20 20

Transactions on
Data Privacy
Foundations and Technologies

http://www.tdp.cat


Articles in Press

Accepted articles here

Latest Issues

Year 2024

Volume 17 Issue 2
Volume 17 Issue 1

Year 2023

Volume 16 Issue 3
Volume 16 Issue 2
Volume 16 Issue 1

Year 2022

Volume 15 Issue 3
Volume 15 Issue 2
Volume 15 Issue 1

Year 2021

Volume 14 Issue 3
Volume 14 Issue 2
Volume 14 Issue 1

Year 2020

Volume 13 Issue 3
Volume 13 Issue 2
Volume 13 Issue 1

Year 2019

Volume 12 Issue 3
Volume 12 Issue 2
Volume 12 Issue 1

Year 2018

Volume 11 Issue 3
Volume 11 Issue 2
Volume 11 Issue 1

Year 2017

Volume 10 Issue 3
Volume 10 Issue 2
Volume 10 Issue 1

Year 2016

Volume 9 Issue 3
Volume 9 Issue 2
Volume 9 Issue 1

Year 2015

Volume 8 Issue 3
Volume 8 Issue 2
Volume 8 Issue 1

Year 2014

Volume 7 Issue 3
Volume 7 Issue 2
Volume 7 Issue 1

Year 2013

Volume 6 Issue 3
Volume 6 Issue 2
Volume 6 Issue 1

Year 2012

Volume 5 Issue 3
Volume 5 Issue 2
Volume 5 Issue 1

Year 2011

Volume 4 Issue 3
Volume 4 Issue 2
Volume 4 Issue 1

Year 2010

Volume 3 Issue 3
Volume 3 Issue 2
Volume 3 Issue 1

Year 2009

Volume 2 Issue 3
Volume 2 Issue 2
Volume 2 Issue 1

Year 2008

Volume 1 Issue 3
Volume 1 Issue 2
Volume 1 Issue 1


Volume 2 Issue 3


Beyond k-Anonymity: A Decision Theoretic Framework for Assessing Privacy Risk

Guy Lebanon(a),(*), Monica Scannapieco(b), Mohamed R. Fouad(c), Elisa Bertino(c)

Transactions on Data Privacy 2:3 (2009) 153 - 183

Abstract, PDF

(a) College of Computing, Georgia Institute of Technology, Atlanta, USA.

(b) Department of Systems and Computer Sciences, Rome University, Italy.

(c) Department of Computer Science, Purdue University, West Lafayette, USA.

e-mail:lebanon @cc.gatech.edu; monscan @dis.uniroma1.it; mrf @cs.purdue.edu; bertino @cs.purdue.edu


Abstract

An important issue any organization or individual has to face when managing data containing sensitive information, is the risk that can be incurred when releasing such data. Even though data may be sanitized before being released, it is still possible for an adversary to reconstruct the original data using additional information thus resulting in privacy violations. To date, however, a systematic approach to quantify such risks is not available. In this paper we develop a framework, based on statistical decision theory, that assesses the relationship between the disclosed data and the resulting privacy risk. We model the problem of deciding which data to disclose, in terms of deciding which disclosure rule to apply to a database. We assess the privacy risk by taking into account both the entity identification and the sensitivity of the disclosed information. Furthermore, we prove that, under some conditions, the estimated privacy risk is an upper bound on the true privacy risk. Finally, we relate our framework with the k-anonymity disclosure method. The proposed framework makes the assumptions behind k-anonymity explicit, quantifies them, and extends them in several natural directions.

* Corresponding author.

Follow us




Supports



ISSN: 1888-5063; ISSN (Digital): 2013-1631; D.L.:B-11873-2008; Web Site: http://www.tdp.cat/
Contact: Transactions on Data Privacy; Vicenç Torra; Umeå University; 90187 Umeå (Sweden); e-mail:tdp@tdp.cat
Note: TDP's web site does not use cookies. TDP does not keep information neither on IP addresses nor browsers. For the privacy policy access here.

 


Vicenç Torra, Last modified: 00 : 25 December 12 2014.