20 20

Transactions on
Data Privacy
Foundations and Technologies

http://www.tdp.cat


Articles in Press

Accepted articles here

Latest Issues

Year 2018

Volume 11 Issue 3
Volume 11 Issue 2
Volume 11 Issue 1

Year 2017

Volume 10 Issue 3
Volume 10 Issue 2
Volume 10 Issue 1

Year 2016

Volume 9 Issue 3
Volume 9 Issue 2
Volume 9 Issue 1

Year 2015

Volume 8 Issue 3
Volume 8 Issue 2
Volume 8 Issue 1

Year 2014

Volume 7 Issue 3
Volume 7 Issue 2
Volume 7 Issue 1

Year 2013

Volume 6 Issue 3
Volume 6 Issue 2
Volume 6 Issue 1

Year 2012

Volume 5 Issue 3
Volume 5 Issue 2
Volume 5 Issue 1

Year 2011

Volume 4 Issue 3
Volume 4 Issue 2
Volume 4 Issue 1

Year 2010

Volume 3 Issue 3
Volume 3 Issue 2
Volume 3 Issue 1

Year 2009

Volume 2 Issue 3
Volume 2 Issue 2
Volume 2 Issue 1

Year 2008

Volume 1 Issue 3
Volume 1 Issue 2
Volume 1 Issue 1


Volume 11 Issue 3


Differentially Private Verification of Regression Predictions from Synthetic Data

Haoyang Yu(a),(*), Jerome P. Reiter(b)

Transactions on Data Privacy 11:3 (2018) 279 - 297

Abstract, PDF

(a) Department of Statistical Science, Box 90251, Duke University, Durham, NC 27708, USA.

(b) Department of Statistical Science, Box 90251, Duke University, Durham, NC 27708, USA.

e-mail:haoyang.yu @duke.edu; jreiter @duke.edu


Abstract

One approach for releasing public use files is to make synthetic data, i.e., data simulated from statistical models estimated on the confidential data. Given access only to synthetic data, users cannot tell whether the synthetic data have been constructed in ways that provide sufficient accuracy for their particular purposes. To enable users to make such assessments, data providers also can allow users to request verification measures. These are summary statistics reflecting comparisons of the results of analysis based on the synthetic and confidential data. We present three verification measures that satisfy differential privacy for assessing the quality of linear regression models. We use simulation studies to illustrate the verification measures.

* Corresponding author.

Follow us




Supports




ISSN: 1888-5063; ISSN (Digital): 2013-1631; D.L.:B-11873-2008; Web Site: http://www.tdp.cat/
Contact: Transactions on Data Privacy; Vicenç Torra; U. of Skövde; PO Box 408; 54128 Skövde; (Sweden); e-mail:tdp@tdp.cat
Note: TDP's web site does not use cookies. TDP does not keep information neither on IP addresses nor browsers. For the privacy policy access here.

 


Vicenç Torra, Last modified: 12 : 24 August 28 2018.