measured as the performance of the three models on the anonymized
images. The models’ performance was quantified via the F1 score, which is the harmonic
mean of precision and recall [43], and is calculated as

F1 score =
2× Precision×Recall
Precision+Recall

,

where Precision is the ratio of true positives (TP) to the sum of TP and false positives (FP),
i.e. TP

TP+FP , and Recall is the ratio of TP to the sum of TP and false negatives (FN) i.e. TP
TP+FN .

Considering both precision and recall, the F1 score provides a comprehensive evaluation
of model performance (and, hence, of data utility), in that it captures both the ability to
correctly identify instances and to avoid FP and FN. This metric is particularly useful for
ML tasks with a low number of classes (as is the case for the three utility-oriented tasks)
because it is less affected by potential class imbalance. As a reference and upper bound for
the utility figures reported in the next sections, the baseline F1 scores on the original non-
anonymized images were: 97.93% for age classification, 98.77% for gender classification
and 97.32% for race classification.

4.3 Conventional methods

For pixelation and blurring, the privacy parameters used were n (block size) and k (blur
kernel size), respectively. The proposed values for these parameters in [45] and [40] –which
did not evaluate empirical re-identification– were n ∈ [4, 10] and k = 25. However, accord-
ing to our privacy evaluation, these resulted in negligible reductions in RIR. Therefore, we
decided to use larger parameter values to produce observable differences, as shown in Figs.
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(a) Pixelation (b) Blurring

(c) DP-Pix (d) DP-Blur

(e) Mouth and eye masking

Figure 3: Evaluation results of conventional anonymization methods for different privacy
parameters. Within each group, from left to right, the bars correspond to RIR, F1-Age,

F1-Gender, and F1-Race.

3a and 3b. For DP-Pix and DP-Blur, [11] employed ε ∈ {0.1, 0.5, 1} and m = 16 neighbor-
ing pixels. Furthermore, for DP-Blur, a kernel size (k) of 99 was recommended. We used
the same parameter values in our tests, even though m = 16 only accounts for 0.0015%
pixels in our images. Considering that, in face images, a substantial proportion of pixels
contribute to re-identification, it is clear that such a small set of pixels would not result in
any meaningful DP guarantee. When no ex ante privacy guarantees hold, the attained level
of privacy can only be evaluated empirically [2], as we do in this section. As a matter of
fact, setting larger –and safer– m (ideally, the whole image, m = 1024 × 1024) produced
random pixels for any value ε, even for extremely large ones.

For masking, we simulated the effect of wearing a face mask and/or sunglasses. We used
Haar-cascade [39] for mouth and eye detection via the OpenCV library [3], and applied
enough large round and square masks to hide the detected facial features.
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As shown in Fig. 3e, the least effective technique w.r.t. RIR was mouth masking, due to
the mouth region lacks identity-revealing features. Although eye masking proved more
effective at concealing the individual’s identity, it still yielded an RIR larger than most
other methods, while combining mouth and eyes masking produced a minor decrease in
RIR over just masking the eyes. However, this minor decrease in RIR came at the cost of
a small reduction in utility for the classification of age and gender and a more noticeable
reduction for the classification of races. The latter can be explained due to the importance
of the shape of the eyes to recognize Asian faces.

Pixelation and blurring, which apply a uniform perturbation across all pixels, achieved
stronger privacy (i.e., lower RIR) for n > 20 and k > 40. However, both methods signifi-
cantly hampered classification by age and race, as shown in Figs. 3a and 3b. The accuracy
of the age classification model was particularly affected by the misclassification of the Old
class, because pixelation and blurring can hardly preserve facial wrinkles that are a dis-
tinctive feature of elderly individuals. On the other hand, the performance of the race
classification model was hampered by the loss of finer details, including the shapes of the
eyes, lips, and noses, which are key for identifying the Asians. In particular, blurring per-
formed better to preserve the black class, due to the unchanged facial contours and skin
tones.

Although DP-based methods lack formal privacy guarantees for face images due to the
small value of m employed, both DP-Pix and DP-Blur achieved the strongest empirical pri-
vacy, as reported in Figs. 3c and 3d. Lower ε values resulted in more effective anonymiza-
tion for both methods. DP-Pix exhibited the lowest utility preservation, whereas DP-Blur
offered a slightly better privacy/utility trade-off. The relatively better performance of DP-
Blur can be attributed to the application of Gaussian blur, which improved image quality
by smoothing the images and reducing the effect of the added (colored) noise. This was
especially useful for race classification. Nevertheless, the utility reached for both methods
with ε < 1 approached the random guess for all tasks.

