20 20

Transactions on
Data Privacy
Foundations and Technologies


Articles in Press

Accepted articles here

Latest Issues

Year 2021

Volume 14 Issue 1

Year 2020

Volume 13 Issue 3
Volume 13 Issue 2
Volume 13 Issue 1

Year 2019

Volume 12 Issue 3
Volume 12 Issue 2
Volume 12 Issue 1

Year 2018

Volume 11 Issue 3
Volume 11 Issue 2
Volume 11 Issue 1

Year 2017

Volume 10 Issue 3
Volume 10 Issue 2
Volume 10 Issue 1

Year 2016

Volume 9 Issue 3
Volume 9 Issue 2
Volume 9 Issue 1

Year 2015

Volume 8 Issue 3
Volume 8 Issue 2
Volume 8 Issue 1

Year 2014

Volume 7 Issue 3
Volume 7 Issue 2
Volume 7 Issue 1

Year 2013

Volume 6 Issue 3
Volume 6 Issue 2
Volume 6 Issue 1

Year 2012

Volume 5 Issue 3
Volume 5 Issue 2
Volume 5 Issue 1

Year 2011

Volume 4 Issue 3
Volume 4 Issue 2
Volume 4 Issue 1

Year 2010

Volume 3 Issue 3
Volume 3 Issue 2
Volume 3 Issue 1

Year 2009

Volume 2 Issue 3
Volume 2 Issue 2
Volume 2 Issue 1

Year 2008

Volume 1 Issue 3
Volume 1 Issue 2
Volume 1 Issue 1

Volume 13 Issue 3

SoK: Chasing Accuracy and Privacy, and Catching Both in Differentially Private Histogram Publication

Boel Nelson(a),(*), Jenni Reuben(b)

Transactions on Data Privacy 13:3 (2020) 201 - 245

Abstract, PDF

(a) Department of Computer Science and Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.

(b) Department of Mathematics and Computer Science, Karlstad University, SE-651 88 Karlstad, Sweden.

e-mail:boeln @chalmers.se; jenni.reuben @kau.se


Histograms and synthetic data are of key importance in data analysis. However, researchers have shown that even aggregated data such as histograms, containing no obvious sensitive attributes, can result in privacy leakage. To enable data analysis, a strong notion of privacy is required to avoid risking unintended privacy violations.

Such a strong notion of privacy is differential privacy, a statistical notion of privacy that makes privacy leakage quantifiable. The caveat regarding differential privacy is that while it has strong guarantees for privacy, privacy comes at a cost of accuracy. Despite this trade-off being a central and important issue in the adoption of differential privacy, there exists a gap in the literature regarding providing an understanding of the trade-off and how to address it appropriately.

Through a systematic literature review (SLR), we investigate the state-of-the-art within accuracy improving differentially private algorithms for histogram and synthetic data publishing. Our contribution is two-fold: 1) we identify trends and connections in the contributions to the field of differential privacy for histograms and synthetic data and 2) we provide an understanding of the privacy/accuracy trade-off challenge by crystallizing different dimensions to accuracy improvement. Accordingly, we position and visualize the ideas in relation to each other and external work, and deconstruct each algorithm to examine the building blocks separately with the aim of pinpointing which dimension of accuracy improvement each technique/approach is targeting. Hence, this systematization of knowledge (SoK) provides an understanding of in which dimensions and how accuracy improvement can be pursued without sacrificing privacy.

* Corresponding author.

Follow us


ISSN: 1888-5063; ISSN (Digital): 2013-1631; D.L.:B-11873-2008; Web Site: http://www.tdp.cat/
Contact: Transactions on Data Privacy; Vicenç Torra; U. of Skövde; PO Box 408; 54128 Skövde; (Sweden); e-mail:tdp@tdp.cat
Note: TDP's web site does not use cookies. TDP does not keep information neither on IP addresses nor browsers. For the privacy policy access here.


Vicenç Torra, Last modified: 08 : 09 December 30 2020.