20 20

Transactions on
Data Privacy
Foundations and Technologies

http://www.tdp.cat


Articles in Press

Accepted articles here

Latest Issues

Year 2014

Volume 7 Issue 1
Volume 7 Issue 2

Year 2013

Volume 6 Issue 3
Volume 6 Issue 2
Volume 6 Issue 1

Year 2012

Volume 5 Issue 3
Volume 5 Issue 2
Volume 5 Issue 1

Year 2011

Volume 4 Issue 3
Volume 4 Issue 2
Volume 4 Issue 1

Year 2010

Volume 3 Issue 3
Volume 3 Issue 2
Volume 3 Issue 1

Year 2009

Volume 2 Issue 3
Volume 2 Issue 2
Volume 2 Issue 1

Year 2008

Volume 1 Issue 3
Volume 1 Issue 2
Volume 1 Issue 1


Volume 2 Issue 3


Beyond k-Anonymity: A Decision Theoretic Framework for Assessing Privacy Risk

Guy Lebanon(a),(*), Monica Scannapieco(b), Mohamed R. Fouad(c), Elisa Bertino(c)

Transactions on Data Privacy 2:3 (2009) 153 - 183

Abstract, PDF

(a) College of Computing, Georgia Institute of Technology, Atlanta, USA.

(b) Department of Systems and Computer Sciences, Rome University, Italy.

(c) Department of Computer Science, Purdue University, West Lafayette, USA.

e-mail:lebanon @cc.gatech.edu; monscan @dis.uniroma1.it; mrf @cs.purdue.edu; bertino @cs.purdue.edu


Abstract

An important issue any organization or individual has to face when managing data containing sensitive information, is the risk that can be incurred when releasing such data. Even though data may be sanitized before being released, it is still possible for an adversary to reconstruct the original data using additional information thus resulting in privacy violations. To date, however, a systematic approach to quantify such risks is not available. In this paper we develop a framework, based on statistical decision theory, that assesses the relationship between the disclosed data and the resulting privacy risk. We model the problem of deciding which data to disclose, in terms of deciding which disclosure rule to apply to a database. We assess the privacy risk by taking into account both the entity identification and the sensitivity of the disclosed information. Furthermore, we prove that, under some conditions, the estimated privacy risk is an upper bound on the true privacy risk. Finally, we relate our framework with the k-anonymity disclosure method. The proposed framework makes the assumptions behind k-anonymity explicit, quantifies them, and extends them in several natural directions.

* Corresponding author.

Follow us at




Sponsors



IIIA-CSIC




ISSN: 1888-5063; ISSN (Digital): 2013-1631; D.L.:B-11873-2008; Web Site: http://www.tdp.cat/
Contact: Transactions on Data Privacy; IIIA-CSIC; Campus UAB s/n; 08193-Bellaterra; (Catalonia, Spain); e-mail:tdp@iiia.csic.es

 

IIIA - Institut d'Investigació en Intel·ligència Artificial


Vicenç Torra, Last modified: 16 : 59 June 22 2010.