20 20

Transactions on
Data Privacy
Foundations and Technologies

http://www.tdp.cat


Articles in Press

Accepted articles here

Latest Issues

Year 2017

Volume 10 Issue 2
Volume 10 Issue 1

Year 2016

Volume 9 Issue 3
Volume 9 Issue 2
Volume 9 Issue 1

Year 2015

Volume 8 Issue 3
Volume 8 Issue 2
Volume 8 Issue 1

Year 2014

Volume 7 Issue 3
Volume 7 Issue 2
Volume 7 Issue 1

Year 2013

Volume 6 Issue 3
Volume 6 Issue 2
Volume 6 Issue 1

Year 2012

Volume 5 Issue 3
Volume 5 Issue 2
Volume 5 Issue 1

Year 2011

Volume 4 Issue 3
Volume 4 Issue 2
Volume 4 Issue 1

Year 2010

Volume 3 Issue 3
Volume 3 Issue 2
Volume 3 Issue 1

Year 2009

Volume 2 Issue 3
Volume 2 Issue 2
Volume 2 Issue 1

Year 2008

Volume 1 Issue 3
Volume 1 Issue 2
Volume 1 Issue 1


Volume 6 Issue 3


Efficient Tree Pattern Queries On Encrypted XML Documents

Fang-Yu Rao(a),(*), Jianneng Cao(b), Mehmet Kuzu(c), Elisa Bertino(a), Murat Kantarcioglu(c)

Transactions on Data Privacy 6:3 (2013) 199 - 226

Abstract, PDF

(a) Department of Computer Science/CERIAS; Purdue University; West Lafayette; IN 47906 USA.

(b) Institute for Infocomm Research; 1 Fusionopolis Way; Singapore 138632.

(c) Department of Computer Science; University of Texas at Dallas; Richardson; TX 75080 USA.

e-mail:raof @purdue.edu; ; ; ;


Abstract

Outsourcing XML documents is a challenging task, because it encrypts the documents, while still requiring efficient query processing. Past approaches on this topic either leak structural information or fail to support searching that has constraints on XML node content. To address these problems, we present a solution for efficient evaluation of tree pattern queries (TPQs) on encrypted XML documents. We create a domain hierarchy, such that each XML document can be embedded in it. By assigning each node in the hierarchy a position, we create for each document a vector, which encodes both the structural and textual information about the document. Similarly, a vector is created also for a TPQ. Then, the matching between a TPQ and a document is reduced to calculating the distance between their vectors. For the sake of privacy, such vectors are encrypted before being outsourced. To improve the matching efficiency, we use a k-d tree to partition the vectors into non-overlapping subsets, such that non-matchable documents are pruned as early as possible. The extensive evaluation shows that our solution is efficient and scalable to large dataset.

* Corresponding author.

Follow us




Supports










ISSN: 1888-5063; ISSN (Digital): 2013-1631; D.L.:B-11873-2008; Web Site: http://www.tdp.cat/
Contact: Transactions on Data Privacy; Vicenç Torra; U. of Skövde; PO Box 408; 54128 Skövde; (Sweden); e-mail:tdp@tdp.cat

 


Vicenç Torra, Last modified: 10 : 41 June 27 2015.