20 20

Transactions on
Data Privacy
Foundations and Technologies


Articles in Press

Accepted articles here

Latest Issues

Year 2017

Volume 10 Issue 1

Year 2016

Volume 9 Issue 3
Volume 9 Issue 2
Volume 9 Issue 1

Year 2015

Volume 8 Issue 3
Volume 8 Issue 2
Volume 8 Issue 1

Year 2014

Volume 7 Issue 3
Volume 7 Issue 2
Volume 7 Issue 1

Year 2013

Volume 6 Issue 3
Volume 6 Issue 2
Volume 6 Issue 1

Year 2012

Volume 5 Issue 3
Volume 5 Issue 2
Volume 5 Issue 1

Year 2011

Volume 4 Issue 3
Volume 4 Issue 2
Volume 4 Issue 1

Year 2010

Volume 3 Issue 3
Volume 3 Issue 2
Volume 3 Issue 1

Year 2009

Volume 2 Issue 3
Volume 2 Issue 2
Volume 2 Issue 1

Year 2008

Volume 1 Issue 3
Volume 1 Issue 2
Volume 1 Issue 1

Volume 9 Issue 3

DBMask: Fine-Grained Access Control on Encrypted Relational Databases

Muhammad I Sarfraz(a),(*), Mohamed Nabeel(b), Jianneng Cao(c), Elisa Bertino(a)

Transactions on Data Privacy 9:3 (2016) 187 - 214

Abstract, PDF

(a) Purdue University, West Lafayette, IN, 47907, USA.

(b) Oracle, Redwood City, CA, 94065, USA.

(c) Institute for Infocomm Research, Singapore 13862.

e-mail:msarfraz @purdue.edu; nabeel.mohamed.nabeel @oracle.com; caojn @i2r.a-star.edu.sg; bertino @purdue.edu


DBMask is a system that implements encrypted query processing with support for complex queries and fine grained access control with create, update, delete and cryptographically enforced read (CRUD) operations for data stored on an untrusted database server hosted in a public cloud. Past research efforts have not adequately addressed flexible access control on encrypted data at different granularity levels which is critical for data sharing among different users and applications. DBMask proposes a novel technique that separates fine grained access control from encrypted query processing when evaluating SQL queries on encrypted data and enforces fine grained access control at the granularity level of a column, row and cell based on an expressive attribute-based group key encryption scheme. DBMask does not require modifications to the database engine, and thus maximizes the reuse of the existing DBMS infrastructures. Our experiments evaluate the performance of an encrypted database, managed by DBMask, using queries from TPC-H benchmark in comparison to plaintext Postgres. We further evaluate the functionality of our prototype using a policy simulator and a multi-user web application. The results show that DBMask is efficient and scalable to large datasets.

* Corresponding author.

Follow us



ISSN: 1888-5063; ISSN (Digital): 2013-1631; D.L.:B-11873-2008; Web Site: http://www.tdp.cat/
Contact: Transactions on Data Privacy; Vicenç Torra; U. of Skövde; PO Box 408; 54128 Skövde; (Sweden); e-mail:tdp@tdp.cat


Vicenç Torra, Last modified: 07 : 21 December 23 2016.