4.4 EDI-Anon

As explained in Section 3.1.3, EDI-Anon is enforced via an anonymization function that
can implement a variety of conventional methods. In this section, we evaluate the applica-
tion of the conventional methods considered in the previous section within the EDI-Anon
framework. We refer to them by preceding their names by “EDI-”. To accommodate the it-
erative nature of EDI-Anon, we took weak values of the privacy parameters of the different
methods (i.e., what we refer to as ∆-parameter, as explained in Section 3.1.3). Specifically,
for EDI-Pix and EDI-Blur, their respective ∆-parameters were set to n = 20 and k = 40 (i.e.,
the weakest values employed in the previous experiments), whereas for EDI-DP-Pix and
EDI-DP-Blur we used a notably higher ε = 100 while keeping m and k unchanged from
their conventional counterparts with one shot. As discussed in Section 4.3, these loose pa-
rameters do not provide ex ante privacy guarantees for EDI-DP, but neither did the one-shot
counterparts.

Facial masking was also adapted to the targeted nature of EDI-Anon: instead of applying
fixed-size masks to predefined facial features, the EDI-Masking version iteratively added
small-sized masks of 25-pixel radius over each IDPS pixel detected at each iteration.

We set the IDPS percentage to 10% for the first four techniques, whereas for EDI-Masking –
which blacks out the masked pixels and, therefore, causes more utility loss at each application–
we used a smaller value of 1%.
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(a) EDI-Pix (b) EDI-Blur

(c) EDI-DP-Pix (d) EDI-DP-Blur

(e) EDI-Masking

Figure 4: Evolution of RIR and utilities for EDI-Anon across iterations with different
anonymization functions until reaching a 1% privacy threshold

The privacy threshold for the EDI-Anon methods was set to the lowest RIR achieved by
any conventional method, that is, the 1% achieved by DP-Blur. In Fig. 4 we report the
evolution of the RIR and the utility metrics across iterations until that privacy threshold is
reached.

We can see that, regardless of the underlying anonymization function, EDI-Anon was
able to achieve the target privacy threshold with a similar number of iterations. Despite
their differences, all EDI-Anon methods significantly lowered the RIR within the initial it-
erations, and most iterations were devoted to lower the RIR from 10% to 1%. The sharp
decline in RIR was accompanied by a milder decrease in the utility metrics. Differences
across methods manifest in some utilities being slightly better preserved than others. In
general, all EDI-Anon methods affected all three utilities proportionally to their number
of classes; that is, the more classes, the less utility because of having to deal with a more
difficult classification problem. Age classification was similarly preserved across all meth-
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(a) EDI-Blur with IDPS=5% (b) EDI-DP-Blur with IDPS=10%

(c) EDI-DP-Blur with IDPS=20% (d) EDI-DP-Blur with IDPS=30%

Figure 5: Evolution of RIR and utilities for EDI-DP-Blur across iterations with different
IDPS Percentages until reaching a 1% privacy threshold

ods, indicating that age-related facial features were minimally affected by the EDI-Anon
process. On the other hand, EDI-DP and EDI-Masking hampered race classification the
most due to the loss of race-related facial features (e.g., those depicting eye shapes, facial
contours, and skin tones).

4.4.1 On EDI-Anon constants

As explained in Section 3.2, in addition to the parameters that define the type of anonymiza-
tion function to be used by EDI-Anon and the desired privacy threshold, two other values
also influence the behavior of the algorithm: the IDPS percentage and the ∆-parameter
of the chosen anonymization function. In the following, we analyze the impact of these
values on EDI-DP-Blur, which provided a good balance between RIR reduction and utility
preservation.

