20 20

Transactions on
Data Privacy
Foundations and Technologies

http://www.tdp.cat


Articles in Press

Accepted articles here

Latest Issues

Year 2017

Volume 10 Issue 2
Volume 10 Issue 1

Year 2016

Volume 9 Issue 3
Volume 9 Issue 2
Volume 9 Issue 1

Year 2015

Volume 8 Issue 3
Volume 8 Issue 2
Volume 8 Issue 1

Year 2014

Volume 7 Issue 3
Volume 7 Issue 2
Volume 7 Issue 1

Year 2013

Volume 6 Issue 3
Volume 6 Issue 2
Volume 6 Issue 1

Year 2012

Volume 5 Issue 3
Volume 5 Issue 2
Volume 5 Issue 1

Year 2011

Volume 4 Issue 3
Volume 4 Issue 2
Volume 4 Issue 1

Year 2010

Volume 3 Issue 3
Volume 3 Issue 2
Volume 3 Issue 1

Year 2009

Volume 2 Issue 3
Volume 2 Issue 2
Volume 2 Issue 1

Year 2008

Volume 1 Issue 3
Volume 1 Issue 2
Volume 1 Issue 1


Volume 4 Issue 3


Secure Distributed Subgroup Discovery in Horizontally Partitioned Data

Henrik Grosskreutz(a),(*), Benedikt Lemmen(a), Stefan Rüuping(a)

Transactions on Data Privacy 4:3 (2011) 147 - 165

Abstract, PDF

(a) Fraunhofer IAIS; Schloss Birlinghoven; Sankt Augustin; Germany.

e-mail:firstname.lastname @iais.fraunhofer.de; firstname.lastname @iais.fraunhofer.de; firstname.lastname @iais.fraunhofer.de


Abstract

Supervised descriptive rule discovery techniques like subgroup discovery are quite popular in applications like fraud detection or clinical studies. Compared with other descriptive techniques, like classical support/confidence association rules, subgroup discovery has the advantage that it comes up with only the top-k patterns, and that it makes use of a quality function that avoids patterns uncorrelated with the target. If these techniques are to be applied in privacy-sensitive scenarios involving distributed data, precise guarantees are needed regarding the amount of information leaked during the execution of the data mining. Unfortunately, the adaptation of secure multi-party protocols for classical support/confidence association rule mining to the task of subgroup discovery is impossible for fundamental reasons. The source is the different quality function and the restriction to a fixed number of patterns i.e. exactly the desired features of subgroup discovery. In this paper, we present new protocols which allow distributed subgroup discovery while avoiding the disclosure of the individual databases. We analyze the properties of the protocols, describe a prototypical implementation and present experiments that demonstrate the feasibility of the approach.

* Corresponding author.

Follow us




Supports










ISSN: 1888-5063; ISSN (Digital): 2013-1631; D.L.:B-11873-2008; Web Site: http://www.tdp.cat/
Contact: Transactions on Data Privacy; Vicenç Torra; U. of Skövde; PO Box 408; 54128 Skövde; (Sweden); e-mail:tdp@tdp.cat

 


Vicenç Torra, Last modified: 10 : 40 June 27 2015.