20 20

Transactions on
Data Privacy
Foundations and Technologies

http://www.tdp.cat


Articles in Press

Accepted articles here

Latest Issues

Year 2024

Volume 17 Issue 1

Year 2023

Volume 16 Issue 3
Volume 16 Issue 2
Volume 16 Issue 1

Year 2022

Volume 15 Issue 3
Volume 15 Issue 2
Volume 15 Issue 1

Year 2021

Volume 14 Issue 3
Volume 14 Issue 2
Volume 14 Issue 1

Year 2020

Volume 13 Issue 3
Volume 13 Issue 2
Volume 13 Issue 1

Year 2019

Volume 12 Issue 3
Volume 12 Issue 2
Volume 12 Issue 1

Year 2018

Volume 11 Issue 3
Volume 11 Issue 2
Volume 11 Issue 1

Year 2017

Volume 10 Issue 3
Volume 10 Issue 2
Volume 10 Issue 1

Year 2016

Volume 9 Issue 3
Volume 9 Issue 2
Volume 9 Issue 1

Year 2015

Volume 8 Issue 3
Volume 8 Issue 2
Volume 8 Issue 1

Year 2014

Volume 7 Issue 3
Volume 7 Issue 2
Volume 7 Issue 1

Year 2013

Volume 6 Issue 3
Volume 6 Issue 2
Volume 6 Issue 1

Year 2012

Volume 5 Issue 3
Volume 5 Issue 2
Volume 5 Issue 1

Year 2011

Volume 4 Issue 3
Volume 4 Issue 2
Volume 4 Issue 1

Year 2010

Volume 3 Issue 3
Volume 3 Issue 2
Volume 3 Issue 1

Year 2009

Volume 2 Issue 3
Volume 2 Issue 2
Volume 2 Issue 1

Year 2008

Volume 1 Issue 3
Volume 1 Issue 2
Volume 1 Issue 1


Volume 3 Issue 1


Random Forests for Generating Partially Synthetic, Categorical Data

Gregory Caiola(a), Jerome P. Reiter(a),(*)

Transactions on Data Privacy 3:1 (2010) 27 - 42

Abstract, PDF

(a) Department of Statistical Science, Duke University, Durham, NC 27708, USA.

e-mail:gregory.caiola @duke.edu; jerry @stat.duke.edu


Abstract

Several national statistical agencies are now releasing partially synthetic, public use microdata. These comprise the units in the original database with sensitive or identifying values replaced with values simulated from statistical models. Specifying synthesis models can be daunting in databases that includemany variables of diverse types. These variablesmay be related inways that can be difficult to capture with standard parametric tools. In this article, we describe how random forests can be adapted to generate partially synthetic data for categorical variables. Using an empirical study, we illustrate that the random forest synthesizer can preserve relationships reasonably well while providing low disclosure risks. The random forest synthesizer has some appealing features for statistical agencies: it can be applied with minimal tuning, easily incorporates numerical, categorical, and mixed variables as predictors, operates efficiently in high dimensions, and automatically fits non-linear relationships.

* Corresponding author.

Follow us




Supports



ISSN: 1888-5063; ISSN (Digital): 2013-1631; D.L.:B-11873-2008; Web Site: http://www.tdp.cat/
Contact: Transactions on Data Privacy; Vicenç Torra; Umeå University; 90187 Umeå (Sweden); e-mail:tdp@tdp.cat
Note: TDP's web site does not use cookies. TDP does not keep information neither on IP addresses nor browsers. For the privacy policy access here.

 


Vicenç Torra, Last modified: 00 : 25 December 12 2014.