First, we investigate the effect of modifying the IDPS percentage by selecting four different
values (5%, 10%, 20%, and 30%), while keeping all other parameters as in the previous ex-
periment. The results are reported in Fig. 5. As expected, higher IDPS percentages resulted
in fewer iterations needed to achieve the privacy threshold, as more pixels were distorted
per iteration. However, the less targeted distortion also resulted in diminished utilities.
This shows the benefit of adding distortion to only the most re-identifying pixels, and the
need for re-evaluating those pixels after each iteration, since they may significantly change
from one iteration to the next as a result of the added perturbation. The reduction in the
number of iterations was not linear in the increase of the IDPS percentage. This suggests
that the less important pixels considered when enlarging the IDPS set had a smaller impact
on the prediction of the FR model. On the other hand, perturbing them had a noticeable
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(a) EDI-DP-Blur with ∆-parameter ε = 1 (b) EDI-DP-Blur with ∆−parameter ε = 10

(c) EDI-DP-Blur with ∆-parameter ε = 50 (d) EDI-DP-Blur with ∆-parameter ε = 100

Figure 6: Evolution of RIR and utilities for EDI-DP-Blur across iterations with different
∆-parameter values until reaching a 1% privacy threshold

impact on the three utilities. This illustrates that the lower the IDPS percentage, the more
accurate and targeted the added distortion is; yet, one should take into account the added
runtime resulting from the additional iterations (see the runtime analysis in Section 4.5.3).

Second, we examined the influence of the ∆-parameter on EDI-DP-Blur by setting ε ∈
(1, 10, 50, 100) while keeping all other parameters unchanged. The findings are presented
in Fig. 6. The results show a similar tendency as when modifying the IDPS percentage:
the stricter the ∆-parameter (i.e., the lower ε is), the fewer iterations are needed to attain
the privacy threshold but, at the same time, the more affected the utilities are. In fact, the
strictest ∆-parameter produced a sharp decline of all three utilities, which barely changed
in subsequent iterations. This indicates that the affected pixels were almost randomized
due to the large perturbation added by DP in just one iteration. Thus, it is important to
choose a relatively weak ∆-parameter, which will allow keeping the added perturbation
per iteration small enough for the affected pixels to still retain (some of) their utility.

4.5 Comparisons

To gain a better understanding of the advantages offered by EDI-Anon over existing meth-
ods, in this section, we compare conventional techniques against their EDI-Anon coun-
terparts under equivalent conditions. Furthermore, we report results of a state-of-the-art
GAN-based image anonymization method (DeepPrivacy2). Finally, we report and discuss
the run-time incurred by each method.
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Figure 7: Average utility comparison between EDI-Anon and its conventional counterparts
at equal RIRs

4.5.1 Comparison with conventional methods

Whereas EDI-Anon can be set to reach a target RIR/privacy threshold, the RIR attained by
the conventional one-shot methods depends on the values of their parameters and is hard
to fix ex ante. To enable a fair comparison, in the following we report EDI-Anon utilities for
the same RIR achieved by its conventional counterpart with the privacy parameter that re-
sulted in the lowest RIR (see Fig. 3). To facilitate the comparison, Fig. 7 reports the average
of the three utilities considered for the different methods.

We observe significant disparities between the methods. In instances where conventional
methods yielded lower privacy levels/higher RIR (such as masking and blurring), the dif-
ference in utility between EDI-Anon and its conventional counterpart was minor. On the
other hand, when conventional methods attained higher privacy levels (as was the case
for Pixelation, DP-Pix and DP-Blur), utilities were significantly compromised due to the
uniform and random nature of the (large) perturbation added. For those methods, their
EDI-Anon counterparts more than doubled the average utility due to the targeted and
incremental distortion. We can therefore conclude that EDI-Anon is especially beneficial
when high privacy levels are needed.

4.5.2 Comparison with DeepPrivacy2

As discussed in Section 2, GANs are employed in state-of-the-art image anonymization
methods due to their ability to create synthetic images that conceal identifiable informa-
tion while retaining relevant facial features. In this section, we compare EDI-Anon with
DeepPrivacy2 [21], a state-of-the-art cGAN-based approach.

DeepPrivacy2 has been trained on the FDF dataset (Flickr Diverse Faces), which was
specifically curated for that purpose. The FDF dataset encompasses an extensive collection
of over a million human faces with a wide spectrum of poses, diverse age groups, genders,
and racial identities, complete with bounding box and some automated keypoint annota-
tions. We employed the implementation offered by the authors of DeepPrivacy2 1, which
includes the trained GAN model with 46 million parameters. To generate the anonymized
images, we adhered to the recommended batch size of 1.

1Github URL of DeepPrivacy2: https://github.com/hukkelas/deep_privacy2
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Applying DeepPrivacy2 to the MTF dataset, we obtained an anonymized dataset with a
RIR = 16.27%. To allow a fair comparison with EDI-Anon, in Table 2 we report the average
utility obtained by DeepPrivacy2 and all versions of EDI-Anon when setting the privacy
threshold of the latter to 16%.

