20 20

Transactions on
Data Privacy
Foundations and Technologies

http://www.tdp.cat


Articles in Press

Accepted articles here

Latest Issues

Year 2017

Volume 10 Issue 1

Year 2016

Volume 9 Issue 3
Volume 9 Issue 2
Volume 9 Issue 1

Year 2015

Volume 8 Issue 3
Volume 8 Issue 2
Volume 8 Issue 1

Year 2014

Volume 7 Issue 3
Volume 7 Issue 2
Volume 7 Issue 1

Year 2013

Volume 6 Issue 3
Volume 6 Issue 2
Volume 6 Issue 1

Year 2012

Volume 5 Issue 3
Volume 5 Issue 2
Volume 5 Issue 1

Year 2011

Volume 4 Issue 3
Volume 4 Issue 2
Volume 4 Issue 1

Year 2010

Volume 3 Issue 3
Volume 3 Issue 2
Volume 3 Issue 1

Year 2009

Volume 2 Issue 3
Volume 2 Issue 2
Volume 2 Issue 1

Year 2008

Volume 1 Issue 3
Volume 1 Issue 2
Volume 1 Issue 1


Volume 3 Issue 3


An information theoretic approach for privacy metrics

Michele Bezzi(a),(*)

Transactions on Data Privacy 3:3 (2010) 199 - 215

Abstract, PDF

(a) SAP Labs; F-06560, Mougins, France.

e-mail:michele.bezzi @sap.com


Abstract

Organizations often need to release microdata without revealing sensitive information. To this scope, data are anonymized and, to assess the quality of the process, various privacy metrics have been proposed, such as k-anonymity, l-diversity, and t-closeness. These metrics are able to capture different aspects of the disclosure risk, imposing minimal requirements on the association of an individual with the sensitive attributes. If we want to combine them in a optimization problem, we need a common framework able to express all these privacy conditions. Previous studies proposed the notion of mutual information to measure the different kinds of disclosure risks and the utility, but, since mutual information is an average quantity, it is not able to completely express these conditions on single records. We introduce here the notion of one-symbol information (i.e., the contribution to mutual information by a single record) that allows to express and compare the disclosure risk metrics. In addition, we obtain a relation between the risk values t and l, which can be used for parameter setting. We also show, by numerical experiments, how l-diversity and t-closeness can be represented in terms of two different, but equally acceptable, conditions on the information gain..

* Corresponding author.

Follow us




Supports





IIIA-CSIC




ISSN: 1888-5063; ISSN (Digital): 2013-1631; D.L.:B-11873-2008; Web Site: http://www.tdp.cat/
Contact: Transactions on Data Privacy; Vicenç Torra; U. of Skövde; PO Box 408; 54128 Skövde; (Sweden); e-mail:tdp@tdp.cat

 


Vicenç Torra, Last modified: 00 : 25 December 12 2014.