Table 2: Average utility comparison between DeepPrivacy2 and EDI-Anon methods for
equal RIR ≈ 16%

Technique Average Utility
DeepPrivacy2 73.89%
EDI-Pix 82.46%
EDI-Blur 83.75%
EDI-DP-Pix 79.23%
EDI-DP-Blur 82.64%
EDI-Masking 81.00%

We can see that all EDI-Anon versions outperformed DeepPrivacy2 by a significant mar-
gin. Moreover, even though the average utility for DeepPrivacy2 was –apparently– not
that low, the synthetic nature of the images it produces may harm tasks requiring truthful
images and/or realistic human faces.

4.5.3 Runtime comparison

In this section, we report the average runtime per image required to anonymize the MTF
dataset under the various methods considered so far. This has been calculated by dividing
the total runtime required to anonymize the whole dataset by the number of images.

For each method, we picked the instantiation that resulted in the best privacy (i.e., low-
est RIR). Even if the level of privacy attained does not affect the runtime of conventional
methods applied in one shot, it does affect the runtime of EDI-Anon methods. Thus, for
the latter, we report the time of their longest run. The results are shown in Table 3. To put
EDI-Anon figures in context, we also specify the number of iterations needed to reach the
privacy threshold.

Table 3: Average runtime per image for conventional methods, their EDI-Anon
counterparts and DeepPrivacy2

Method Conventional EDI-Anon (iterations)
Pixelation 0.04s 0.65s (13)
Blurring 0.04s 0.7s (16)
DP-Pix 0.13s 0.4s (7)
DP-Blur 0.17s 0.44s (8)
Masking 0.09s 0.5s (10)
DeepPrivacy2 2.29s NA

As expected, the simplest methods, such as pixelation and blurring, resulted in the lowest
runtimes. DP-based methods were costlier, due to the additional effort required to compute
noise distributions. In comparison, their EDI-Anon counterparts took 3-17 times longer
runtimes, a magnitude that is proportional to the number of iterations required to reach the
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desired privacy threshold. In contrast, DeepPrivacy2 was, by far, the slowest in generating
anonymized images, which can be attributed to the complexity of the GAN model used.

For both DeepPrivacy2 and EDI-Anon, we should consider the added cost of training the
GAN and FR models, respectively. Although this is a one-time cost for the whole set of
images, for EDI-Anon on the MTF dataset this accounted for 12, 104.4 seconds. Unfortu-
nately, the authors of DeepPrivacy2 did not provide information on the GAN model train-
ing time. Nevertheless, considering the size of the training data they used (over 1 million
images) and the complexity of the GAN model (46 million parameters), we can assume it
to be orders of magnitude larger than that of EDI-Anon’s FR model training.

In spite of its longer runtime, EDI-Anon has an intrinsic advantage over conventional
one-shot methods. Whereas the latter require re-running the whole process from scratch to
create anonymizations with different privacy parameters, using a strict privacy threshold
with EDI-Anon immediately yields not only the results corresponding to that threshold
but any of the (weaker) anonymizations resulting from intermediate iterations. This is
quite convenient for practitioners who aim to optimize the privacy/utility trade-off ex post,
a task that is usually implemented as a trial and error process for conventional methods.

5 Conclusions and future work

We have presented Explainability-Driven Incremental Image Anonymization (EDI-Anon),
a novel framework that proposes an iterative anonymization process guided by the ob-
served re-identification risk. Our proposal addresses the limitations of conventional anonymiza-
tion techniques, which enforce one-shot uniform pixel perturbations. EDI-Anon leverages
explainability techniques to identify and perturb only pixels that hold identity-disclosing
features. Due to its incremental nature, EDI-Anon can automatically achieve any level
of privacy protection, while preserving image features more accurately than conventional
methods. Our framework also offers flexibility and customization, allowing end users to
choose from a variety of anonymization techniques, and to select ex ante the desired privacy
threshold in terms of maximum allowed re-identification risk.

EDI-Anon has empirically demonstrated its superiority over conventional and GAN-based
techniques. It excels at providing higher levels of privacy while preserving more utility-
critical pixels.

As future work, we plan to extend EDI-Anon to other image obfuscation techniques such
as motion blur. We also plan to evaluate the robustness of our framework against image-
reconstruction attacks.
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